Advanced Programming in Quantitative Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam Tinbergen Institute

c.s.bos@vu.nl

15 – 19 August 2011, Aarhus, Denmark

Outline

Include packages

SsfPack

Day 4 - Afternoon

14.15 [Seminar]

16.00L Added capabilities

- Graphics packages
- SsfPack/Arfima and others

17.00 End

Include

Enlarging the capabilities of ox beyond oxstd.h capabilities: Either

#include <oxprob.h>

(to include the mentioned file literally within the program at that point, and will be compiled in), or

#import <maximize>

(to import the code when needed; pre-compiled code is used when available)

Include packages

└─Ox-provided packages

Ox-provided packages

Package	Purpose
oxprob.h	Extra probability densities
oxfloat.h	Definition of constants
oxdraw.h	Graphics capabilities (*)
arma.h	ARMA filters and generators
quadpack.h	Univeriate numerical integration
maximize	Optimization using Gauss-Newton or Simplex methods (*)
maxsqp	Maximize non-linear function with sequential quadratic pro-
	gramming
solvenle	Solve a system of non-linear equations
solveqp	Solve a quadratic program with restrictions
database	General class for creating a database
modelbase	General class for building a model
simulation	General class for simulation exercise

APQE11-4b

Include packages

User-provided packages

User-provided packages

Package	Author	Purpose
arfima	Doornik, Ooms	Long memory modelling
dcm	Eklof, Weeks	Discrete choice models
dpd	Doornik, Arellano, Bond	Dynamic Panel Data models
financialnr	Ødegaard	Financial numerical recipes
gnudraw.h	Bos	Alternative graphing capabilities
maxsa.h	Bos	Simulated Annealing
mc2pack.h	Bos	Markov chain Monte Carlo estimation
msvar	Krolzig	Markov switching
oxutils.h	Bos	Some convenient utilities (*)
oxdbi	Bruche	A database independent abstraction
		layer for Ox
ssfpack.h	Koopman, Shephard, Doornik	State space models
	and many others	•
m@ximize	Laurent, Urbain	Use CML optimisation in OxGauss
oxgauss	Doornik	Run Gauss code through Ox

- Packages reside either in ox-home/packages, or in a local packages folder.
- After including the package, the package is supposed to work seamlessly with Ox
- Easy and clean way of communicating research

A package: oxutils

```
What does 'seamless' mean?
Standard situation: What is the size of a matrix I'm using?
main()
{
    ...
print (rows(mX)|columns(mX));
}
```

How often would you use this code while debugging?

A package: oxutils II

Alternative: Use a package with some extra functions, not previously available

```
#include <packages/oxutils/oxutils.h>
main()
{
...
print (size(mX));
}
```

Check manual

<ox-home>\packages\oxutils\doc\oxutils.html

Other routines I use plenty:

info	Measure time an iteration takes, time until end of program	
TrackRoutine	Routine to profile your program	
printtex	Replacement for print, outputting in LaTEX format	
ReadArg	Read arguments from command line	
setseed	Reset the random seed, psuedo-randomly	

└─OxUtils

A package: oxutils III

(From tomorrow's slides on speed)
Use TrackTime("concat") to profile a piece of code, get a report
using TrackReport()

```
#include <packages/oxutils/oxutils.h>
```

```
main()
Ł
  decl iN, iK, mX, j;
  iN= 1000; // Size of matrix
  iK = 100;
  TrackTime("concat");
  mX = <>;
  for (j = 0; j < iN; ++j)
    mX = rann(1, iK);
  TrackTime("predefined");
  mX= zeros(iN, iK);
  for (j= 0; j < iN; ++j)</pre>
    mX[j][] = rann(1, iK);
  TrackTime(-1);
  TrackReport();
3
```

Output:

Ox Professional version 6.00 (Linux_64/MT) Time spent in routines concat 2.42 0.99 predefined 0.02 0.01 Total: 2.44

A package: SsfPack

Model in State Space:

$$\alpha_{t+1} = d + T\alpha_t + \eta_t$$
$$y_t = c + Z\alpha_t + \epsilon_t$$
$$(\eta'_t, \epsilon'_t)' \sim \mathcal{N} \begin{pmatrix} HH' & HG' \\ GH' & GG' \end{pmatrix}$$

- Flexible structure for all linear Gaussian time series models
- Incorporates ARMA models, Exponentially Weighted Moving Average, regression models
- Allows for distinction of level, trend, seasonal components
- Can easily handle time series with missing observations
- Likelihood expressed analytically (through recursion formula)

SsfPack: Recursions

Recursion formula:

- Kalman filter (and related routines)
- Cumbersome to program in robust and general way
- \Rightarrow SsfPack (S.J. Koopman, N. Shephard, J. Doornik)

SsfPack: LLN

Some notation:

$$\begin{pmatrix} \alpha_{t+1} \\ y_t \end{pmatrix} = \delta + \Phi \alpha_t + u_t \qquad u_t \sim \mathcal{N}(0, \Omega)$$

Simple Local Level with noise or Random Walk with Noise model:

$$\begin{split} \delta &\equiv \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \Phi = \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \Omega = \begin{pmatrix} .01 & 0 \\ 0 & 1 \end{pmatrix} \\ \alpha_{t+1} &= \alpha_t + \eta_t & \eta_t \sim \mathcal{N}(0, .01) & \text{Random walk} \\ y_t &= \alpha_t + \epsilon_t & \epsilon_t \sim \mathcal{N}(0, 1) & \text{with noise} \end{split}$$

SsfPack: Likelihood

Define $a_{t+1} = E(\alpha_{t+1}|Y_t)$, with corresponding $P_{t+1} = \operatorname{cov}(\alpha_{t+1}|Y_t)$. Then, observing y_{t+1} provides extra info on $\alpha_{t+1} \Rightarrow$ Filter...

$$v_t = y_t - Za_t \qquad F_t = ZP_tZ' + GG'$$

$$K_t = (TP_tZ' + HG')F_t^{-1}$$

$$a_{t+1} = Ta_t + K_tv_t \qquad P_{t+1} = TP_tT' + HH' - K_tF_tK'_t$$

Prediction error $v_t | Y_t \sim \mathcal{N}(0, F_t)$

$$\log \mathcal{L}(Y_n; \theta) = \sum_{t=1}^n \log p(y_t | y_1, ..., y_{t-1}; \theta)$$

= $-\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum_t (\log |F_t| + v_t' F_t^{-1} v_t)$

Hassle to compute likelihood, recursion, and slow...

SsfPack: Package

Alternative: Use package...

What is this SsfLik?

- Internal Ox function, with heading in ssfpack.h (compare oxdraw.h)?
- 2. Ox function, defined in ssfpack.h
- 3. Other type of function, reference in ssfpack.h?

SsfPack: Load those files

```
Let's take a peek...
```

```
Listing 1: .../ssfpack.h
```

```
extern <u>"packages/ssfpack/ssfpack,FnSsfLik"</u>
SsfLik(const adLik, const adVar, const mY, const mTZ, const mHG, ...);
```

```
(check extern statement)
```

Apparently

- Routine is internally called FnSsfLik
- Heading is defined here in Ox terms
- Code is declared *externally*
- ... in some .dll/.so file
- \blacktriangleright \Rightarrow C-code included for Ox functionality...

SsfPack: Summary

SsfPack

- provides easy access to wealth of routines concerning State Space models
- gives seamless integration into Ox
- codes routines in optimized C-code
- stems from some of the leading researchers in the field