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Outline

Day 2 - Morning

9.00L Structuring
I Recursive programming
I Building blocks
I Declarations/data/actions/output

I Revise:
I Passing data back and forth

10.30P Tutorial
I Addresses
I Minimal blocks

12.00 Lunch
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Outline

Reprise: What? Why?
Wrong answer:

For the fun of it

A correct answer

To get to the results we need, in a fashion that is
controllable, where we are free to implement the newest
and greatest, and where we can be ‘reasonably’ sure of
the answers
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Steps

Step 1: Analyse the data
I Read the original data file
I Make a first set of plots, look at it
I Transform as necessary (aggregate, logs, first differences,

combine with other data sets)
I Calculate statistics
I Save a file in a convenient format for later analysis
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savemat("data/fx9709.fmt", mX);

savemat("data/fx9709.in7", vDay∼mX, {"Date", "UKUS", "EUUS", "JPUS"});
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Steps

Step 2: Analyse the model

I Can you simulate data from the model?

I Does it look ‘similar’ to empirical data?

I Is it ‘the same’ type of input?
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mU= rann(4, iT); // Log -returns US , UK , EU , JP

mF= cumulate(mU’)’; // Log - currencies

mFX= exp(mF [1:][] - mF [0][]); // FX UK EU JP
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Steps

Step 3: Estimate the model

I Take input (either empirical or simulated data)

I Implement model estimation

I Prepare useful outcome
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Steps

Step 4: Extract results

I Use estimated model parameters

I Create tables/graphs

I Calculate policy outcome etc.
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Steps

Result of steps
main()

{

decl sData , asIn , vYears , vDay , mRet , vP, vS , dLnPdf , mFilt , ir;

// Prepare ’magic numbers ’

sData= "data/fx9709.in7"; // Or use "data/sim9709.in7 ";

asIn= {"UKUS", "EUUS", "JPUS"};

vYears= <1997, 2009 >;

// Perform analysis , in steps}

Initialise (&vDay , &mRet , sData , asIn , vYears );

ir= Estimate (&vP, &vS, &dLnPdf , mRet , asIn);

ExtractResults (&mFilt , vP , vS , mRet);

Output(vP, vS, mRet , mFilt , ir);

}

I Short main
I Starts off with setting items that might be changed: Only up

front in main (magic numbers)
I Debug one part at a time!
I Easy for later re-use, if you write clean small blocks of code
I Input to estimation program is prepared data file, not raw

data.
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Flow

Ch 5: Program flow

Last main chapter on low-level Ox language

I Read your program. There is only one route the program will
take. You can follow it as well.

I Statements are executed in order, starting at main()

I A statement can call a function: The statements within the
function are executed in order, until encountering a return
statement or the end of the function

I A statement can be a looping or conditional statement,
repeating or skipping some statements. See below.

I (The order can also be broken by break, continue or goto
statements. Don’t use, ugly.)

And that is all, any program follows these lines.
(Sidenote: Objects etc)
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Flow

Flow 2: Reading easily

As a general hint:
I Main file:

I #include routines (see later)
I Contains only main()
I Preferably only contains calls to routines (Initialise,

Estimate, Output)

I Each routine: Maximum 30 lines / one page. If longer, split!
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Recap of main concepts

Functions

All work in functions

All work is done in functions

Listing 1: recap1.ox
#include <oxstd.h>

main()

{

decl dX, dX2;

dX= 5.5;

dX2= dX^2;

println ("The square of ", dX , " is ", dX2);

}

According to the function header

main()

the function main takes no arguments.
This function uses only println as a function, rest of the work is
done locally.
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Recap of main concepts

Functions

Squaring and printing
Use other functions to do your work for you
printsquare(const dIn)

{

decl dIn2;

dIn2= sqr(dIn);

println ("The square of ", dIn , " is ", dIn2);

}

main()

{

decl dX;

dX= 5.5;

printsquare(dX);

printsquare (6.3);

}

Here, printsquare does not give a return value, only screen
output.
printsquare takes in one argument, with a value locally called
dIn. Can either be a true variable (dX), a constant (6.3), or even
the outcome of a calculation (dX-5).
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Recap of main concepts

Return statement

return

Alternatively, use return to give a value back to the calling
function (as e.g. the ones() function also gives a value back).

Listing 2: return.ox
#include <oxstd.h>

onesL(const iR , const iC)

{

decl mX;

mX= zeros(iR, iC) + 1;

return mX;

}

main()

{

decl mX;

mX= onesL(2, 4);

print("Ones matrix , using local function onesL: ", mX);

}
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Recap of main concepts

Return statement

Indexing
A matrix consists of multiple doubles, a string of multiple
characters, an array of multiple elements. Get to those elements by
using indices (starting at 0):

index(const mA , const sB , const aC)

{

println ("Element [0][1] of ", mA, "is ", mA [0][1]);

println ("Elements [0:4] of ’", sB , "’ are ’", sB[0:4], "’");

println ("Element [4] of ’", sB, "’ is ASCII number ", sB [4]);

println ("Element [1] of ", aC, "is ’", aC[1], "’");

}

main()

{

decl mX, sY, aZ;

mX= rann(2, 3);

sY= "Hello world";

aZ= {mX, sY, 6.3};

index(mX, sY, aZ);

}

Check out how sB[i:i] is a string, and sB[i] the ASCII-number
representing the letter (65=A, 66=B, ...)

15/21



APQE11-2a

Recap of main concepts

Scope

Scope
Each variable has a scope, a part of the program where it is known.
printsquare(const dIn)

{

decl dIn2;

dIn2= sqr(dIn);

println ("The square of ", dIn , " is ", dIn2);

}

main()

{

decl dX;

printsquare(dX); printsquare (6.3);

}

Possibilities:

1. Local declarations decl dX, or decl dIn2: Only known in
the present block, until closing parenthesis of the function.

2. Function arguments: Local name for argument to function, in
order. Compare local name (dIn) to call (dX, 6.3).

3. [Later] Global variables static decl s_vY, s_mX: Only
used in special situations, with great care; these have full
scope for the remainder of the file/program.
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Recap of main concepts

Arrays and such

Arrays and multiple assignment

Not specific to functions are arrays and multiple assignments:

Listing 3: multassign.ox
#include <oxstd.h>

main()

{

decl aiRC , iR , iC;

aiRC= {2, 4}; // Create an array with two integers

[iR , iC]= aiRC; // Assign the two elements of the array

// Or use a function , assigning the array of returns

[iR , iC]= SomeFunctionReturningArrayOfSizeTwo ();

}
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Recap of main concepts

Constant arguments

Arguments cannot be changed
Arguments to a function cannot be changed in a lasting way. After
returning from the function, the old value is back.

Listing 4: changeme.ox
#include <oxstd.h>

changemeerror(const dA)

{

dA= 5;

}

changemenoerror(dA)

{

dA= 5;

}

main()

{

decl dX;

dX= 3;

changemeerror(dX);

changemenoerror(dX);

println ("Result: ", dX);

}
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Recap of main concepts

Addresses

Before the addresses

If you prefer, stop here for the moment...

Use constant arguments, return values using return statement.
Everything could be written this way.
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Recap of main concepts

Addresses

Those addresses again...

As I cannot change the argument itself, pass along the (fixed)
address of a variable:

Listing 5: changemedef.ox
changemedef(const adX)

{

adX [0]= 7; // Do not change the address , but the value at the address

}

main()

{

decl dX;

dX= 3;

println ("Value before ChangeMeDef: ", dX);

changemedef (&dX);

println ("Value after ChangeMeDef: ", dX);

}
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Recap of main concepts

Indexing

Addresses and indexing

Indexing works with one index at a time. If you have the address of
an array with a matrix in 3rd place, of which you want to change
element [6][2], just check the indexing carefully.

Listing 6: index.ox
main()

{

decl mX, aMany , aaMany;

mX= rann(7, 4); // Matrix

aMany= {45, olsc , mX , 4.9}; // Array with mX and others

aaMany= &aMany; // Address of array

aaMany [0][2][6][2]= 10000;

print ("Address: ", aaMany ); // Print address , with underlying array

print ("Array: ", aaMany [0]); // Print array at address

}
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