
APQE11-1a

Advanced Programming in Quantitative
Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam
Tinbergen Institute

c.s.bos@vu.nl

15 – 19 August 2011, Aarhus, Denmark

1/47

APQE11-1a

Outline

Outline

Introduction

Concepts: Data, variables, functions, actions

Elements

Install

Example: Gauss elimination

Getting started

2/47

APQE11-1a

Outline

Day 1 - Morning

9.30 Introduction
I Target of course
I Science, data, hypothesis, model, estimation
I Bit of background

I Concepts of
I Data, Variables, Functions, Addresses

I Programming by example
I Gauss elimination

I (Installation/getting started)

11.00 Tutorial: Do it yourself

12.30 Lunch

3/47

APQE11-1a

Introduction

Target of course

I Learn

I structured

I programming

I and organisation

I (in Ox or other language)

Not: Just learn more syntax...

4/47

APQE11-1a

Introduction

What? Why?
Wrong answer:

For the fun of it

A correct answer

To get to the results we need, in a fashion that is
controllable, where we are free to implement the newest
and greatest, and where we can be ‘reasonably’ sure of
the answers

Data

Hypothesis

E= f(m)

Model

E= m c
2

Estimation

E
†
= m

†
 (c

†
)
2

01 0
0

0
1

1

0
10000 1

0

P
ro

g
ra

m
m

in
g

Science

5/47

APQE11-1a

Introduction

Aims and objectives

I Use computer power to enhance productivity

I Productive Econometric Research:
combination of interactive modules and programming tools

I Data Analysis, Modelling, Reporting

I Accessible Scientific Documentation (no black box)

I Adaptable, Extendable and Maintainable (object oriented)

I Econometrics, statistics and numerical mathematics
procedures

I Fast and reliable computation and simulation

6/47

APQE11-1a

Introduction

Options for programming

G
U

I

C
L

I

P
ro

gr
am

S
p

ee
d

Q
u

an
E

co
n

Comment
EViews + - - +/- + Black box, TS
TSMod + - +/- +/- + Alternative

Stata +/- + - - - Less programming
Matlab + + + + +/- Expensive, other audience

Gauss +/- +/- + +/- + ‘Ugly’ code, unstable
S+/R +/- + + - +/- Graph +, speed -

Ox + +/- + + + Links to C, ectrics
C(++)/Fortran - - + ++ - Very quick, difficult

Here: Use Ox as environment, apply theory elsewhere

7/47

APQE11-1a

Introduction

History

There was once...
C-Programmer Memory leaks Shell around C Matrices

...and Ox was born.
More possibilities, also computationally:

Timings for OLS (30 observations, 4 regressors):
2009 Neh 2.67Ghz 64b 670.000†/sec

2008 Xeon 2.8Ghz OSX 392.000†/sec

2006 Opt 2.4Ghz 64b 340.000†/sec

2006 AMD3500+ 64b 320.000†/sec

2006 AMD3500+ 4.04 273.000†/sec

2004 AMD3500+ 3.40 218.000†/sec

2004 PM-1200 147.000†/sec

2001 PIII-1000 104.000†/sec
2000 PIII-500 60.000/sec
1996 PPro200 30.000/sec
1993 P5-90 6.000/sec
1989 386/387 300/sec
1981 86/87 (est.) 30/sec

Increase:
≈ × 1000 in 15 years
≈ × 10000 in 25 years.

8/47

APQE11-1a

Introduction

Speed increase — but keep thinking

x ∼ NIG(α, β, δ, µ) P(X < x) =

∫ x

0
f (z)dz = F (x) xq = F−1(q)

S(q) =
x1−q + xq − 2x 1

2

x1−q − xq
0 < q <

1

2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S x q
σS
E(S)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

KL x l
σKL
E(KL) x l

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

KR x r
σKR x r
E(KR) x r

Direct calculation of graph: > 40 min — Pre-calc quantiles: 5 sec
9/47

APQE11-1a

Introduction

OxMetrics

A
P
P
S

C
O
R
E

PcGive STAMP G@RCH TSP Ox Packages

+ x12arima + SsfPack DPD, MSVAR
+ PcNaive Arfima, etc.

Ox programs

OxMetrics Ox

interactive graphics numerical programming
data manipulation computational engine

results storage interface wrapper
code editor

10/47

APQE11-1a

Concepts: Data, variables, functions, actions

What is programming about?

Managing DATA, in the form of VARIABLES, usually
through a set of predefined FUNCTIONS or ACTIONS

Of central importance: Understand variables, functions at all
times...

So let’s exagerate

11/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Variable

I A variable is an item which can have a certain value.

I Each variable has one value at each point in time.

I The value is of a specific type.

I A program works by managing variables, changing the values
until reaching a final outcome

[Example: Paper integer 5]

12/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Integer

iX= 5;

5

I An integer is a number without fractional part, in between
−231 and 231 − 1 (limits are language dependent)

I Distinguish between the name and value of a variable.

I A variable can usually change value, but never change its
name

13/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Double

dX= 5.5;

5.5

I A double is a number with possibly a fractional part.
I Note that 5.0 is a double, while 5 is an integer.
I A computer is not ‘exact’, careful when comparing integers

and doubles
I If you add a double to an integer, the result is double (in Ox

at least, language dependent)

[Example: dAdd= 1/3; dD= 0; dD= dD + dAdd; etc.]
14/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

String

sX= "A";

A

sY= "Hello world";

Hello world

I A character is a string of length one.
I A string is a collection of characters.
I The " are not part of the string, they are the string delimiters.
I One single element of a string, sY[3] for instance, is an

integer, with the ASCII value of the character.
I Multiple elements of a string are a string as well, sY[0:4],

also sX[0:0] is a string.

[Example: sX= "Hello world";]
15/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

‘Simple’ types

I Integer

I Double

I Character/String

‘Derived’ type

I boolean, integer 0 is FALSE, integer 1 is TRUE

[Example: print (TRUE);]

16/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

‘Difficult’ types

I Function

I Address

I Matrix

I Array

I File

I Object

17/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Function

print ("Hello world");

print()

I A function performs a certain task, usually on a (number of)
variables

I Hopefully the name of the function helps you to understand
its task

I You can assign a function to a variable,
fnMyPrintFunction= print;

[Example: fnMyPrintFunction("Hello world");]
18/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Address, real world

A building at the university

School of Economics and Management
University of Aarhus
Building 1322
DK-8000 Aarhus C

The address
19/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Address

adX= &dX;
adX

5.5

I Now the address is the value (of variable adX)

I Any variable has an address (&iX, &dX, &sX etc)

I Each object exists only once: Whether I use dX or what’s at
the address adX, it is the same thing.

20/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Matrix

mX= <1, 2; 3, 4>;

1.0 2.0

3.0 4.0

I A matrix is a collection of doubles.

I A matrix has two dimensions.

I A matrix of size k × 1 or 1× k we tend to call a vector, vX.

I Later on we’ll see how matrix operations can simplify/speed
up calculations.

21/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Array

aX= {"Beta", 5, <5.5>};

Beta 5 5.5

I An array is a collection of other objects.
I An array itself has one dimension.
I An element of an array can be of any type (integer, double,

function, address, matrix, array)
I An array of an array of an array has three dimensions etc.

[Example: aX= {};]
22/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

File

fh= fopen("data/aex-trades-0711.csv", "r");

fh

I A file variable ‘points to’ an opened file

I This can be of use to read or write a file e.g. line-by-line

I Useful for successively writing results, or handling enormous
data-files

[Example: fh= fopen("data/mydata.csv", "r");]
23/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Object

hh= new house(); db= new Database();

I An object variable is an ‘object’
I It can have certain characteristics or function members, which

can be changed in turn. E.g. hh.OpenWindow(); or
db.GetVar("Returns");

I Useful for building higher level programs, with functionality
hidden away in member functions.

I Communication of research (Arfima example)

24/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

Ox and other languages
Concepts are similar

I Ox (and Gauss/Matlab) have automatic typing. Use it, but
carefully...

I C/C++/Fortran need to have types and sizes specified at the
start. More difficult, but still same concept of variables.

I Precise manner for specifying a matrix differs from language
to language. Ox rather similar to C in many respects

I Remember: An element has a value and a name

I A program moves the elements around, hopefully in a smart
manner

Keep track of your variables,
know what is their scope

25/47

APQE11-1a

Concepts: Data, variables, functions, actions

Variables

All languages

Programming is exact science

I Keep track of your variables

I Know what is their scope

I Program in small bits

I Program extremely structured

I Think about algorithms, data storage, outcomes etc.

26/47

APQE11-1a

Elements

Elements to consider

I Comments: /* (block) */ or // (until end of line)

I Declarations: Up front in each routine

I Spacing

I Variables, types and naming in Ox:
scalar integer iN= 20;
scalar double dC= 4.5;
string sName="Beta1";
matrix mX= <1, 2.5; 3, 4>;
array of X aX= {1, <1>, "Gamma"};
address of variable: amX= &mX;
function fnFunc = olsr;
class object db= new Database();

27/47

APQE11-1a

Elements

Imagine elements

iX= 5

5

dX= 5.5

5.5

sX= "Beta"

Beta

mX= <1, 2; 3, 4>

1.0 2.0

3.0 4.0

aX= {"Beta", 5, <5.5>}

Beta 5 5.5

amX= &mX

amX

mX

Every element has its representation in memory — no magic 28/47

APQE11-1a

Elements

Try out elements

Listing 1: oxelements.ox
#include <oxstd.h>

main()

{

decl a, mX, sX;

a= 5;

println ("Integer: ", a);

a= 5.5;

println ("Double: ", a);

a= sX= "Beta";

println ("String: ", a);

a= mX= <1, 2; 3, 4>;

println ("Matrix: ", a);

a= &mX;

println ("Address of matrix: ", a);

a= &sX;

println ("Address of string: ", a);

a= olsr;

println ("Function: ", a);

} 29/47

APQE11-1a

Elements

Hungarian notation

Hungarian notation prefixes

prefix type example
i integer iX
b boolean (f is also used) bX
d double dX
m matrix mX
v vector vX
s string sX
fn Function fnX
a array or address aX
as array of strings asX
am array of matrices amX
c class object variable cX
m class member variable m mX
g external variable with global scope g mX
s static external variable (file scope) s mX

Use them everywhere, always.
Possible exception: Counters i, j, k etc.

30/47

APQE11-1a

Elements

Hungarian notation

Hungarian 2
Ox does not force Hungarian notation: Correct but very ugly is

Listing 2: oxnohun.ox
#include <oxstd.h>

main()

{

decl sX, iX;

iX= "Hello";

sX= 5;

}

Instead, always use

Listing 3: oxhun.ox
#include <oxstd.h>

main()

{

decl sX, iX;

sX= "Hello";

iX= 5;

}

31/47

APQE11-1a

Install

Installation

1. Install the appropriate version (academic/professional),
http://www.doornik.com, for Ox and possibly OxMetrics

2. Make the Ox documentation the homepage in your browser
(c:\program files\oxmetrics6\ox\doc\index.html)

3. Install the necessary tools for OxEdit, if needed

Optional steps:
I Continue with downloading and installing extra packages

ssfpack, arfima, gnudraw, dpd etc. into the Ox
directory
c:\program files\oxmetrics6\ox\packages\ssfpack
etc, each in its own subdirectory below ox\packages.

32/47

APQE11-1a

Install

Installation (advanced)

What if:

I No graphics, no OxMetrics license

Then:

I Install GnuDraw package with Ox, and

I Install GnuPlot (google it for a download) in
c:\program files\gnuplot

33/47

APQE11-1a

Example: Gauss elimination

Programming by example

I Enough theory

I Example: How to solve a system of linear equations

I Goal: Simple situation, program to solve it

I Broad concepts, details follow

34/47

APQE11-1a

Example: Gauss elimination

Setup: Linear system
Solve for x: Ax = b, with

A =


a11 a12 · · · a1n

0 a22 · · · a2n
...

. . .
...

0 · · · 0 ann

 , x =


x1

x2
...

xn

 b =


b1

b2
...

bn


Solution:

xn = bn/ann

xi =

bi −
∑
j>i

aijxj

 /aii , i = n − 1, .., 1

I.e.: Start at the end, solve backwards.

But ... only works for upper triangular A...
35/47

APQE11-1a

Example: Gauss elimination

Elimination
Hence: Create triangular matrix...(

2 1
4 6

)(
x1

x2

)
=

(
1
4

)
⇔

(
2 1
0 4

)(
x1

x2

)
=

(
1
2

)
Subtract multiple ajk/akk times equation k from rows

j = k + 1, ..., n, such that a
(k)
jk ≡ 0.

Note: The x ’s don’t change, only elements of A and b.
Extended matrix:

(A,b) =


a11 · · · · · · a1n b1

a21
. . .

...
...

...
. . .

...
...

an1 · · · · · · ann bn


36/47

APQE11-1a

Example: Gauss elimination

Example elimination

[A|b] =


6 −2 2 4 | 16

12 −8 6 10 | 26
3 −13 9 3 | −19
−6 4 1 −18 | −34


iteration 1⇔ [A|b](1) =


6 −2 2 4 | 16
0 −4 2 2 | −6
0 −12 8 1 | −27
0 2 3 −14 | −18


Let’s concentrate on one row at a time: How to eliminate the row
starting with 12?

(See ge0.ox)

37/47

APQE11-1a

Example: Gauss elimination

Program by Example 0

I Use commenting

I One main function: main() {}

I Declarations on top (...)

I Get the matrices, mA= <1, 2; 3, 4>;

I Concatenate, mAB= mA ~ vB;

I Debug → println()

Recognize Magic Numbers, initial settings

PbE 1: Eliminate a row

I What row/column are we working with? Start counting at 0...

I Calculate multiplicity

I Subtract a row at a time

38/47

APQE11-1a

Example: Gauss elimination

PbE 2: Eliminate a row in a function

As we might want to eliminate more rows, it could be programmed
as a separate function...

I Function header: Define what goes in/out

I Use commenting

I First use of address amAB= &mAB;

PbE 3: Eliminate multiple rows

I Use a loop around the function,
for (start condition; check; increment)

39/47

APQE11-1a

Example: Gauss elimination

PbE 4: Eliminate multiple columns
PbE 4: Eliminate multiple columns

I Use a loop around the loop. What columns should be
eliminated?

PbE 5: Use another function

I Use a function to eliminate a column

I Call the function multiple times from the loop

Resulting program:

I Clean

I Readable chunks

I Debugging was done step by step, function/action at a time

I In future, functions are easily re-utilizable.

40/47

APQE11-1a

Getting started

Chapter 1: Getting started
Exercise:

1. Copy the file <ox-home>/samples/myfirst.ox to your
personal directory.

2. Open the file in OxEdit (e.g. Windows Explorer, walk there,
right mouse button, Send To - OxEdit)

3. Run the program (through Modules - Run - Ox)
(If there is no Ox option under the Run menu, load the .tool file from the students directory, using Tools -

Add/remove modules - Load from)

Output

Ox version 5.10 (Linux_64/MT) (C) J.A. Doornik , 1994 -2008

two matrices

2.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

0.0000 0.0000 0.0000

1.0000 1.0000 1.0000

41/47

APQE11-1a

Getting started

Using OxEdit
One tab has program
Running the program puts output in separate file/sheet
Errors in code can appear in output file
Workspace indicates opened files

42/47

APQE11-1a

Getting started

Type of errors
1. Compilation errors: Like the above, error in the syntax of Ox

Listing 4: myfirst err.ox
print "two matrices", m1, m2);

// gives compile -time error

Ox version 5.10 (Linux_64/MT) (C) J.A. Doornik , 1994 -2008

myfirst_err.ox (12): ’;’ expected but found ’<string >’

myfirst_err.ox (12): ’;’ expected but found ’)’

myfirst_err.ox (12): ’)’ out of place

2. Runtime errors: Impossible computations or commands

Listing 5: myfirst err.ox
print ("product of two matrices", m1 * m2);

// gives run -time error

Ox version 5.10 (Linux_64/MT) (C) J.A. Doornik , 1994 -2008

...

Runtime error: ’matrix [3][3] * matrix [2][3] ’ bad operand

Runtime error occurred in main (14), call trace:

myfirst_err.ox (14): main

One error can lead to multiple messages: Start solving first in list.
43/47

APQE11-1a

Getting started

Chapter 2: Syntax - Comments

/* This is standard comment ,

which /* may be nested */.

*/

decl x; // declare the variable x

Use them well, use them extensively, use them consistently

44/47

APQE11-1a

Getting started

/*

** olsc(const mY , const mX , const amB)

**

** Purpose:

** Performs OLS , expecting the data in columns.

**

** Inputs:

** mY iT x iN matrix of regressors Y

** mX iT x iK matrix of explanatory variables X

**

** Outputs:

** amB address of iK x iN matrix with iN sets of OLS coefficients

**

** Return value:

** integer , 1: success , 2: rescaling advised ,

** -1: X’X is singular , -2: combines 2 and -1.

**

** Example:

** ir = olsc(mY , mX , &mB);

**

** Last changed

** 21 -04 -96 (Marius Ooms): made documentation

** 06 -08 -09 (Charles Bos): adapted documentation

*/

Use explanation, consistently, before every function, detailing
name, purpose, inputs, outputs, return value (and possibly date,
author, once per file)

45/47

APQE11-1a

Getting started

Program layout
A minimal complete program is:

Listing 6: oxtut2b.ox
#include <oxstd.h>

main()

{

println("Hello world");

}

Contains:

1. Include statement, to define all standard functions in Ox;
between < and > to indicate oxstd.h is an intrinsic part of
Ox

2. One function header, called main, taking no arguments ()

3. Function body for main(), enclosed in {}, with a println
statement

Note: Syntax terribly similar to C or Java.
46/47

APQE11-1a

Getting started

Statements
Listing 7: oxtut2c-hun.ox

#include <oxstd.h>

main()

{

decl iN, dSigma , mX, vBeta , vEps;

iN = 4;

dSigma = 0.25;

mX = 1 ∼ ranu(iN , 2);

vBeta = <1; 2; 3>;

vEps = dSigma * rann(iN, 1);

print("x", mX, "beta", vBeta , "epsilon", vEps);

}

(note: Stick to Hungarian, don’t follow the Introduction to Ox
literally here)

I Declaration: Automatic typing
I Assignment: Integer, double, matrix-function,

matrix-constant, function result.
I Print statement

47/47

	Introduction
	Concepts: Data, variables, functions, actions
	Elements
	Install
	Example: Gauss elimination
	Getting started

