Elasticities and approximations

Business Mathematics

CONTENTS

Elasticities
Approximations
Old exam question

ELASTICITIES

Let D(p) denote the demand for a commodity at price p. Changing the price by Δp yields a relative (or proportional) change

$$\frac{D(p'+\Delta p)-D(p)}{D(p)}$$

The relative change of price is $\frac{\Delta p}{r}$

Hence the proportional change of demand on relative change in price is
$$\frac{p}{\Delta p} \frac{D(p + \Delta p) - D(p)}{D(p)} = \frac{p}{D(p)} \frac{D(p + \Delta p) - D(p)}{\Delta p}$$

ELASTICITIES

Letting Δp tend to zero yields $\frac{p}{D(p)} \frac{d}{dp} D(p)$, which is called the elasticity of D(p) with respect to p.

Definition

Let f(x) be differentiable at x and $f(x) \neq 0$, then

$$\operatorname{El}_{x} f(x) = \frac{x}{f(x)} f'(x)$$

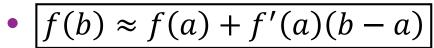
is the elasticity of f with respect to x

 El_x is not a variable, but an operator that works on a function, like $\frac{d}{dx}$

ELASTICITIES

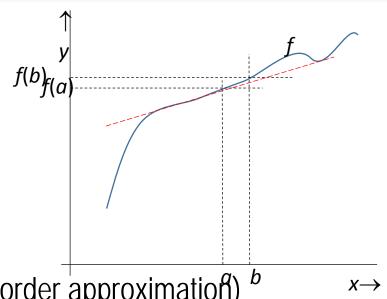
Example:

- let $f(x) = Ax^b$ for some constant $A \neq 0$ and b.
- then $\mathrm{El}_{x}f(x)=b$.
- interpretation: if x increases by 1%, f(x) increases approximately by b%.



APPROXIMATIONS

Let f(x) be a "smooth" function Suppose we know f(a)What is the best guess of f(b)

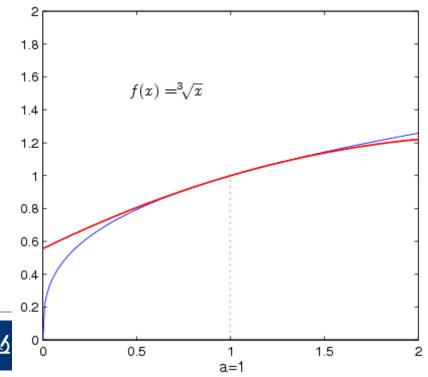

- where b is "close to" a?Easiest guess
- $f(b) \approx f(a)$

Better guess (linear approximation, or first-order approximation) b

Even better guess (quadratic approximation, or second-order approximation)

•
$$f(b) \approx f(a) + f'(a)(b-a) + \frac{1}{2}f''(a)(b-a)^2$$

APPROXIMATIONS


Example:

$$f(x) = \sqrt[3]{x}$$
 about $x = 1$

- linear: $f(x) \approx f(1) + f'(1)(x-1) = 1 + \frac{1}{3}1^{-\frac{2}{3}}(x-1)$
- quadratic: $f(x) \approx f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 = \cdots$

Check:

- exact: f(1.1) = 1.03228
- linear: $f(1.1) \approx 1.03333$
- quadratic: $f(1.1) \approx 1.03222$

OLD EXAM QUESTION

22 October 2014, Q3d

For a certain country, the debt/capita D in a certain year t is described by a function f(t). The form of f(t) is not known, but it is known that f'(2014) = 3 and f''(2014) = -2. Use a second-order approximation to find the debt/capita in 2016, if it is known than the debt/capita in 2014 is 350 USD. (5 points)

OLD EXAM QUESTION

22 October 2014, Q2b

The company operates in a market where the demand function for product 1 is given by $x_1=40-6p_1+4\sqrt{p_2}$. , where p_1 is the price of product 1 and p_2 the price of product 2. Determine the elasticity of the demand of product 1 with respect to the price of product 2. Simplify the expression as far as possible. (5 points)

