
APQE11-2b

Advanced Programming in Quantitative
Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos, Henning Bunzel

VU University Amsterdam
Tinbergen Institute

c.s.bos@vu.nl

15 – 19 August 2011, Aarhus, Denmark

1/27



APQE11-2b

Outline

Outline

Floating point numbers and rounding errors

Efficiency
System
Algorithm
Operators
Loops
Loops and conditionals
Conditionals
Memory

2/27



APQE11-2b

Outline

Day 2 - Afternoon

13.00L Background of computations
I Floating point numbers and rounding errors
I Compilers and CPUs
I Computing environment at Aarhus University

14.30P Tutorial
I Simulate data duration model
I Apply concepts of the day
I Think of rounding errors

16.00 End

3/27



APQE11-2b

Floating point numbers and rounding errors

Precision

Not all numbers are made equal...
Example: What is 1/3 + 1/3 + 1/3 + ...?

Listing 1: precision/onethird.ox
main()

{

decl i, j, dD , dSum;

dD= 1/3;

dSum= 0.0;

for (i= 0; i < 10; ++i)

for (j= 0; j < 3; ++j)

{

print (dSum∼i∼(dSum -i));
dSum+= dD; // Successively add a third

}

}

See outcome: It starts going wrong after 16 digits...

4/27



APQE11-2b

Floating point numbers and rounding errors

Representation
I Integers are represented exactly using 4 bytes/32 bits, in range

[INT_MIN, INT_MAX]= [-2147483648, 2147483647]
I Doubles are represented in 64 bits. This gives a total of

264 ≈ 1.84467× 1019 different numbers that can be
represented.

How?

Double floating point format (Graph source: Wikipedia)

Split double in
I Sign (one bit)
I Exponent (11 bits)
I Fraction or mantissa (52 bits) 5/27



APQE11-2b

Floating point numbers and rounding errors

Double representation

x =


(−1)sign × 21−1023 × 0.mantissa if exponent=0x.000
(−1)sign ×∞ if exponent=0x.7ff
(−1)sign × 2exponent−1023 × 1.mantissa else

Note: Base-2 arithmetic

Sign Expon Mantissa Result
0 0x.3ff 0000 0000 0000 −10 × 2(1023−1023) × 1.0

= 0
0 0x.3ff 0000 0000 0001 −10 × 2(1023−1023) × 1.000000000000000222

= 1.000000000000000222
0 0x.400 0000 0000 0000 −10 × 2(1024−1023) × 1.0

= 2
0 0x.400 0000 0000 0001 −10 × 2(1024−1023) × 1.000000000000000222

= 2.000000000000000444

Bit weird...
6/27



APQE11-2b

Floating point numbers and rounding errors

Consequence: Addition

Let’s work in Base-10 arithmetic, assuming 4 significant digits:

Sign Exponent Mantissa Result x

+ 4 0.1234 0.1234× 104 1234
+ 3 0.5670 0.5670× 103 567

What is the sum?

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 4 0.0567 0.0567× 104 567
+ 4 0.1801 0.1801× 104 1801

Shift to same exponent, add mantissas, perfect

7/27



APQE11-2b

Floating point numbers and rounding errors

Consequence: Addition

Let’s work in Base-10 arithmetic, assuming 4 significant digits:

Sign Exponent Mantissa Result x

+ 4 0.1234 0.1234× 104 1234
+ 3 0.5670 0.5670× 103 567

What is the sum?

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 4 0.0567 0.0567× 104 567
+ 4 0.1801 0.1801× 104 1801

Shift to same exponent, add mantissas, perfect

7/27



APQE11-2b

Floating point numbers and rounding errors

Consequence: Addition II
Let’s use dissimilar numbers:

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 1 0.5670 0.5670× 101 5.67

What is the sum?

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 4 0.000567 0.05× 104 5
+ 4 0.1239 0.1239× 104 1239

Shift to same exponent, add mantissas, loose precision...

Further consequence:

Add numbers of similar size together, preferably!

In Ox/C/Java/Matlab/Octave/Gauss: 16 digits (≈ 52 bits)
available instead of 4 here

8/27



APQE11-2b

Floating point numbers and rounding errors

Consequence: Addition II
Let’s use dissimilar numbers:

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 1 0.5670 0.5670× 101 5.67

What is the sum?

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 4 0.000567 0.05× 104 5
+ 4 0.1239 0.1239× 104 1239

Shift to same exponent, add mantissas, loose precision...

Further consequence:

Add numbers of similar size together, preferably!

In Ox/C/Java/Matlab/Octave/Gauss: 16 digits (≈ 52 bits)
available instead of 4 here

8/27



APQE11-2b

Floating point numbers and rounding errors

Consequence: Addition III
Check what happens in practice:

Listing 2: precision/accuracy.ox
main()

{

decl dA, dB, dC;

dA= 0.123456 * 10^0;

dB= 0.471132 * 10^15;

dC= -dB;

println ("a: ", dA, ", b: ", dB, ", c: ", dC);

println ("a + b + c: ", dA+dB+dC);

println ("a + (b + c): ", dA+(dB+dC));

println ("(a + b) + c: ", (dA+dB)+dC);

}

results in
Ox Professional version 6.00 (Linux_64/MT) (C) J.A. Doornik , 1994 -2009

a: 0.123456 , b: 4.71132e+14, c: -4.71132e+14

a + b + c: 0.125

a + (b + c): 0.123456

(a + b) + c: 0.125

9/27



APQE11-2b

Floating point numbers and rounding errors

Consequence: Addition III
Check what happens in practice:

Listing 3: precision/accuracy.ox
main()

{

decl dA, dB, dC;

dA= 0.123456 * 10^0;

dB= 0.471132 * 10^15;

dC= -dB;

println ("a: ", dA, ", b: ", dB, ", c: ", dC);

println ("a + b + c: ", dA+dB+dC);

println ("a + (b + c): ", dA+(dB+dC));

println ("(a + b) + c: ", (dA+dB)+dC);

}

results in
Ox Professional version 6.00 (Linux_64/MT) (C) J.A. Doornik , 1994 -2009

a: 0.123456 , b: 4.71132e+14, c: -4.71132e+14

a + b + c: 0.125

a + (b + c): 0.123456

(a + b) + c: 0.125

9/27



APQE11-2b

Floating point numbers and rounding errors

Other hints

I Adding/subtracting tends to be better than multiplying

I Hence, log-likelihood
∑

logLi is better than likelihood
∏
Li

I Use true integers when possible

I Simplify your equations, minimize number of operations

I Don’t do x = exp(log(z)) if you can escape it

(Now forget this list... use your brains, just remember that a
computer is not exact...)

10/27



APQE11-2b

Floating point numbers and rounding errors

Other hints

I Adding/subtracting tends to be better than multiplying

I Hence, log-likelihood
∑

logLi is better than likelihood
∏
Li

I Use true integers when possible

I Simplify your equations, minimize number of operations

I Don’t do x = exp(log(z)) if you can escape it

(Now forget this list... use your brains, just remember that a
computer is not exact...)

10/27



APQE11-2b

Efficiency

On architecture, algorithms, languages, and machines

Why do we program (repeat)?

To get to the results we need, in a fashion that is
controllable, where we are free to implement the newest
and greatest, and where we can be ‘reasonably’ sure of
the answers

What is important here?

1. To get correct code (≈ maintainable, clear, adjustable)

2. To get efficient code (≈ quick?)

Correct code: See rest of course

11/27



APQE11-2b

Efficiency

Efficiency II
Efficient code: Depends on

1. system (processor, memory size/structure, drives, network,
operating system)

2. language

3. algorithm

4. more...?

Use an example:

What is the sum of all returns on the SP500 stock index,
over 20 years?

S =
N∑

t=1

rt

12/27



APQE11-2b

Efficiency

System

Efficiency: System

What do you prefer:

1. Old Apple II (1Mhz, 64KB)

2. Older Power Mac (2.5GHz, PowerPC processor)

3. This laptop (C2Duo 1.4Ghz, 1GB)

4. Home machine (I7 quadcore 2.66Ghz, 6GB)

5. Work machine (Nehalem dual quadcore 2.66Ghz, 12GB)

6. SARA Lisa supercomputer (536 dual quadcores, loads of
memory)

Difference?

13/27



APQE11-2b

Efficiency

System

Efficiency: System II

Difference:

1. Apple does not even have the memory to store the data. Read
from tape?

2. Mac: PowerPC had low-level possibilities to sum vectors of
numbers quickly.

3. C2D laptop: Not bad, fraction of a second

4. Core I7: Better memory management in CPU, quicker

5. 2xI7: Can one use 8 cores for the summation?

6. SARA: Can one use 536 x 2 x 4 cores for summing 1000
numbers?

In general: Recent ≡ better... More memory ≡ better... More
cores/CPUs 6≡ better necessarily

14/27



APQE11-2b

Efficiency

System

CPU

Figure: Itanium CPU architecture (Source: Wikipedia)

I Hard drive → memory → CPU
I Efficiency differs per CPU architecture
I Does your data fit in memory/cache? Or should you go back

to hard drive to reload it
I Communication between parts of system: Speed matters
I ...

15/27



APQE11-2b

Efficiency

System

Multi-core?

S =
N∑

t=1

rt =

N/4∑
t=1

rt +

N/2∑
t=N/4+1

rt +

3N/4∑
t=N/2+1

rt +
N∑

t=3N/4

rt

= S1 + S2 + S3 + S4

Use 4 cores for summation?

1. Decide on how to split the problem

2. Send each core the right amount of data

3. Wait for the answers to come back

4. Sum S = S1 + S2 + S3 + S4

Drawback: Overhead in communication between cores/nodes, not
always faster...
(GPU, supercomputer, MPI, ...)

16/27



APQE11-2b

Efficiency

Algorithm

Algorithm
int i, iN; // C code

double dS;

iN= ...;

dS= 0.0;

for (i= 0; i < iN; ++i)

dS+= vR[0][i];

C FORTRAN CODE

INTEGER i, iN

REAL dS

iN= ...

dS= 0.0

DO 10 i= 1, iN

dS= dS + vR(0,i)

10 CONTINUE

decl i, dS, iN; // Ox code

iN= sizerc(vR);

dS= 0;

for (i= 0; i < iN; ++i)

dS+= vR[i];

decl dS;

// Ox code , using function

dS= sumc(vR);

I Fortran or C would be quickest, as compiled code can be
executed directly by CPU

I Ox code is similar to C, but far slower: Each command has to
be ‘translated’ to executable code, so even a loop takes time...

I Ox version using sumc is virtually as fast as Fortran or C

17/27



APQE11-2b

Efficiency

Algorithm

Algorithm II
Think...
Where do returns come from? First difference of log prices

pt = log Pt

rt = pt − pt−1

What does this imply for the sum of the returns?

S =
∑

rt =
∑

t

(pt − pt−1)

= (p1 − p0) + (p2 − p1) + · · ·+ (pN − pN−1) = pN − p0

I Quicker algorithm
I This does more than quicker computer, quicker language...
I Think/measure where your program is slow: Work on

bottlenecks first

18/27



APQE11-2b

Efficiency

Algorithm

Algorithm II
Think...
Where do returns come from? First difference of log prices

pt = log Pt

rt = pt − pt−1

What does this imply for the sum of the returns?

S =
∑

rt =
∑

t

(pt − pt−1)

= (p1 − p0) + (p2 − p1) + · · ·+ (pN − pN−1) = pN − p0

I Quicker algorithm
I This does more than quicker computer, quicker language...
I Think/measure where your program is slow: Work on

bottlenecks first
18/27



APQE11-2b

Efficiency

Algorithm

Algorithm III

Good algorithms: Where to find?

I BLAS library (C/Fortran)

I LAPack library (C/Fortran)

I Within higher-level languages (Matlab/Octave/Ox/Gauss)

Examples: Regression, matrix inversion, random number generator,
optimization... Easy to code little robustly, hard to get right...

19/27



APQE11-2b

Efficiency

Operators

Low-level ‘algorithms’: Operators

Not all operators are equal:
Speed Operation Example

Fast Integer addition and subtraction I+J; I-J
Floating point addition and subtraction A+B; A-B
Int multiply, fl. point multiply/divide I*J, A*B, A/B

... Integer divide I/J
Exponentiation to a positive int. constant A^2
Exponentiation to a positive int. variable A^I

Slow Exponentiation to a floating point variable A^B
What is the difference?

for (dI= 0.0; dI < iN; ++dI)

dosomething ();

for (i= 0; i < iN; ++i)

dosomething ();

20/27



APQE11-2b

Efficiency

Operators

Operators, do’s and don’ts

Looking only at memory use and speed of operators:
Don’t Do
A/2.0 0.5*A
A^2 A * A
B (E + F) - C*(E+F) (B - C) * (E + F)
A^0.5 sqrt(A)
B/C/D/E B/(C*D*E)
T1 = B + C, T2 = D*E, A = T1 + T2 A= B+C+D*E
T1 = X + Y, A= T1 + log(T1) A= (X + Y) + log(X + Y)

Note: Think also of clarity of your program...

21/27



APQE11-2b

Efficiency

Loops

Loops and execution: Gather

Loops take most time (even empty loops take time!)
Preferably use one loop, gather statements together

// Don ’t

dS= dQ= 0;

for (i= 0; i < iN; ++i)

dS+= vR1[i];

for (i= 0; i < iN; ++i)

dQ+= vR2[i];

// Do

dS= dQ= 0;

for (i= 0; i < iN; ++i)

{

dS+= vR1[i];

dQ+= vR2[i];

}

22/27



APQE11-2b

Efficiency

Loops and conditionals

Loops and execution: If-then-else

Conditional constructs are hard for CPU, take if-then-else outside
of loop if possible

// Don ’t

dS= 0;

for (i= 0; i < iN; ++i)

if (iDay == 4)

dS+= vR1[i];

else

dS+= vR2[i];

// Do

dS= 0;

if (iDay == 4)

for (i= 0; i < iN; ++i)

dS+= vR1[i];

else

for (i= 0; i < iN; ++i)

dS+= vR2[i];

23/27



APQE11-2b

Efficiency

Conditionals

If-then-else

Test for most common condition first

// Don ’t

if (iDay == 4)

dS= sumr(vR1);

else

dS= sumr(vR2);

// Do

if (iDay != 4)

dS= sumr(vR2);

else

dS= sumr(vR1);

24/27



APQE11-2b

Efficiency

Memory

Memory and speed

Should you care about memory?

Yes and no... Make some speed
difference.

Matrices A =

(
0 1 2
3 4 5

)
is stored:

I Column-wise: Fortran, Matlab

I Row-wise: C

I Row-wise (with row pointers): Ox

0 3 1 4 2 5

Fortran/Matlab mA

0 1 2 3 4 5

C mA

0 1 2 3 4 5

r[0] r[1]

Ox mA

25/27



APQE11-2b

Efficiency

Memory

Memory and speed

Should you care about memory? Yes and no... Make some speed
difference.

Matrices A =

(
0 1 2
3 4 5

)
is stored:

I Column-wise: Fortran, Matlab

I Row-wise: C

I Row-wise (with row pointers): Ox

0 3 1 4 2 5

Fortran/Matlab mA

0 1 2 3 4 5

C mA

0 1 2 3 4 5

r[0] r[1]

Ox mA

25/27



APQE11-2b

Efficiency

Memory

Function calls
When you call a function:

I Local variables declare their memory for every function call.
Can be expensive, for many/large variables. For speed: Use
globals...

I It takes time: Putting small procedures in-line is quicker

I the passing of parameters also takes time. Passing pointers to
variables, or using globals, is again faster.

I In general, using memory takes time (in C: new). Think about
the constructs you need.

I Pointers are faster than copying data

but:

Forget this for now...

26/27



APQE11-2b

Efficiency

Memory

Structure!

Your time is more valuable than computer time...

Concentrate on structured, readable code.
Afterwards, with bug-free code

I profile your code to see which routine takes most time

I think of putting mostly used data constructs global

I aforementioned tricks can shave 5-20% off execution time.
Better algorithm can improve infinitely more...

I move from laptop to recent desktop, think of using MPI, split
program in smaller tasks, etc.

27/27


	Floating point numbers and rounding errors
	Efficiency
	System
	Algorithm
	Operators
	Loops
	Loops and conditionals
	Conditionals
	Memory


