
APQE11-2a

Advanced Programming in Quantitative
Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam
Tinbergen Institute

c.s.bos@vu.nl

15 – 19 August 2011, Aarhus, Denmark

1/21



APQE11-2a

Outline

Outline

Steps

Flow

Recap of main concepts

2/21



APQE11-2a

Outline

Day 2 - Morning

9.00L Structuring
I Recursive programming
I Building blocks
I Declarations/data/actions/output

I Revise:
I Passing data back and forth

10.30P Tutorial
I Addresses
I Minimal blocks

12.00 Lunch

3/21



APQE11-2a

Outline

Reprise: What? Why?
Wrong answer:

For the fun of it

A correct answer

To get to the results we need, in a fashion that is
controllable, where we are free to implement the newest
and greatest, and where we can be ‘reasonably’ sure of
the answers

Data

Hypothesis

E= f(m)

Model

E= m c
2

Estimation

E
†
= m

†
 (c

†
)
2

01 0
0

0
1

1

0
10000 1

0

P
ro

g
ra

m
m

in
g

Science

4/21



APQE11-2a

Steps

Step 1: Analyse the data
I Read the original data file
I Make a first set of plots, look at it
I Transform as necessary (aggregate, logs, first differences,

combine with other data sets)
I Calculate statistics
I Save a file in a convenient format for later analysis

Data

Hypothesis

E= f(m)

Model

E= m c
2

Estimation

E
†
= m

†
 (c

†
)
2

0
0 1

01

11

0
0

11

1

0

0
0

P
ro

g
ra

m
m

in
g

P1

savemat("data/fx9709.fmt", mX);

savemat("data/fx9709.in7", vDay∼mX, {"Date", "UKUS", "EUUS", "JPUS"});

5/21



APQE11-2a

Steps

Step 2: Analyse the model

I Can you simulate data from the model?

I Does it look ‘similar’ to empirical data?

I Is it ‘the same’ type of input?

Data

Hypothesis

E= f(m)

Model

E= m c
2

Estimation

E
†
= m

†
 (c

†
)
2

0

1

1
10

0

0

1

1

01

1

1
1

1

P
ro

g
ra

m
m

in
g

P2

mU= rann(4, iT); // Log -returns US , UK , EU , JP

mF= cumulate(mU’)’; // Log - currencies

mFX= exp(mF [1:][] - mF [0][]); // FX UK EU JP

6/21



APQE11-2a

Steps

Step 3: Estimate the model

I Take input (either empirical or simulated data)

I Implement model estimation

I Prepare useful outcome

Data

Hypothesis

E= f(m)

Model

E= m c
2

Estimation

E
†
= m

†
 (c

†
)
2

0

1
1

01

1

1

1

1

1

0

0

0

0

0

P
ro

g
ra

m
m

in
g

P3

7/21



APQE11-2a

Steps

Step 4: Extract results

I Use estimated model parameters

I Create tables/graphs

I Calculate policy outcome etc.

Data

Hypothesis

E= f(m)

Model

E= m c
2

Estimation

E
†
= m

†
 (c

†
)
2

1

0

11
0

1
0 00

0

1

1

0 0

1

P
ro

g
ra

m
m

in
g

Results

P4

8/21



APQE11-2a

Steps

Result of steps
main()

{

decl sData , asIn , vYears , vDay , mRet , vP, vS , dLnPdf , mFilt , ir;

// Prepare ’magic numbers ’

sData= "data/fx9709.in7"; // Or use "data/sim9709.in7 ";

asIn= {"UKUS", "EUUS", "JPUS"};

vYears= <1997, 2009 >;

// Perform analysis , in steps}

Initialise (&vDay , &mRet , sData , asIn , vYears );

ir= Estimate (&vP, &vS, &dLnPdf , mRet , asIn);

ExtractResults (&mFilt , vP , vS , mRet);

Output(vP, vS, mRet , mFilt , ir);

}

I Short main
I Starts off with setting items that might be changed: Only up

front in main (magic numbers)
I Debug one part at a time!
I Easy for later re-use, if you write clean small blocks of code
I Input to estimation program is prepared data file, not raw

data.
9/21



APQE11-2a

Flow

Ch 5: Program flow

Last main chapter on low-level Ox language

I Read your program. There is only one route the program will
take. You can follow it as well.

I Statements are executed in order, starting at main()

I A statement can call a function: The statements within the
function are executed in order, until encountering a return
statement or the end of the function

I A statement can be a looping or conditional statement,
repeating or skipping some statements. See below.

I (The order can also be broken by break, continue or goto
statements. Don’t use, ugly.)

And that is all, any program follows these lines.
(Sidenote: Objects etc)

10/21



APQE11-2a

Flow

Flow 2: Reading easily

As a general hint:
I Main file:

I #include routines (see later)
I Contains only main()
I Preferably only contains calls to routines (Initialise,

Estimate, Output)

I Each routine: Maximum 30 lines / one page. If longer, split!

11/21



APQE11-2a

Recap of main concepts

Functions

All work in functions

All work is done in functions

Listing 1: recap1.ox
#include <oxstd.h>

main()

{

decl dX, dX2;

dX= 5.5;

dX2= dX^2;

println ("The square of ", dX , " is ", dX2);

}

According to the function header

main()

the function main takes no arguments.
This function uses only println as a function, rest of the work is
done locally.

12/21



APQE11-2a

Recap of main concepts

Functions

Squaring and printing
Use other functions to do your work for you
printsquare(const dIn)

{

decl dIn2;

dIn2= sqr(dIn);

println ("The square of ", dIn , " is ", dIn2);

}

main()

{

decl dX;

dX= 5.5;

printsquare(dX);

printsquare (6.3);

}

Here, printsquare does not give a return value, only screen
output.
printsquare takes in one argument, with a value locally called
dIn. Can either be a true variable (dX), a constant (6.3), or even
the outcome of a calculation (dX-5).

13/21



APQE11-2a

Recap of main concepts

Return statement

return

Alternatively, use return to give a value back to the calling
function (as e.g. the ones() function also gives a value back).

Listing 2: return.ox
#include <oxstd.h>

onesL(const iR , const iC)

{

decl mX;

mX= zeros(iR, iC) + 1;

return mX;

}

main()

{

decl mX;

mX= onesL(2, 4);

print("Ones matrix , using local function onesL: ", mX);

}

14/21



APQE11-2a

Recap of main concepts

Return statement

Indexing
A matrix consists of multiple doubles, a string of multiple
characters, an array of multiple elements. Get to those elements by
using indices (starting at 0):

index(const mA , const sB , const aC)

{

println ("Element [0][1] of ", mA, "is ", mA [0][1]);

println ("Elements [0:4] of ’", sB , "’ are ’", sB[0:4], "’");

println ("Element [4] of ’", sB, "’ is ASCII number ", sB [4]);

println ("Element [1] of ", aC, "is ’", aC[1], "’");

}

main()

{

decl mX, sY, aZ;

mX= rann(2, 3);

sY= "Hello world";

aZ= {mX, sY, 6.3};

index(mX, sY, aZ);

}

Check out how sB[i:i] is a string, and sB[i] the ASCII-number
representing the letter (65=A, 66=B, ...)

15/21



APQE11-2a

Recap of main concepts

Scope

Scope
Each variable has a scope, a part of the program where it is known.
printsquare(const dIn)

{

decl dIn2;

dIn2= sqr(dIn);

println ("The square of ", dIn , " is ", dIn2);

}

main()

{

decl dX;

printsquare(dX); printsquare (6.3);

}

Possibilities:

1. Local declarations decl dX, or decl dIn2: Only known in
the present block, until closing parenthesis of the function.

2. Function arguments: Local name for argument to function, in
order. Compare local name (dIn) to call (dX, 6.3).

3. [Later] Global variables static decl s_vY, s_mX: Only
used in special situations, with great care; these have full
scope for the remainder of the file/program.

16/21



APQE11-2a

Recap of main concepts

Arrays and such

Arrays and multiple assignment

Not specific to functions are arrays and multiple assignments:

Listing 3: multassign.ox
#include <oxstd.h>

main()

{

decl aiRC , iR , iC;

aiRC= {2, 4}; // Create an array with two integers

[iR , iC]= aiRC; // Assign the two elements of the array

// Or use a function , assigning the array of returns

[iR , iC]= SomeFunctionReturningArrayOfSizeTwo ();

}

17/21



APQE11-2a

Recap of main concepts

Constant arguments

Arguments cannot be changed
Arguments to a function cannot be changed in a lasting way. After
returning from the function, the old value is back.

Listing 4: changeme.ox
#include <oxstd.h>

changemeerror(const dA)

{

dA= 5;

}

changemenoerror(dA)

{

dA= 5;

}

main()

{

decl dX;

dX= 3;

changemeerror(dX);

changemenoerror(dX);

println ("Result: ", dX);

}

18/21



APQE11-2a

Recap of main concepts

Addresses

Before the addresses

If you prefer, stop here for the moment...

Use constant arguments, return values using return statement.
Everything could be written this way.

19/21



APQE11-2a

Recap of main concepts

Addresses

Those addresses again...

As I cannot change the argument itself, pass along the (fixed)
address of a variable:

Listing 5: changemedef.ox
changemedef(const adX)

{

adX [0]= 7; // Do not change the address , but the value at the address

}

main()

{

decl dX;

dX= 3;

println ("Value before ChangeMeDef: ", dX);

changemedef (&dX);

println ("Value after ChangeMeDef: ", dX);

}

20/21



APQE11-2a

Recap of main concepts

Indexing

Addresses and indexing

Indexing works with one index at a time. If you have the address of
an array with a matrix in 3rd place, of which you want to change
element [6][2], just check the indexing carefully.

Listing 6: index.ox
main()

{

decl mX, aMany , aaMany;

mX= rann(7, 4); // Matrix

aMany= {45, olsc , mX , 4.9}; // Array with mX and others

aaMany= &aMany; // Address of array

aaMany [0][2][6][2]= 10000;

print ("Address: ", aaMany ); // Print address , with underlying array

print ("Array: ", aaMany [0]); // Print array at address

}

21/21


	Steps
	Flow
	Recap of main concepts

