
APQE11-1b

Advanced Programming in Quantitative
Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam
Tinbergen Institute

c.s.bos@vu.nl

15 – 19 August 2011, Aarhus, Denmark

1/19

APQE11-1b

Outline

Outline

Why programming?

Programming in theory
Questions
Blocks & names
Input/output

Intermezzo: Stack-loss

Elements

Droste

KISS

2/19

APQE11-1b

Outline

Day 1 - Afternoon

13.30 Structuring your thoughts
I What is programming?
I Preparation of a program

14.30 Tutorial: Do it yourself
I Exercise to hand in
I Work through ‘Introduction to Ox Ch 1-5’

3/19

APQE11-1b

Why programming?

Repeat: What? Why?
Wrong answer:

For the fun of it

A correct answer:

To get to the results we need, in a fashion that is
controllable, where we are free to implement the newest
and greatest, and where we can be ‘reasonably’ sure of
the answers

Data

Hypothesis

E= f(m)

Model

E= m c
2

Estimation

E
†
= m

†
 (c

†
)
2

01 0
0

0
1

1

0
10000 1

0

P
ro

g
ra

m
m

in
g

Science

4/19

APQE11-1b

Programming in theory

Questions

Programming in Theory

Plan ahead

I Research question: What do I want to know?

I Data: What inputs do I have?

I Output: What kind of output do I expect/need?
I Modelling:

I What is the structure of the problem?
I Can I write it down in equations?

I Estimation: What procedure for estimation is needed (OLS,
ML, simulated ML, GMM, nonlinear optimisation, Bayesian
simulation, etc)?

5/19

APQE11-1b

Programming in theory

Blocks & names

Closer to practice

Blocks:

I Is the project separable into blocks, independent, or possibly
dependent?

I What separate routines could I write?

I Are there any routines available, in my own old code, or from
other sources?

I Can I check intermediate answers?

I How does the program flow from routine to routine?

... names:

I How can I give functions and variables names that I am sure
to recognise later (i.e., also after 3 months)?
Use (always) Hungarian notation

6/19

APQE11-1b

Programming in theory

Input/output

Even closer to practice

Define, on paper, for each routine/step/function:

I What inputs it has (shape, size, type, meaning), exactly

I What the outputs are (shape, size, type, meaning), also
exactly...

I What the purpose is...

Also for your main program:

I Inputs can be magic numbers, (name of) data file, but also
specification of model

I Outputs could be screen output, file with cleansed data,
estimation results etc. etc.

7/19

APQE11-1b

Intermezzo: Stack-loss

Intermezzo: Stack-loss data

21 Observations on 4 variables (source: Brownlee (1965)).
It concerns the oxidation of ammonia to nitric acid, as a function
of air flow, water temperature, and acid concentration.
See also: Justel & Peña (1996)
Regression model - outliers? - OLS - standard deviation - R2

Data:

80 80 75 62 62 62 ...

27 27 25 24 22 23 ...

89 88 90 87 87 87 ...

42 37 37 28 18 18 ...

8/19

APQE11-1b

Intermezzo: Stack-loss

Intermezzo II: What to do?

 5
 10
 15
 20
 25
 30
 35
 40
 45

 50 55 60 65 70 75 80

Stack loss x Air Flow

0
12

3

4567
8910111213

1415161718
19 20

 5
 10
 15
 20
 25
 30
 35
 40
 45

 16 18 20 22 24 26 28

Stack loss x Water Temp

0
12

3

4 5 67
8910111213

1415161718
1920

 5
 10
 15
 20
 25
 30
 35
 40
 45

 70 75 80 85 90 95

Stack loss x Acid Conc

0
1 2

3

45 67
89 101112 13

141516 1718
19 20

Data: Stack loss = f (Air flow, Water temperature, Acid
concentration)

As a starter: Look at the data.
Check which series is which, ranges, means, outliers,
transformations etc.

Conclusion: Regression, indeed?
9/19

APQE11-1b

Intermezzo: Stack-loss

Intermezzo III: What to do?
Model yi = Xiβ + ui , ui ∼ N (0, σ2)

Estimation β̂ = (X ′X)−1X ′y
Data yi = Line 0 of data in data/stackloss.mat, running

from 7-42
Xi = Lines 1-3 of data; and constant!

Ugly programming:

Listing 1: stack/stackols ugly
#include <oxstd.h>

main()

{

decl y= <42;37;37;28;18;18;19;20;15;14;14;13;11;12; 8; 7; 8; 8; 9;15;15 >;

decl x= <1,1;80,80,75,62,62,62,62,

62,58 ,58,58,58 ,58,58 ,50,50,50 ,50,50,56 ,70;27,27,25 ,24,22 ,23,24,24 ,23,18,

18,17 ,18,19,18 ,18,19 ,19,20,20 ,20;89,88,90 ,87,87,87 ,93,93 ,87,80,89 ,88,82,

93,89,86,72,79,80,82,91>’;

print((x’x)^(-1)*x’y);

}

Errors...
10/19

APQE11-1b

Intermezzo: Stack-loss

Intermezzo III: Nicer programming
** StackOls

**

** Purpose:

** Estimate a regression model on the stackloss data set

**

** Inputs:

** The program expects the file data/stackloss.mat to contain

** the data , with size information

**

** Author:

** Charles Bos

**

** Date:

** 16/2/2005

*/

#include <oxstd.h>

main()

{

decl mStackloss , vY , mX, ir, vBeta;

mStackloss= loadmat("data/stackloss.mat"); // Load the data

vY= mStackloss [3][]; // Read out row 3

mX= mStackloss [0:2][]; // Read out row 0-2

mX= 1|mX; // Append a constant

ir= olsr(vY, mX, &vBeta); // Run OLS on rows

print ("Ols estimates of Beta: ", vBeta);

}
11/19

APQE11-1b

Elements

Elements to consider

I Explanation: Be generous (enough)

Listing 2: stack/stackols.ox
/*

** NAME

**

** Purpose:

** Short description of main idea

**

** Inputs:

** Clearly indicate what should have been prepared

**

** Author:

** Who am I

**

** Date:

** When did I write this version ...

*/

#include <oxstd.h>

main()

{

...

}

12/19

APQE11-1b

Elements

Elements to consider II

I Explanation: Be generous (enough)

I Initialise from main

Listing 3: stack/stackols.ox
/*

...

*/

#include <oxstd.h>

main()

{

// Initialisation

}

13/19

APQE11-1b

Elements

Elements to consider III

I Explanation: Be generous (enough)

I Initialise from main

I Then do the estimation

Listing 4: stack/stackols.ox
/*

...

*/

#include <oxstd.h>

main()

{

// Initialisation

// Estimation

}

14/19

APQE11-1b

Elements

Elements to consider IV

I Explanation: Be generous (enough)

I Initialise from main

I Then do the estimation

I ... and give results

Listing 5: stack/stackols.ox
/*

...

*/

#include <oxstd.h>

main()

{

// Initialisation

// Estimation

// Results

}

NB: These steps are usually split into separate functions
15/19

APQE11-1b

Droste

The ‘Droste effect’

I The program performs a certain function
I The main function is split in three (here)
I Each subtask is again a certain function that has to be

performed

Apply the Droste effect:

I Think in terms of functions

I Analyse each function to split it

I Write in smallest building blocks
16/19

APQE11-1b

Droste

Preparation of program
What do you do for preparation of a program?

1. Turn off computer
2. On paper, analyse your inputs
3. Transformations/cleaning needed? Do it in a separate

program...
4. With input clear, think about output: What do you want the

program to do?
5. Getting there: What steps do you recognise?
6. Algorithms
7. Available software/routines
8. Debugging options/checks

Work it all out, before starting to type...

KISS
17/19

APQE11-1b

KISS

KISS

Keep it simple, stupid

Implications:

I Simple functions, doing one thing only

I Short functions (one-two screenfuls)

I With commenting on top

I Clear variable names (but not too long either)

I Consistency everywhere

I Catch bugs before they catch you

Reference:
http://kerneltrap.org/files/Jeremy/CodingStyle.txt

18/19

APQE11-1b

KISS

KISS: Example

Remember Gauss elimination:

I Eliminate a matrix ≡
I (K − 1)× [eliminate a column ≡
I (K − k)× [eliminate a single row ≡
I subtracting f times row k]]

Separate actions, separately programmed, each debugged
separately

19/19

	Why programming?
	Programming in theory
	Questions
	Blocks & names
	Input/output

	Intermezzo: Stack-loss
	Elements
	Droste
	KISS

