Advanced Programming in Quantitative Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam
Tinbergen Institute
c.s.bos@vu.nl

15-19 August 2011, Aarhus, Denmark

Tutorial Day 2 - Afternoon

14.30P Tutorial

- Exercises HB
- Data duration model
16.00 End

Rows or columns

Does it make a difference to use rows or columns, for the speed of your program? Find this out...

- Make a program which fills a n x n matrix with random numbers, e.g. with $n=1000$
- Do this either

1. at once, using rann(iN, iN);
2. filling $m X$ row by row, $m X[i][]=\operatorname{rann}(1, i N)$;
3. filling $m X$ column by column, $m X[][i]=r a n n(i N, ~ 1)$;

- Measure the time each of these takes. Use the dTime= timer(); and println (timespan(dTime)); to measure.
- If your computer is too quick, repeat the filling say $S=10$ or $S=1000$ times, or more, until you see which one works better. Or increase n ?

Precision/smallest number in Ox

What is the smallest number you can create which is still larger than zero?

1. Start of with a number of choice
2. Check if it is different from 0
3. Divide it by two
4. and repeat from 2

Report the last number which you found different from zero. Also report the number of times you divided by 2 .
For this exercise you might want to use a construction like

```
do 
    // Do something}
}
```

// Test whether $d X$ is equal to zero

Accuracy in addition

Define three numbers

$$
a=0.1234567 \times 10^{0} \quad b=0.4711325 \times 10^{4} \quad c=-b
$$

and compute the outcomes of

$$
\begin{array}{r}
a+b+c \\
a+(b+c) \\
(a+b)+c
\end{array}
$$

Is there a difference?
Afterwards, do the same thing but with 10^{40} instead of 10^{4} : Do you now find a difference? Can you find the number of significant digits With what k, for 10^{k}, does the result seem correct?

Memory use

Does declaring new memory, or using local variables, take time? Investigate this by

1. Writing a loop which S times creates a random matrix of size $n \times n$ of random numbers, with n, S sufficiently large, and time it
2. Then do the same, but each time in the loop reset the matrix to a scalar 0, before assigning the big matrix to it.
3. Then do the same, but call a function which locally declares a matrix $m X$ and assigns the random numbers to it.
Any difference? (Hint: I cannot find much of a difference myself)

Duration modelling

The duration model is heavily used e.g. to model the duration of unemployment spells. It also provides a convenient workhorse during this course as it

- contains relatively few parameters
- does have restrictions on the parameter space
- can be estimated using a loglikelihood approach
- allow for easy extension from the regression framework See a.o. Lancaster, 'The Econometric Analysis of Transition Data' (1990) for details.

Here we use a simplified version of the model, assuming all data is observed.

Duration: The (simplified) model

Durations y_{i} are assumed to be distributed according to

$$
y \sim \operatorname{Weib}(\alpha, \lambda) \quad f(y ; \alpha, \lambda)=\alpha \lambda^{\alpha} y^{\alpha-1} \exp \left(-\lambda^{\alpha} y^{\alpha}\right)
$$

Dependence on personal characteristics can be introduced by taking

$$
\begin{aligned}
\lambda_{i} & \equiv \exp \left(X_{i} \beta\right) \\
y_{i} & \sim \operatorname{Weib}\left(\alpha, \lambda_{i}\right)
\end{aligned}
$$

Duration: Simulation

Write a program which generates $N=1000$ durations y from the Weibull model, with $\beta=(11)^{\prime}, X=[1 N(0,1)], \alpha=1.5$.
Some remarks:

- Think about the status of $y, X, \lambda, \alpha, \beta$: Which is parameter, which is 'fixed data', 'derived data' etc?
- Work in matrices as far as possible.
- Work in routines: In what steps can you generate this data? What should you retain?
- If you generate $E \sim \operatorname{Exp}\left(\lambda_{e}=1\right)$, then
$Y=E^{1 / \alpha} / \lambda_{w} \sim \operatorname{Weib}\left(\alpha, \lambda_{w}\right)$. Use this relation, and the element-by-element division and power operators ./ and . ^ to obtain a sample from the requested Weibull.
- ranexp does not work immediately. You'll miss a line \#include <oxprob.h> at the beginning. What is the logic?

Duration: Output

In later tutorials, we will need data from this model. Therefore,

- Save a data set data/genrdur.fmt containing for each individual the duration y and the explanatory variables X.
- Get some output on the y 's and X 's.

Don't try to do all at once: First check that you can generate e.g. from the Weibull for fixed λ, then generate separate λ 's, etc...

