
APQE12-4a

Advanced Programming in Quantitative
Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam

c.s.bos@vu.nl

20 – 24 August 2012, Aarhus, Denmark

1/23

APQE12-4a

Outline

Outline

Include packages

Magic numbers

Declaration files

Alternative: Command line arguments

Graphics

2/23

APQE12-4a

Outline

Day 4 - Morning

9.00L Topics
I Style
I Including packages
I Including magic numbers
I Including graphs

10.30P Estimating a duration model
I Transform 0.5 < β2 < 1
I Graph the durations
I Advanced:

I Draw N = 1000, yi ∼ N (0, σ2) for a σ of choice. Make a QQ
plot using DrawQQ

I Make the QQ plot ‘by hand’ using DrawXMatrix, drawing the
empirical quantiles of the y ’s against the theoretical quantiles
of the normal density

I Make a residual plot Ei = (Λiyi)
α for your y ’s of the duration

model, and a QQ-plot against the Exp(1) density

3/23

APQE12-4a

Outline

Style and neatness, directories

Reread old program: Almost impossible. What can you do?

I Use as clear a style as possible, extremely consistent
throughout multiple projects

I Spend time on being neat, including explanations for routines

I Build small, self-explanatory routines

I Use modules/packages for iterative tasks

I Use Hungarian notation

I Use a directory structure! (See next slide)

4/23

APQE12-4a

Outline

Order in the main ox file

1. Comments (program, name, date, version)

2. #include <oxstd.h> standard packages

3. #import <maximize> standard imports

4. #static decl s vY; necessary global variables

5. #include "include/incinit.ox" personal code

6. main() routine, containing

6.1 decl

6.2 magic
6.3 init
6.4 estimate
6.5 output

5/23

APQE12-4a

Outline

Order II
// Comments (program , name , date , version)

#include <oxstd.h> // And other basic includes

#import <maximize > // And other basic imports

#static decl s_vY , s_mX; // Global variables for Loglikelihood

#include "include/incinit.ox" // My own initialisation routines

#include "include/incest.ox" // My own estimation routines

main()

{

decl ...;

// Magic numbers

sData= "data/fx9709.in7";

asYX= {"FXEU", "C", "FXDK"};

// Initialise

InitData (&vY, &mX , asYX , sData);

InitPars (&vP, vY, mX);

// Estimate

ir= Estimate (&mPS , &dLL , vY, mX);

// Output

Output(mPS , dLL , ir);

}

6/23

APQE12-4a

Outline

Directory structure

Example: Project on Foreign Exchange rates (FX) including a
jump diffusion process

Directory Contents
fxjump Project, includes file logbook.txt

fxjump/ox Main Ox files, declaration of present setting
fxjump/ox/data Data files, including very small ox-file for graphing data
fxjump/ox/decl Other declarations
fxjump/ox/include Include files with Ox routines
fxjump/ox/test Test files
fxjump/ox/results Results of computations
fxjump/text/v1 First version of text, main tex file
fxjump/text/v1/include Separate chapters
fxjump/text/v1/graphs Corresponding graphics
fxjump/text/pres Presentation, main tex file
fxjump/text/pres/graphs Corresponding graphics

Reads very much simpler, purpose of each file is clear from its
location.

7/23

APQE12-4a

Include packages

Include

Enlarging the capabilities of ox beyond oxstd.h capabilities: Either

#include <oxprob.h>

(to include the mentioned file literally within the program at that
point, and will be compiled in), or

#import <maximize>

(to import the code when needed; pre-compiled code is used when
available)

8/23

APQE12-4a

Include packages

Ox-provided packages

Ox-provided packages

Package Purpose
oxprob.h Extra probability densities
oxfloat.h Definition of constants
oxdraw.h Graphics capabilities (∗)
arma.h ARMA filters and generators
quadpack.h Univeriate numerical integration
maximize Optimization using Gauss-Newton or Simplex methods (∗)
maxsqp Maximize non-linear function with sequential quadratic pro-

gramming
solvenle Solve a system of non-linear equations
solveqp Solve a quadratic program with restrictions
database General class for creating a database
modelbase General class for building a model
simulation General class for simulation exercise

9/23

APQE12-4a

Include packages

User-provided packages

User-provided packages
Package Author Purpose
arfima Doornik, Ooms Long memory modelling
dcm Eklof, Weeks Discrete choice models
dpd Doornik, Arellano, Bond Dynamic Panel Data models
financialnr Ødegaard Financial numerical recipes
gnudraw.h Bos Alternative graphing capabilities
maxsa.h Bos/Goffe Simulated Annealing
msvar Krolzig Markov switching (outdated)
oxutils.h Bos Some convenient utilities (∗)
oxdbi Bruche A database independent abstraction

layer for Ox
ssfpack.h Koopman, Shephard, Doornik State space models
... ...and many others
m@ximize Laurent, Urbain Use CML optimisation in OxGauss
oxgauss Doornik Run Gauss code through Ox

I Packages reside either in ox-home/packages, or in a local
packages folder.

I After including the package, the package is supposed to work
seamlessly with Ox

I Easy and clean way of communicating research

10/23

APQE12-4a

Include packages

OxUtils

A package: oxutils

What does ‘seamless’ mean?
Standard situation: What is the size of a matrix I’m using?

main()

{

...

print (rows(mX)| columns(mX));

}

How often would you use this code while debugging?

11/23

APQE12-4a

Include packages

OxUtils

A package: oxutils II

Alternative: Use a package with some extra functions, not
previously available

#include <packages/oxutils/oxutils.h>

main()

{

...

print (size(mX));

}

Check manual
<ox-home>/packages/oxutils/doc/oxutils.html

Other routines I use plenty:
info Measure time an iteration takes, time until end of program
TrackRoutine Routine to profile your program
printtex Replacement for print, outputting in LATEX format
ReadArg Read arguments from command line
setseed Reset the random seed, psuedo-randomly

12/23

APQE12-4a

Include packages

OxUtils

A package: oxutils III
(From tomorrow’s slides on speed)
Use TrackTime("concat") to profile a piece of code, get a report
using TrackReport()

#include <packages/oxutils/oxutils.h>

main()

{

decl iN, iK, mX, j;

iN= 1000; // Size of matrix

iK= 100;

TrackTime("concat");

mX= <>;

for (j= 0; j < iN; ++j)

mX|= rann(1, iK);

TrackTime("predefined");

mX= zeros(iN, iK);

for (j= 0; j < iN; ++j)

mX[j][]= rann(1, iK);

TrackTime (-1);

TrackReport ();

}

Output:

Ox Professional version 6.00 (Linux_64/MT)

Time spent in routines

concat 2.42 0.99

predefined 0.02 0.01

Total: 2.44

13/23

APQE12-4a

Magic numbers

Magic numbers and declarations

Magic numbers:

I Those numbers/strings/settings defining what your program
will do

I Might be changed regularly (testing different sample sizes,
regressors etc.)

Ugly solution: Change program
Better solutions:

1. Specify them ‘outside’ program?

2. Specify them on command line

14/23

APQE12-4a

Declaration files

Include

Enlarging the capabilities of ox beyond oxstd.h capabilities: Either

#include <oxprob.h>

(to include the mentioned file literally within the program at that
point, and will be compiled in), or

#import <maximize>

(to import the code when needed; pre-compiled code is used when
available)
You can also include a declaration file:

#include "simox.dec"

with special settings for your program.

15/23

APQE12-4a

Declaration files

Declaration file I

Remember previous exercise: Run with n = 100, run with
n = 1000, run with n = 10000 etc.
Options:

1. Build program very general, including a loop over different
values of n

2. Build a general program for one value of n; indicate the value
to use in a declaration file

3. Possibly allow settings to be changed on the command line
oxl lrdecl n 50 base thisversion

e.g. using the ReadArg statement from OxUtils

16/23

APQE12-4a

Declaration files

Using a declaration file
Wouldn’t it be useful to have

Listing 1: stack/eststack.dec
/*

** EstStack.dec

**

** Purpose:

** Contain definitions for estimating stack -loss data

**

** Date:

** 18/9/06

**

** Author:

** Charles Bos

*/

static decl g_sData= "data/stackloss.in7";

static decl g_sYVar= "StackLoss";

static decl g_asXVar= {"AirFlow", "WaterTemperature", "AcidConcentration"};

Use fewer X -vars: Change array here, leave program untouched
Use different data set: Change g_sData and variable names, leave
program untouched
⇒ Clean, touch program to change computation, put settings
aside in separate file. 17/23

APQE12-4a

Declaration files

Prepare data set

Listing 2: stack/loadstack.ox
main()

{

decl mX, asNames;

mX= loadmat("data/stackloss.mat"); // Read the data into rows

mX= mX|1; // Add in a constant

asNames= {"AirFlow", "WaterTemperature", "AcidConcentration",

"StackLoss", "Constant"};

savemat("data/stackloss.in7", mX’, asNames); // Save data in columns

print ("%r", asNames , meanr(mX)∼varr(mX)); // Check data

}

to reload it in estimation program with

Listing 3: stack/eststack ols.ox
InitData(const avY , const amX , const sYVar , const asXVar , const sData)

{

decl db;

db= new Database ();

db.LoadIn7(sData); // Read database

avY [0]= db.GetVar(sYVar); // Extract Y from database

amX [0]= db.GetVar(asXVar); // Extract Xs from database

delete db;

return (sizerc(avY [0]) > 0) && (sizerc(amX [0]) > 0);

}

18/23

APQE12-4a

Declaration files

Using the declarations

Initialise your settings in a separate routine, reading out the
declaration file, e.g.

Listing 4: stack/eststack ols.ox
Initialise(const asYVar , const aasXVar , const asData)

{

asData [0]= g_sData;

asYVar [0]= g_sYVar;

aasXVar [0]= g_asXVar;

}

Preferably: Touch globals as little as possible, in few places.

Is this the only way of specifying the settings? No...

19/23

APQE12-4a

Declaration files

From the manual of OxUtils (dd 14/9/07)

20/23

APQE12-4a

Alternative: Command line arguments

Using ReadArg/ReadArgUsed

Listing 5: stack/eststack ols.ox
Initialise(const asYVar , const aasXVar , const asData)

{

...

ReadArg(asData , "data", -1); // Read string with data file

ReadArg(asYVar , "y", -1); // Read string with y-variable

ReadArg(aasXVar , "x", -5); // Read array of strings with x-variable

ReadArgUsed (); // Show the arguments

}

Call Ox from command line using
oxl eststack_ols data data/gnp.in7 y GNP x Constant IP

(if Ox installed within the path) or use OxRun to indicate the
parameters.

21/23

APQE12-4a

Graphics

A package: OxDraw (or GnuDraw...)

Ox graphics are displayed within OxMetrics. Needs the professional
version for Windows.

Alternatively, use GnuDraw: Displays graphics in GnuPlot on
Windows, OSX, Unix. Compatible in usage, easy to switch.

Listing 6: stack/drawstack.ox
#include <oxdraw.h>

// #include <packages/gnudraw/gnudraw.h> // Alternatively

// Draw stackloss regressors on Y, stackloss itself on X axis

DrawXMatrix (0, mX’, asXVar , vY’, sYVar , 1, 2);

SaveDrawWindow("graphs/stackloss.eps");

ShowDrawWindow ();

From the manual:
DrawXMatrix(const iArea , const mYt , const asY , const vX, const sX, ...);

DrawXMatrix(const iArea , const mYt , const asY , const vX,

const sX , const iSymbol , const iIndex);

22/23

APQE12-4a

Graphics

OxDraw (or GnuDraw...) II
I Graphing appears in graphing area, first argument
I Draws rows at a time
I Puts in a label. For multiple Y-values, give an array of labels

{"yHat", "y", "cons"}

I Can draw XY data, time series data, densities, QQ-plots etc.
I Takes extra arguments specifying line types, colours etc.
I After drawing the graph, and before showing it, the last

graphing command can be adjusted using DrawAdjust(...)

I For daily time series data, use e.g.
DrawTMatrix(iArea, mY, asYVar, vDates, 0, 0);

I Save the graphics in eps, pdf or gwg format (oxdraw), or also
plb, png, tex and others (gnudraw)

I Can show the graph on the screen (professional version of Ox)
I Close the graph if necessary before continuing

23/23

	Outline
	Include packages
	
	
	

	Magic numbers
	Declaration files
	Alternative: Command line arguments
	Graphics

