APQE11-1a

Advanced Programming in Quantitative
Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam
Tinbergen Institute

c.s.bos@vu.nl

15 — 19 August 2011, Aarhus, Denmark

1/47

APQE11-1a
L outline

QOutline

Introduction

Concepts: Data, variables, functions, actions
Elements

Install

Example: Gauss elimination

Getting started

2/47

APQE11-1a
L Outline

Day 1 - Morning

9.30 Introduction

» Target of course
» Science, data, hypothesis, model, estimation
» Bit of background

» Concepts of
» Data, Variables, Functions, Addresses
» Programming by example
» Gauss elimination
» (Installation/getting started)
11.00 Tutorial: Do it yourself
12.30 Lunch

3/47

APQE11-1a
|—Introduction

Target of course

Learn
structured
programming

and organisation

vV vVv.v. v Y

(in Ox or other language)

Not: Just learn more syntax...

4/47

APQE11-1a
Llntroduction

What? Why?
Wrong answer:
For the fun of it
A correct answer
To get to the results we need, in a fashion that is

controllable, where we are free to implement the newest
and greatest, and where we can be ‘reasonably’ sure of

the answers

1 Data

1 00 10 2 . .
0 10 0&)0 § Estimation
0 g; El=m' (2
Model ‘8‘)
7 E=md &
Hypothesis .-
E=fm)

5/47

APQE11-1a
- Introduction

Aims a

v

vV v vY

nd objectives

Use computer power to enhance productivity

Productive Econometric Research:
combination of interactive modules and programming tools

Data Analysis, Modelling, Reporting
Accessible Scientific Documentation (no black box)
Adaptable, Extendable and Maintainable (object oriented)

Econometrics, statistics and numerical mathematics
procedures

Fast and reliable computation and simulation

6/47

APQE11-1a
Llntroduction

Options for programming

=y
T
s - ¥ % 5
O O a & & Comment
EViews| + - - +/- 4+ Black box, TS
TSMod| + - +/- +/- + Alternative
Stata|+/- + - - - Less programming
Matlab| + 4+ 4+ 4+ +/- Expensive, other audience
Gauss|+/- +/- + +/- + ‘Ugly’ code, unstable
S+/R|+/- + + - +/- Graph +, speed -
Ox| + +/- + + + Linksto C, ectrics
C(++)/Fortran| - - 4+ 4+ - Very quick, difficult

Here: Use Ox as environment, apply theory elsewhere

7/47

APQE11-1a
- Introduction

History

There was once...
C-Programmer

...and Ox was born.

Memory leaks

Shell around C Matrices

More possibilities, also computationally:

Timings for OLS (30 observations, 4 regressors):

2009 Neh 2.67Ghz 64b 670.0007 /sec
2008 Xeon 2.8Ghz 0OsX 392.000% /sec
2006 Opt 2.4Ghz 64b 340.000" /sec
2006 AMD3500+ 64b 320.000" /sec
2006 AMD3500+ 4.04 273.000" /sec
2004 AMD3500+ 340 218.0007 /sec
2004 PM-1200 147.000" /sec
2001 PI11-1000 104.0007 /sec
2000 PI11-500 60.000/sec
1996 PPro200 30.000/sec
1993 P5-90 6.000/sec
1989 386/387 300/sec
1981 86/87 (est.) 30/sec

Increase:

~
~

~
~

x 1000 in 15 years
x 10000 in 25 years.

8/47

APQE11-1a
Llntroduction

Speed increase — but keep thinking

XNNlG(Oé,ﬂ,(s,/l) P(X<X):/0Xf(z)dzzF(X) Xq:F—l(q)

X1—q + Xq — 2X% 1
S(q) = 0<g<g
X1—q — Xg 2
1.2 07
g f ! 06 | L KRR
------ E(KL) x| 05 b " ERR)xr

-0.05 -

-01 -

R0 YE T S T Y T T B | o4l 1111 ool 11
0 0.050.10.150.20.250.30.350.40.450.5 0 0.050.10.150.20.250.30.350.40.450.5 0.50.550.60.650.70.750.80.850.90.95 1

Direct calculation of graph: > 40 min — Pre-calc quantiles: 5 sec
9/47

APQE11-1a
Llntroduction

OxMetrics

» oo >

m>x O 0O

PcGive STAMP GGRCH TSP Ox Packages
+ x12arima + SsfPack DPD, MSVAR
+ PcNaive Arfima, etc.

Ox programs
OxMetrics Ox

interactive graphics
data manipulation
results storage
code editor

numerical programming
computational engine
interface wrapper

10/47

APQE11-1a

LConcepts: Data, variables, functions, actions

What is programming about?

Managing DATA, in the form of VARIABLES, usually
through a set of predefined FUNCTIONS or ACTIONS

Of central importance: Understand variables, functions at all
times...

So let's exagerate

11/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LValriables

Variable

» A variable is an item which can have a certain value.

» Each variable has one value at each point in time.

» The value is of a specific type.

» A program works by managing variables, changing the values

until reaching a final outcome

[Example: Paper integer 5 |

12/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LValriables

Integer

iX=5;

» An integer is a number without fractional part, in between
—231 and 23! — 1 (limits are language dependent)

» Distinguish between the name and value of a variable.

» A variable can usually change value, but never change its
name

13/47

APQE11-1a
LConcepts: Data, variables, functions, actions
L Variables

Double

» A double is a number with possibly a fractional part.

» Note that 5.0 is a double, while 5 is an integer.

» A computer is not ‘exact’, careful when comparing integers
and doubles

» If you add a double to an integer, the result is double (in Ox
at least, language dependent)

[Example: dAdd= 1/3; dD= 0; dD= dD + dAdd; etc. |

14/47

APQE11-1a
LConcepts: Data, variables, functions, actions
L Variables

String

SX="A" sY="Hello world";

Hello world

A character is a string of length one.

A string is a collection of characters.

The " are not part of the string, they are the string delimiters.
One single element of a string, sY[3] for instance, is an
integer, with the ASCII value of the character.

Multiple elements of a string are a string as well, sY[0:4],
also sX[0:0] is a string.

[Example: sX= "Hello world";]

v

15/47

APQE11-1a
|—Concepts: Data, variables, functions, actions
LVariables

‘Simple’ types

» Integer

» Double

» Character/String
‘Derived’ type

» boolean, integer 0 is FALSE, integer 1 is TRUE
[Example: print (TRUE); |

16/47

APQE11-1a
|—Concepts: Data, variables, functions, actions
|—Variables

‘Difficult’ types

Function
Address
Matrix
Array
File
Object

vV V. VvV v v Y

17/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LValriables

Function

print ("Hello world");

» A function performs a certain task, usually on a (number of)
variables

» Hopefully the name of the function helps you to understand
its task

» You can assign a function to a variable,
fnMyPrintFunction= print;

[Example: fnMyPrintFunction("Hello world"); |

18/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LVariables

Address, real world

School of Economics and Management
University of Aarhus

Building 1322

DK-8000 Aarhus C

A building at the university The address

19/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LValriables

Address

adX= &dX;

» Now the address is the value (of variable adX)
» Any variable has an address (&iX, &dX, &sX etc)

» Each object exists only once: Whether | use dX or what's at
the address adX, it is the same thing.

20/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LValriables

Matrix

mX=<1, 2; 3, 4>;

» A matrix is a collection of doubles.
» A matrix has two dimensions.
» A matrix of size k x 1 or 1 x k we tend to call a vector, vX.

> Later on we'll see how matrix operations can simplify/speed
up calculations.

21/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LValriables

Array

aX= {"Beta", 5, <5.5>};

Beta | 5 | 55

» An array is a collection of other objects.
» An array itself has one dimension.
» An element of an array can be of any type (integer, double,
function, address, matrix, array)
» An array of an array of an array has three dimensions etc.
[Example: aX= {};]

22/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LValriables

File

fh= fopen("data/aex-trades-0711.csv", "r");

fn

» A file variable ‘points to’ an opened file

» This can be of use to read or write a file e.g. line-by-line

» Useful for successively writing results, or handling enormous
data-files

[Example: fh= fopen("data/mydata.csv", "r"); |
23/47

APQE11-1a

LConcepts: Data, variables, functions, actions

L Variables

Object

hh= new house“' iﬁz new Database();

An object variable is an ‘object’

It can have certain characteristics or function members, which
can be changed in turn. E.g. hh.OpenWindow() ; or
db.GetVar ("Returns");

Useful for building higher level programs, with functionality
hidden away in member functions.

Communication of research (Arfima example)

24/47

APQE11-1a
LConcepts: Data, variables, functions, actions
L Variables

Ox and other languages
Concepts are similar

» Ox (and Gauss/Matlab) have automatic typing. Use it, but
carefully...

» C/C++/Fortran need to have types and sizes specified at the
start. More difficult, but still same concept of variables.

» Precise manner for specifying a matrix differs from language
to language. Ox rather similar to C in many respects

» Remember: An element has a value and a name

» A program moves the elements around, hopefully in a smart
manner

Keep track of your variables,
know what is their scope

25/47

APQE11-1a
LConcepts: Data, variables, functions, actions
LVariables

All languages

Programming is exact science
» Keep track of your variables
» Know what is their scope
» Program in small bits
» Program extremely structured
>

Think about algorithms, data storage, outcomes etc.

26/47

APQE11-1a
- Elements

Elements to consider

» Comments: /* (block) */ or // (until end of line)

» Declarations: Up front in each routine

» Spacing
» Variables, types and naming in Ox:
scalar integer iN= 20;
scalar double dC= 4.5;
string sName="Betal";
matrix mX= <1, 2.5; 3, 4>;
array of X aX= {1, <1>, "Gamma"};
address of variable: amX= &mX;
function fnFunc = olsr;
class object db= new Database();

27/47

APQE11-1a
|—Elements

Imagine elements

mX=<1, 2; 3, 4>

sX= "Beta"

Beta

amX= &mxX

amXx

mX

Every element has its representation in memory — no magic 28/47

APQE11-1a
|—Elements

Try out elements

#include <oxstd.h>

main ()
{

decl a, mX, sX;

a= 5;
println ("Integer: ",

a= 5.5;
println ("Double: ",

a= sX= "Beta';
println ("String: ",

a= mX= <1, 2; 3, 4>;
println ("Matrix: ",

a= &mX;
println ("Address of

Listing 1. oxelements.ox

a);

a);

a);

a);

matrix:

a= &sX;

string:

println ("Address of

a= olsr;

println ("Function: ",

a);

a);

a);

29/47

APQE11-1a
LEIements

L Hungarian notation

Hungarian notation prefixes

prefix type example
i Integer iX

b boolean (f is also used) bX

d double ax

m matrix mX

v vector vX

s string sX
fn Function fnX
a array or address aX
as array of strings asX
am array of matrices amX
c class object variable cX
m- class member variable m_mX
8- external variable with global scope g.mX
s- static external variable (file scope) smX

Use them everywhere, always.
Possible exception: Counters i, j, k etc.

30/47

APQE11-1a
|—Elements

L Hungarian notation

Hungarian 2
Ox does not force Hungarian notation: Correct but very ugly is

Listing 2: oxnohun.ox

#include <oxstd.h>
main ()

{
decl sX, iX;

iX= "Hello";

sX= 5;
}

Instead, always use

Listing 3: oxhun.ox

#include <oxstd.h>
main ()
{

decl sX, iX;

sX= "Hello";
iX= 5;
}

31/47

APQE11-1a
- Install

Installation

1. Install the appropriate version (academic/professional),
http://www.doornik.com, for Ox and possibly OxMetrics

2. Make the Ox documentation the homepage in your browser
(c:\program files\oxmetrics6\ox\doc\index.html)

3. Install the necessary tools for OxEdit, if needed
Optional steps:

» Continue with downloading and installing extra packages
ssfpack, arfima, gnudraw, dpd etc. into the Ox
directory
c:\program files\oxmetrics6\ox\packages\ssfpack
etc, each in its own subdirectory below ox\packages.

32/47

APQE11-1a
Llnstall

Installation (advanced)

What if:

» No graphics, no OxMetrics license
Then:

» Install GnuDraw package with Ox, and

» Install GnuPlot (google it for a download) in
c:\program files\gnuplot

33/47

APQE11-1a

L Example: Gauss elimination

Programming by example

» Enough theory
» Example: How to solve a system of linear equations
» Goal: Simple situation, program to solve it

» Broad concepts, details follow

34/47

APQE11-1a

L Example: Gauss elimination

Setup: Linear system
Solve for x: Ax = b, with

ail aw - A X1 b
A_ 0 ?22 a?n | . X.2 b by
0 - 0 am o by
Solution:
Xn = bn/ann

Xj = b,'— E ajjXj /a,-,-, i:n—l,..,l
J>i

|.e.: Start at the end, solve backwards.

But ... only works for upper triangular A...
35/47

APQE11-1a

LE><amp|e: Gauss elimination

Elimination
Hence: Create triangular matrix...

(o) ()= = GGG

Subtract multiple ajx/akk times equation k from rows
j=k+1,...n, such that &) = 0.

Note: The x’s don't change, only elements of A and b.
Extended matrix:

E ain b1

) :
(A,b) = [.

dnl ann bn

36/47

APQE11-1a
L Example: Gauss elimination

Example elimination

6 -2 2 4 | 16

|12 -8 6 10 | 26

ABI=173 13 9 3 | —19

6 4 1 -18 | —34
6 -2 2 4 | 16
iteration 1 (1) _ 0 —4 2 2 | —6
< AR =10 L5 1 | —27
0 2 3 -14 | -18

Let's concentrate on one row at a time: How to eliminate the row
starting with 127

(See ge0.ox)

37/47

APQE11-1a

LE><amp|e: Gauss elimination

Program by Example 0

Use commenting

One main function: main() {3}
Declarations on top (...)

Get the matrices, mA= <1, 2; 3, 4>;

Concatenate, mAB= mA ~ vB;

vV v v v v Y

Debug — println()

Recognize Magic Numbers, initial settings

PbE 1: Eliminate a row

» What row/column are we working with? Start counting at 0...

» Calculate multiplicity

» Subtract a row at a time

38/47

APQE11-1a

LE><amp|e: Gauss elimination

PbE 2: Eliminate a row in a function

As we might want to eliminate more rows, it could be programmed
as a separate function...

» Function header: Define what goes in/out

» Use commenting

» First use of address amAB= &mAB;

PbE 3: Eliminate multiple rows

» Use a loop around the function,
for (start condition; check; increment)

39/47

APQE11-1a

LE><amp|e: Gauss elimination

PbE 4: Eliminate multiple columns

PbE 4: Eliminate multiple columns

» Use a loop around the loop. What columns should be
eliminated?
PbE 5: Use another function
» Use a function to eliminate a column

» Call the function multiple times from the loop

Resulting program:
» Clean
» Readable chunks
» Debugging was done step by step, function/action at a time
>

In future, functions are easily re-utilizable.

40 /47

APQE11-1a
LGetting started

Chapter 1: Getting started

Exercise:

1. Copy the file <ox-home>/samples/myfirst.ox to your
personal directory.

2. Open the file in OxEdit (e.g. Windows Explorer, walk there,
right mouse button, Send To - OxEdit)

3. Run the program (through Modules - Run - Ox)

(If there is no Ox option under the Run menu, load the .tool file from the students directory, using Tools -

Add/remove modules - Load from)

Output

Ox version 5.10 (Linux_64/MT) (C) J.A.
two matrices

2.
0.
0.

0.
1.

.0000
.0000
.0000

.0000
.0000

.0000
.0000
.0000

.0000
.0000

41/47

APQE11-1a
LGetting started

Using OxEdit
One tab has program
Running the program puts output in separate file/sheet
Errors in code can appear in output file
Workspace indicates opened files

EIHEdit - Ox Output - [+0x Dutput] I | .—J,Etlj
=& x|

(=) Fle Edt Search ¥iw Run Taok Window Help
NEAHE S PREDE00E D@ s @ 8|0
r———iaﬁaﬂmﬂr———ianm

——————————————— Ox at 11:47:2Z2 on 14-Aug-2006 ————————————-——— =

O¥ wersion 4.02 (Windows) (C) J.A., Doornik, 1994-Z006
This wersion way be used for academic research and teaching only

two matrices

2.0000 0.00000 [npulu]u]u]u}
d.00a000 1.0000 a.00000
d.00000 0.00000 1.0000
0.00000 0.00000 0.00000
1.0000 1.0000 1.0000 —

42 /47

APQE11-1a

LGetting started

Type of errors

1. Compilation errors: Like the above, error in the syntax of Ox

One error can lead to multiple messages: Start solving first in list.

Listing 4: myfirst_err.ox

print "two matrices", ml, m2);

// gives compile-time error
0x version 5.10 (Linux_64/MT) (C) J.A. Doornik, 1994-2008
myfirst_err.ox (12): ’;’ expected but found ’<string>’
myfirst_err.ox (12): ’;’ expected but found ’)’
myfirst_err.ox (12): ’)’ out of place

Runtime errors: Impossible computations or commands

Listing 5: myfirst_err.ox

print ("product of two matrices", ml * m2);
// gives run-time error

0x version 5.10 (Linux_64/MT) (C) J.A. Doornik, 1994-2008

Runtime error: ’matrix[3][3] * matrix[2][3]’ bad operand
Runtime error occurred in main(14), call trace:
myfirst_err.ox (14): main

43 /47

APQE11-1a
|—Getting started

Chapter 2: Syntax - Comments

/* Thts %s standard comment,
which /* may be nested */.

*/

decl x; // declare the wariable z

Use them well, use them extensively, use them consistently

4447

R

APQE11-1a

|—Getting started

/*
*x
*x
*x
*x
*x
*x
*k
*k
* %
*k
*k
*x
*k
*x
*x
*k
*k
*x
*x
*x

olsc(const mY, const mX, const amB)

Purpose:
Performs OLS, ezpecting the data in columns.

Inputs:
mY 1T = iN matriz of regressors Y
mX 1T = 1K matriz of ezplanatory vartables X
Outputs:
amB address of 1K x iN matriz with iN sets of OLS coefficients

Return wvalue:
integer, 1: success, 2: rescaling advised,
-1: X’X is singular, -2: combines 2 and -1.

Ezample:
ir = olsc(mY, mX, &mB);

Last changed
21-04-96 (Marius Ooms): made documentation
06-08-09 (Charles Bos): adapted documentation

Use explanation, consistently, before every function, detailing
name, purpose, inputs, outputs, return value (and possibly date,
author, once per file)

45 /47

APQE11-1a
- Getting started

Program layout
A minimal complete program is:

Listing 6: oxtut2b.ox

#include <oxstd.h>
main ()

println("Hello world");
}

Contains:
1. Include statement, to define all standard functions in Ox;
between < and > to indicate oxstd.h is an intrinsic part of
Ox
2. One function header, called main, taking no arguments ()
3. Function body for main(), enclosed in {2}, with a println
statement

Note: Syntax terribly similar to C or Java.
46 /47

APQE11-1a
LGetting started

Statements .
Listing 7: oxtut2c-hun.ox

#include <oxstd.h>
main ()
{
decl iN, dSigma, mX, vBeta, vEps;
iN = 4;
dSigma = 0.25;
mX = 1 ~ ranu(iN, 2);
vBeta = <1; 2; 3>;
vEps = dSigma * rann(iN, 1);

print("x", mX, "beta", vBeta, "epsilon", vEps);
¥

(note: Stick to Hungarian, don't follow the Introduction to Ox
literally here)
» Declaration: Automatic typing
» Assignment: Integer, double, matrix-function,
matrix-constant, function result.

» Print statement
47 /47

	Introduction
	Concepts: Data, variables, functions, actions
	Elements
	Install
	Example: Gauss elimination
	Getting started

