Advanced Programming in Quantitative Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos, Henning Bunzel

VU University Amsterdam
Tinbergen Institute
c.s.bos@vu.nl

15-19 August 2011, Aarhus, Denmark

Outline

Floating point numbers and rounding errors

Efficiency
System
Algorithm
Operators
Loops
Loops and conditionals
Conditionals
Memory

Day 2 - Afternoon

13.00L Background of computations

- Floating point numbers and rounding errors
- Compilers and CPUs
- Computing environment at Aarhus University
14.30P Tutorial
- Simulate data duration model
- Apply concepts of the day
- Think of rounding errors
16.00 End

Precision

Not all numbers are made equal...
Example: What is $1 / 3+1 / 3+1 / 3+\ldots ?$
Listing 1: precision/onethird.ox

```
main()
{
    decl i, j, dD, dSum;
    dD= 1/3;
    dSum= 0.0;
    for (i= 0; i < 10; ++i)
        for (j= 0; j < 3; ++j)
            {
                print (dSum~i~(dSum-i));
                dSum+= dD; // Successively add a third
            }
}
```

See outcome: It starts going wrong after 16 digits...

Representation

- Integers are represented exactly using 4 bytes/32 bits, in range [INT_MIN, INT_MAX]= [-2147483648, 2147483647]
- Doubles are represented in 64 bits. This gives a total of $2^{64} \approx 1.84467 \times 10^{19}$ different numbers that can be represented.

Double floating point format (Graph source: Wikipedia)
Split double in

- Sign (one bit)
- Exponent (11 bits)
- Fraction or mantissa (52 bits)

Double representation

$$
x= \begin{cases}(-1)^{\text {sign }} \times 2^{1-1023} \times 0 . \text { mantissa } & \text { if exponent }=0 \times .000 \\ (-1)^{\text {sign }} \times \infty & \text { if exponent }=0 \times .7 \mathrm{ff} \\ (-1)^{\text {sign }} \times 2^{\text {exponent }-1023} \times 1 . \text { mantissa } & \text { else }\end{cases}
$$

Note: Base-2 arithmetic

Sign	Expon	Mantissa	Result
0	$0 \times .3 f f$	000000000000	$-1^{0} \times 2^{(1023-1023)} \times 1.0$
		$=0$	
0	$0 x .3 f f$	000000000001	$-1^{0} \times 2^{(1023-1023)} \times 1.000000000000000222$
0		$=1.000000000000000222$	
$0 \times .400$	000000000000	$-1^{0} \times 2^{(1024-1023)} \times 1.0$	
	$=2$		
0	$0 \times .400$	000000000001	$-1^{0} \times 2^{(1024-1023)} \times 1.000000000000000222$
	$=2.00000000000000444$		

Bit weird...

Consequence: Addition

Let's work in Base-10 arithmetic, assuming 4 significant digits:

Sign	Exponent	Mantissa	Result	x
+	4	0.1234	0.1234×10^{4}	1234
+	3	0.5670	0.5670×10^{3}	567

What is the sum?

Consequence: Addition

Let's work in Base-10 arithmetic, assuming 4 significant digits:

Sign	Exponent	Mantissa	Result	x
+	4	0.1234	0.1234×10^{4}	1234
+	3	0.5670	0.5670×10^{3}	567

What is the sum?

Sign	Exponent	Mantissa	Result	x
+	4	0.1234	0.1234×10^{4}	1234
+	4	0.0567	0.0567×10^{4}	567
+	4	0.1801	0.1801×10^{4}	1801

Shift to same exponent, add mantissas, perfect

Consequence: Addition II

Let's use dissimilar numbers:

Sign	Exponent	Mantissa	Result	x
+	4	0.1234	0.1234×10^{4}	1234
+	1	0.5670	0.5670×10^{1}	5.67

What is the sum?

Consequence: Addition II

Let's use dissimilar numbers:

Sign	Exponent	Mantissa	Result	x
+	4	0.1234	0.1234×10^{4}	1234
+	1	0.5670	0.5670×10^{1}	5.67

What is the sum?

Sign	Exponent	Mantissa	Result	x
+	4	0.1234	0.1234×10^{4}	1234
+	4	0.000567	0.05×10^{4}	5
+	4	0.1239	0.1239×10^{4}	1239

Shift to same exponent, add mantissas, loose precision...
Further consequence:
Add numbers of similar size together, preferably!
In Ox/C/Java/Matlab/Octave/Gauss: 16 digits (≈ 52 bits) available instead of 4 here

Consequence: Addition III

Check what happens in practice:

Listing 2: precision/accuracy.ox

```
main()
{
    decl dA, dB, dC;
    dA= 0.123456 * 10~0;
    dB= 0.471132 * 10^15;
    dC= - dB;
    println ("a: ", dA, ", b: ", dB, ", c: ", dC);
    println ("a+b+c: "', dA+dB+dC);
    println ("a+(b+c): ", dA+(dB+dC));
    println ("(a+b) + c: "', (dA+dB)+dC);
}
```


Consequence: Addition III

Check what happens in practice:

Listing 3: precision/accuracy.ox

```
main()
{
    decl dA, dB, dC;
    dA= 0.123456 * 10^0;
    dB= 0.471132 * 10^15;
    dC= -dB;
    println ("a: ", dA, ", b: ", dB, ", c: ", dC);
    println ("a + b + c: ", dA+dB+dC);
    println ("a + (b + c): ", dA+(dB+dC));
    println ("(a + b) + c: ",}(dA+dB)+dC)
}
```

results in

```
Ox Professional version 6.00 (Linux_64/MT) (C) J.A. Doornik, 1994-2009
a: 0.123456, b: 4.71132e+14, c: -4.71132e+14
a + b + c: 0.125
a + (b + c): 0.123456
(a + b) + c:0.125
```


Other hints

- Adding/subtracting tends to be better than multiplying
- Hence, \log-likelihood $\sum \log \mathcal{L}_{i}$ is better than likelihood $\prod \mathcal{L}_{i}$
- Use true integers when possible
- Simplify your equations, minimize number of operations
- Don't do $x=\exp (\log (z))$ if you can escape it

Other hints

- Adding/subtracting tends to be better than multiplying
- Hence, \log-likelihood $\sum \log \mathcal{L}_{i}$ is better than likelihood $\prod \mathcal{L}_{i}$
- Use true integers when possible
- Simplify your equations, minimize number of operations
- Don't do $x=\exp (\log (z))$ if you can escape it
(Now forget this list... use your brains, just remember that a computer is not exact...)

On architecture, algorithms, languages, and machines

Why do we program (repeat)?
To get to the results we need, in a fashion that is controllable, where we are free to implement the newest and greatest, and where we can be 'reasonably' sure of the answers

What is important here?

1. To get correct code (\approx maintainable, clear, adjustable)
2. To get efficient code (\approx quick?)

Correct code: See rest of course

Efficiency II

Efficient code: Depends on

1. system (processor, memory size/structure, drives, network, operating system)
2. language
3. algorithm
4. more...?

Use an example:
What is the sum of all returns on the SP500 stock index, over 20 years?

$$
S=\sum_{t=1}^{N} r_{t}
$$

Efficiency: System

What do you prefer:

1. Old Apple II (1Mhz, 64KB)
2. Older Power Mac (2.5 GHz , PowerPC processor)
3. This laptop (C2Duo 1.4Ghz, 1GB)
4. Home machine (I7 quadcore $2.66 \mathrm{Ghz}, 6 \mathrm{~GB}$)
5. Work machine (Nehalem dual quadcore $2.66 \mathrm{Ghz}, 12 \mathrm{~GB}$)
6. SARA Lisa supercomputer (536 dual quadcores, loads of memory)
Difference?

Efficiency: System II

Difference:

1. Apple does not even have the memory to store the data. Read from tape?
2. Mac: PowerPC had low-level possibilities to sum vectors of numbers quickly.
3. C2D laptop: Not bad, fraction of a second
4. Core I7: Better memory management in CPU, quicker
5. 2×17 : Can one use 8 cores for the summation?
6. SARA: Can one use $536 \times 2 \times 4$ cores for summing 1000 numbers?
In general: Recent \equiv better... More memory \equiv better... More cores/CPUs $\not \equiv$ better necessarily

Figure: Itanium CPU architecture (Source: Wikipedia)

- Hard drive \rightarrow memory \rightarrow CPU
- Efficiency differs per CPU architecture
- Does your data fit in memory/cache? Or should you go back to hard drive to reload it
- Communication between parts of system: Speed matters

Multi-core?

$$
\begin{aligned}
S & =\sum_{t=1}^{N} r_{t}=\sum_{t=1}^{N / 4} r_{t}+\sum_{t=N / 4+1}^{N / 2} r_{t}+\sum_{t=N / 2+1}^{3 N / 4} r_{t}+\sum_{t=3 N / 4}^{N} r_{t} \\
& =S_{1}+S_{2}+S_{3}+S_{4}
\end{aligned}
$$

Use 4 cores for summation?

1. Decide on how to split the problem
2. Send each core the right amount of data
3. Wait for the answers to come back
4. Sum $S=S_{1}+S_{2}+S_{3}+S_{4}$

Drawback: Overhead in communication between cores/nodes, not always faster...
(GPU, supercomputer, MPI, ...)

Algorithm

```
C FORTRAN CODE
```

C FORTRAN CODE

```
C FORTRAN CODE
```

C FORTRAN CODE
INTEGER i, iN
INTEGER i, iN
INTEGER i, iN
INTEGER i, iN
REAL dS
REAL dS
REAL dS
REAL dS
iN= ...
iN= ...
iN= ...
iN= ...
dS=0.0
dS=0.0
dS=0.0
dS=0.0
DO 10 i= 1, iN
dS= dS + vR(0,i)
dS= dS + vR(0,i)
dS= dS + vR(0,i)
dS= dS + vR(0,i)
10 CONTINUE
10 CONTINUE
10 CONTINUE
10 CONTINUE
decl dS;
decl dS;
decl dS;
decl dS;
// Ox code, using function
dS= sumc(vR);

```
dS= sumc(vR);
```

dS= sumc(vR);

```
dS= sumc(vR);
```

```
```

int i, iN; // C code

```
```

int i, iN; // C code
double dS;
double dS;
iN= ...;
iN= ...;
dS= 0.0;
dS= 0.0;
for (i= 0; i < iN; ++i)
for (i= 0; i < iN; ++i)
dS+= vR[0][i];

```
        dS+= vR[0][i];
```

```
decl i, dS, iN; // Ox code
```

decl i, dS, iN; // Ox code

```
decl i, dS, iN; // Ox code
iN= sizerc(vR);
iN= sizerc(vR);
iN= sizerc(vR);
dS= 0;
dS= 0;
dS= 0;
for (i= 0; i < iN; ++i)
for (i= 0; i < iN; ++i)
for (i= 0; i < iN; ++i)
        dS+= vR[i];
```

```
        dS+= vR[i];
```

```
        dS+= vR[i];
```

```
- Fortran or C would be quickest, as compiled code can be executed directly by CPU
- Ox code is similar to C, but far slower: Each command has to be 'translated' to executable code, so even a loop takes time...
- Ox version using sumc is virtually as fast as Fortran or C

\section*{Algorithm II}

Think...
Where do returns come from? First difference of log prices
\[
\begin{aligned}
p_{t} & =\log P_{t} \\
r_{t} & =p_{t}-p_{t-1}
\end{aligned}
\]

What does this imply for the sum of the returns?

\section*{Algorithm II}

Think...
Where do returns come from? First difference of log prices
\[
\begin{aligned}
p_{t} & =\log P_{t} \\
r_{t} & =p_{t}-p_{t-1}
\end{aligned}
\]

What does this imply for the sum of the returns?
\[
\begin{aligned}
S & =\sum r_{t}=\sum_{t}\left(p_{t}-p_{t-1}\right) \\
& =\left(p_{1}-p_{0}\right)+\left(p_{2}-p_{1}\right)+\cdots+\left(p_{N}-p_{N-1}\right)=p_{N}-p_{0}
\end{aligned}
\]
- Quicker algorithm
- This does more than quicker computer, quicker language...
- Think/measure where your program is slow: Work on bottlenecks first

\section*{Algorithm III}

Good algorithms: Where to find?
- BLAS library (C/Fortran)
- LAPack library (C/Fortran)
- Within higher-level languages (Matlab/Octave/Ox/Gauss)

Examples: Regression, matrix inversion, random number generator, optimization... Easy to code little robustly, hard to get right...

\section*{Low-level 'algorithms': Operators}

Not all operators are equal:

\section*{Speed Operation}

Fast Integer addition and subtraction Floating point addition and subtraction Int multiply, fl. point multiply/divide

Integer divide Exponentiation to a positive int. constant \(\mathrm{A}^{\wedge} 2\) Exponentiation to a positive int. variable
Slow Exponentiation to a floating point variable

Example
I+J; I-J
A+B; A-B
\(\mathrm{I} * \mathrm{~J}, \mathrm{~A} * \mathrm{~B}, \mathrm{~A} / \mathrm{B}\)
I/J
\(\mathrm{A}^{\wedge} \mathrm{I}\)
\(A^{\wedge} B\)

What is the difference?
```

for (dI= 0.0; dI < iN; ++dI)
dosomething();

```
for (i=0;i<iN; ++i)
dosomething ();

\section*{Operators, do's and don'ts}

Looking only at memory use and speed of operators:

\section*{Don't}

A/2.0
A~2
B (E + F) - C* (E+F)
A~0.5
B/C/D/E
\(\mathrm{T} 1=\mathrm{B}+\mathrm{C}, \mathrm{T} 2=\mathrm{D} * \mathrm{E}, \mathrm{A}=\mathrm{T} 1+\mathrm{T} 2\)
\(\mathrm{T} 1=\mathrm{X}+\mathrm{Y}, \mathrm{A}=\mathrm{T} 1+\log (\mathrm{T} 1)\)
Note: Think also of clarity of your program...

\section*{Loops and execution: Gather}

Loops take most time (even empty loops take time!) Preferably use one loop, gather statements together
```

// Don't
dS= dQ= 0;
for (i= 0; i < iN; ++i)
dS+= vR1[i];
for (i= 0; i < iN; ++i)
dQ+= vR2[i];

```
```

// Do
dS= dQ= 0;
for (i= 0; i < iN; ++i)
{
dS+= vR1[i];
dQ+= vR2[i];
}

```

\section*{Loops and execution: If-then-else}

Conditional constructs are hard for CPU, take if-then-else outside of loop if possible
```

// Don't
dS= 0;
for (i= 0; i < iN; ++i)
if (iDay == 4)
dS+= vR1[i];
else
dS+= vR2[i];

```
```

// Do
dS= 0;
if (iDay == 4)
for (i= 0; i < iN; ++i)
dS+= vR1[i];
else
for (i= 0; i < iN; ++i)
dS+= vR2[i];

```

\section*{If-then-else}

Test for most common condition first
```

// Don't
if (iDay == 4)
dS= sumr(vR1);
else
dS= sumr(vR2);

```
```

// Do
if (iDay != 4)
dS= sumr(vR2);
else
dS= sumr(vR1);

```

Memory and speed
Should you care about memory?

\section*{Memory and speed}

Should you care about memory? Yes and no... Make some speed difference.
Matrices \(A=\left(\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5\end{array}\right)\) is stored:
- Column-wise: Fortran, Matlab
- Row-wise: C
- Row-wise (with row pointers): Ox


Fortran/Matlab mA


\section*{Function calls}

When you call a function:
- Local variables declare their memory for every function call. Can be expensive, for many/large variables. For speed: Use globals...
- It takes time: Putting small procedures in-line is quicker
- the passing of parameters also takes time. Passing pointers to variables, or using globals, is again faster.
- In general, using memory takes time (in C: new). Think about the constructs you need.
- Pointers are faster than copying data
but:
Forget this for now...

\section*{Structure!}

\section*{Your time is more valuable than computer time...}

Concentrate on structured, readable code.
Afterwards, with bug-free code
- profile your code to see which routine takes most time
- think of putting mostly used data constructs global
- aforementioned tricks can shave 5-20\% off execution time. Better algorithm can improve infinitely more...
- move from laptop to recent desktop, think of using MPI, split program in smaller tasks, etc.```

