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ABSTRACT
LCA, even when modeled in the traditional way with linear equations, may show strong non-linear sensitivities.

Well-developed tools from matrix perturbation theory may be employed to investigate LCA systems for the presence and

location of such extreme sensitivities. This knowledge is useful for stability analysis, error analysis and for detecting and

resolving round-off problems in the computations.

INTRODUCTION

It is well known that models that comprise
highly non-linear functions may exhibit a large sensitivity
with respect to the dependency of output on input. For
instance, when a modeled relationship is based on the
tangent of a certain input coefficient, say

y=tanx

changing the input from x = 1.5 to x = 1.55 will result in a
change of output from y = 14 into y =48.

Since the advent of chaos theory in the eighties,
a similar phenomenon has been observed for models with
weak non-linearities. One famous example is the system of
three differential equations

x=s5(y—x)
p=x(r-2)-y
z=xy—bz

originally due to Lorenz, which gives rise to what has
become known as sensitive dependence on initial
conditions. This means that a certain initial state (xq, o, 2o)
will develop into a completely different trajectory than a
slightly different initial state, say (xo+0x, ¥, Zo).

A discussion of non-linear models and chaos
theory is not an obvious thing in the context of LCA. After
all, LCA, in its most typical form, deals with simplified
linear models, and linear models are not expected to show
extreme sensitivities. A simple example will show,
however, that sensitive dependence on initial conditions
may also show up in a linear LCA model.

This paper addresses such questions as:

= how do sensitivities in LCA arise?

= can we predict from a given LCA-system if it
exhibits sensitivities, and at what places?

= can we develop diagnostic measures that warn

us for potential sensitivities?

It will be based on theoretical arguments, but extensions to
real-world situations are included as well. Most of the
features discussed are included in CMLCA [1].

A SIMPLE BUT SENSITIVE LCA SYSTEM

Suppose that the topic of analysis is aimed at
the delivery of 1000 kWh of electricity, and that we study a
very small product system that consists of only two unit
processes: electricity production and fuel production. The
process specification is as follows:

= process 1, electricity production, produces 10
kWh electricity with an input of 2 liter of fuel
and a CO,-emission of 1 kg;

= process 2, fuel production, produces 100 liter

fuel with an input of 498 kWh electricity and a

CO,-emission of 10 kg.

With an LCA-program that is sufficiently smart to deal
with systems with recursive flows, the system-wide CO,-
emission is calculated to be 30.000 kg.

It turns out that this result is highly dependent
on the coefficient 498, the amount of kWh of electricity
that is needed to produce 100 liter of fuel. If we have
mismeasured this coefficient as 499, the resulting CO,-
emission will be 60.000 kg. In other words: a change of one
coefficient by 0.2% and keeping the other five coefficients
unchanged, induces a change of the variable of interest by
100%! And, note well, in an LCA-setup that is linear.

ANALYSIS OF THE SENSITIVITY
A first question that we may ask is: how can
this be? How can a simple linear system exhibit a strong
non-linear response to changes in parameters?
An answer starts with the observation that, even
though processes are scaled in LCA in a linear way, the
final equation that displays how the CO,-emission depends




on the systems' coefficients is non-linear. Straightforward
mathematics [2:102] provides an expression for the CO,-
emission of the form
100x1000x 1+ 2x1000x10
COp =
—2x498+10x100
Especially the fraction

=30.000

1
—2x498+10x100
plays a central role in the extreme sensitivity. In the present
form, it is 0.25, but when 498 is changed into 499, it is
doubled to 0.5. Thus, even though the formulation of the
system is with linear equations, the solution of these
This is
comparable to the example of the chaotic system by

equations is non-linear. in a certain sense
Lorenz: even though the equations that describe the system
are only weakly non-linear, the solution to these equations
is strongly non-linear.

The of the
relationship between a technology coefficient and the

strong non-linear character
system-wide CO,-emission is shown in Figure 1.
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Figure 1. Dependence of the system-wide CO,-emission as
a function of the coefficient that indicates the amount of
electricity needed for the production of fuel.

FORMULATION IN MATRIX TERMS
We may formulate the problem of finding the
system-wide CO,-emission in matrix form [2:11]. We
introduce a matrix with the coefficients within the technical

10 498
A=
-2 100

and the matrix of coefficients with exchanges with the

system:

environment:
B=(1 10)

Notice that rows indicate flows: flows of products and
materials in A (here electricity and fuel), and elementary
flows in B (here CO,), and that columns in both matrices
indicate processes. Also notice that some coefficients are
negative, to indicate that they represent input flows to a
process.

The delivery of 1000 kWh of electricity may be

written as a vector
(1000)
f=
0

The variable of interest is a vector of environmental
interventions, which is in this case a degenerate vector of

g=(?)

The purpose of LCI is of course to find out which number

only one row:

will be placed at the position of the question mark.

To that aim, the materials balance principle and
matrix algebra can be combined to give an explicit formula
[2:19]:

g=BA "

where the superscript —1 denotes that matrix A is to be
inverted. Matrix inversion is a well-defined mathematical
operation of which the details go beyond this paper. It can
be regarded as a kind of generalization of the ordinary
division. And, like dividing by zero produces ill-defined
results, inversion of a matrix that has a property called the
determinant equal to zero produces ill-defined results as
well. Such a matrix is said to be singular, and a matrix that
is close to singular is a topic of concern. There exists a
large literature on such matrices. It is the purpose of the
next section to explore some aspects of this literature.

MATRIX PERTURBATION THEORY
theory [3]
questions related to the effects of perturbing one or more

Matrix perturbation addresses
coefficients of a matrix equation. Applied to the case of
LCA, a question to address would be: given the equation

g=BA~lf
how do the elements of g change if one or more of the

elements of A or B change by a specified amount? And in
the concrete example given, can we predict from

10 -498
A=
-2 100
how g changes if the number —498 is changed into —499?
To this aim, matrix perturbation theory has
developed a number of diagnostic measures. One of the

most important of these is the condition number, often
indicated as x. The condition number of a matrix can be




regarded as a worst-case indicator of the sensitivity of the
result of a matrix inversion to a perturbation of the
coefficients of the matrix itself. The condition number of
the above matrix is approximately 65,000, hence changing
a coefficient by 1% may at most induce a change in result
by 65,000%. The change of 498 into 499 results in
doubling, so the amplification of the perturbation is
approximately 500 times. Not as dramatic as 65,000, but
still quite a lot. Anyhow, it shows that a worst-case
diagnostic measure may warn us for ill-conditioned systems
that require a closer stability study. The condition number
warns us also for the intrinsic computational dangers of
introducing round-off errors in doing LCA [2:148].

AN ANALYTICAL TREATMENT
We can also conceive more refined diagnostic
measures of stability. An important approach starts with the
identification of certain local derivatives. In the theory of
non-linear dynamics, the Jacobian matrix serves such
purposes. The Jacobian is a matrix that contains terms such
as
ox
El
For the case of the Lorenz system, given in the
introduction, we have nine such derivatives, arranged in the
Jacbian given by

- 0
oGz | 7

.« -1 —x
a(x,y,z) r—z X

y oy b
When evaluated at a certain point (x, y, z), it provides
insight into several stability issues: Lyapunov exponents,
dissipating properties, and other characteristics of interest
for dynamic systems.

For the linear case of LCA, the derivatives of
interest are

ogk
Oa if

and

Ogk
obj;

These derivatives may be arranged into two sets of
matrices:
98k %8k
Oayy  Oay)
%k _| %8k Oer
0A Oayy  Oaxp

and a similar matrix for the derivative of the intervention
with respect to B.

Elementary linear algebra allows the explicit calculation of
these quantities, although the expressions obtained may
look complicated. For instance [2:135],

aif = %:bkl (A_l )liz (A_l )jm Jim

aa’] m

and

-1 s
ﬂ: Z(A )jmfm ifi=k

m
abfj 0 otherwise

We can use these equations for every
combination of i, j and k, and create a table of sensitivity
coefficients. Moreover, we can adjust the formula to derive
relative coefficient instead of absolute coefficients, e.g.,

Y g
8k aal-j
instead of
ogk
aa,-j
Arrangement of the relative coefficients in a table then
yields
ay; Ogg
8 daz)
az2 08y
8 Oapy

a1 9gg
8k Oayy

a1y Ogy
r,(A)=
() gk Oai

and a similar table for the dependency on B.
In the example, we find

ry(A)= [—250 249 J

249  -249

and
r(B)=(0.83 0.17)

This shows that the sensitivities in the matrix of
coefficients within the technical system (A) is much larger
than that in the matrix of coefficients with exchanges with
the environment (B). In fact, all coefficients in I'}(B) are
between —1 and 1, which means that they have a
moderating influence on pertubations. The tremendous
values of order 250 means that small perturbations are
amplified with a factor of 250.

NEW SUMMARY MEASURES

The condition number provides a single-
number worst-case indicator of the stability of a matrix
system. It may well overestimate the instability by many
orderd of magnitude. On the other hand, the matrices




introduced above provide tableaus of numbers with at least
locally exact indicators. But these matrices may in real case
studies be so huge that one can never oversee them in full.
There seems to be a need for a compromise:
exact numbers but not so many. One obvious candidate for
such new measures of stability is a selection of the exact
indicators developed above. If we single out the highest
one, or the five highest ones, or the percentage of indicators
above 1, we may well have found a workable compromise.
Thus, for instance, we could propose to use
1 = e (o il )
L]
or, even more aggregated,
7 = max qu (aij “F k (by])
i,j,k
as a sensitivity indicator that is more exact than the
condition number, but still single-valued. In the above
example, it assumes the value of 250.

UNCERTAINTIES AND THEIR PROPAGATION

Closely related to these stability measures is the
topic of uncertainty analysis. The topic of error propagation
[4] is well-studied and provides a useful basis for
uncertainty analysis in LCA.

If a functional relationship is given as a
mathematical relation between two inputs (x and y) and one
output (z), say

z= f(xy)
the theory of error propagation gives approximation for Az
as a consequence of Av and Ay. Let us assume that the
uncertainty in the data is specified as a standard deviation

o. Then we have, when the uncertainties in x and y are

2
2 (9 2
o2 ~(Z]o,

Translating this general result to the case of LCA, we have
[2:144]

independent

o*(g)

2 2
i, i i
where the expressions for the partial derivatives have been
given in a previous section.

It is not surprising that uncertainty and
sensitivity are related. If we realize that uncertainties in

only one a;; propagate via

0-[ % ko)

and that independent uncertainties as variances, hence as

squared standard deviations, we easily make the

connection.

ANALYTICAL VERSUS NUMERICAL METHODS
The above expressions for sensitivity and
uncertainty analysis are clear example of analytical
methods: they are based on explicit algebraic manipulation.
An important alternative for analytical methods are
numerical methods. We will first illustrate numerical
approaches towards sensitivity and uncertainty analysis and
finally discuss some advantages and disadvantages.
In the case of the perturbation-theoretic
coefficients we approximate the derivative as follows:
oei  selay re)-silay)
20y " :

with a small value, say 0.001, for ¢ [2:182]. For the
uncertainty analysis, we apply a Monte Carlo method.
Here, a number of N realizations of the systems is made,
each with a new set of stochastic parameters. For each
realization, the interventions are calculated. This yields a
series of intervention results,

él)gz""’gN}

and all sorts of statistical characteristics may be abstracted
from this sample: the mean, the standard deviation, the
range, and other distributional features [2:182].

So, there are two main ways of achieving
sensitivity and uncertainty results: analytical and numerical.
The question is which one to use. Numerical approaches
are easy to understand and easy to implement. But,
especially for large systems, they require much more
computer time than analytical solutions. To give an idea:
perturbation coefficients of the ETH3-database on the basis
of an analytical method takes a few minutes, while a
numerical approach requires several hours. A similar
argument applies to uncertainty calculations, where the
number of Monte Carlo runs may well be 1000.
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