Advanced Programming in Quantitative Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam Tinbergen Institute

c.s.bos@vu.nl

15 – 19 August 2011, Aarhus, Denmark

Tutorial Day 1 - Afternoon

14.30 Targets:

- 1. Learn some syntax
- 2. Use the syntax
- 3. Get a simulation running

16.00 End for today

Learning syntax

Four sources for now:

- Introduction to Ox (included in help system as PDF)
- Syntax sheets (see webpage, PDF)
- Language tutorial (included in help system as HTML)
- Tutors

Check out those sources first, find your way through.

Spend first \pm half hour on one of those sources, such that you know most important syntax.

Exercise OLSGenS

Take the model

$$y = \mathbf{X}\beta + \epsilon \qquad \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$$

with n = 20 observations, $\beta = [1; 2; 3], \sigma = 0.25$ and $\mathbf{X} = [1 \ u_1 \ u_2]$ where $u_i \sim U(0, 1)$.

- Write a program which creates the X matrix; print it, and make sure it is what you want it to be. Save the program as olsgens0.ox.
- 2. Generate data y from the model. Is the mean of y roughly what you expect it to be? Save the program as olsgens1.ox.

OLSGenS 2

- Estimate b using OLS. Is the estimate decent? Save as olsgens2.ox.
- 4. Add a loop, such that you generate S = 1000 samples of y successively, and for each estimate and store b. Print as output the mean and variance of the estimated b's. Save the program with the name olsgens3.ox.
- 5. Compare the results you get with the theoretical covariance matrix of $\Sigma = \sigma^2 (X'X)^{-1}$. Does it all still make sense? Save as olsgens4.ox.

Tomorrow

Try to get along with the exercise; leave it in your personal directory for us to check; leave a olsgen.txt next to it with questions to ask, if you have any. Mind you: Course is to get practice, not to do everything 'perfect' at the first try.