
APQE12-Syntax

Advanced Programming in Quantitative
Economics

Introduction, structure, and advanced programming techniques

Charles S. Bos

VU University Amsterdam

c.s.bos@vu.nl

20 – 24 August 2012, Aarhus, Denmark

1/40

APQE12-Syntax

Syntax frames

Below a series of frames on syntax in Ox.
Read them through, try out in small programs if you understand
the meaning.

2/40

APQE12-Syntax

Getting started

Chapter 1: Getting started
Exercise:

1. Copy the file <ox-home>/samples/myfirst.ox to your
personal directory.

2. Open the file in OxEdit (e.g. Windows Explorer, walk there,
right mouse button, Send To - OxEdit)

3. Run the program (through Modules - Run - Ox)
(If there is no Ox option under the Run menu, load the .tool file from the students directory, using Tools -

Add/remove modules - Load from)

Output

Ox version 5.10 (Linux_64/MT) (C) J.A. Doornik , 1994 -2008

two matrices

2.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

0.0000 0.0000 0.0000

1.0000 1.0000 1.0000

3/40

APQE12-Syntax

Getting started

Using OxEdit
One tab has program
Running the program puts output in separate file/sheet
Errors in code can appear in output file
Workspace indicates opened files

4/40

APQE12-Syntax

Getting started

Type of errors
1. Compilation errors: Like the above, error in the syntax of Ox

Listing 1: myfirst err.ox
print "two matrices", m1, m2);

// gives compile -time error

Ox version 5.10 (Linux_64/MT) (C) J.A. Doornik , 1994 -2008

myfirst_err.ox (12): ’;’ expected but found ’<string >’

myfirst_err.ox (12): ’;’ expected but found ’)’

myfirst_err.ox (12): ’)’ out of place

2. Runtime errors: Impossible computations or commands

Listing 2: myfirst err.ox
print ("product of two matrices", m1 * m2);

// gives run -time error

Ox version 5.10 (Linux_64/MT) (C) J.A. Doornik , 1994 -2008

...

Runtime error: ’matrix [3][3] * matrix [2][3] ’ bad operand

Runtime error occurred in main (14), call trace:

myfirst_err.ox (14): main

One error can lead to multiple messages: Start solving first in list.
5/40

APQE12-Syntax

Getting started

Chapter 2: Syntax - Comments

/* This is standard comment ,

which /* may be nested */.

*/

decl x; // declare the variable x

Use them well, use them extensively, use them consistently

6/40

APQE12-Syntax

Getting started

/*

** olsc(const mY , const mX , const amB)

**

** Purpose:

** Performs OLS , expecting the data in columns.

**

** Inputs:

** mY iT x iN matrix of regressors Y

** mX iT x iK matrix of explanatory variables X

**

** Outputs:

** amB address of iK x iN matrix with iN sets of OLS coefficients

**

** Return value:

** integer , 1: success , 2: rescaling advised ,

** -1: X’X is singular , -2: combines 2 and -1.

**

** Example:

** ir = olsc(mY , mX , &mB);

**

** Last changed

** 21 -04 -96 (Marius Ooms): made documentation

** 06 -08 -09 (Charles Bos): adapted documentation

*/

Use explanation, consistently, before every function, detailing
name, purpose, inputs, outputs, return value (and possibly date,
author, once per file)

7/40

APQE12-Syntax

Getting started

Program layout
A minimal complete program is:

Listing 3: oxtut2b.ox
#include <oxstd.h>

main()

{

println("Hello world");

}

Contains:

1. Include statement, to define all standard functions in Ox;
between < and > to indicate oxstd.h is an intrinsic part of
Ox

2. One function header, called main, taking no arguments ()

3. Function body for main(), enclosed in {}, with a println

statement

Note: Syntax terribly similar to C or Java.
8/40

APQE12-Syntax

Getting started

Statements
Listing 4: oxtut2c-hun.ox

#include <oxstd.h>

main()

{

decl iN, dSigma , mX, vBeta , vEps;

iN = 4;

dSigma = 0.25;

mX = 1 ∼ ranu(iN , 2);

vBeta = <1; 2; 3>;

vEps = dSigma * rann(iN, 1);

print("x", mX, "beta", vBeta , "epsilon", vEps);

}

(note: Stick to Hungarian, don’t follow the Introduction to Ox
literally here)

I Declaration: Automatic typing
I Assignment: Integer, double, matrix-function,

matrix-constant, function result.
I Print statement

9/40

APQE12-Syntax

Getting started

Identifiers
Identifiers: All names of variables, constants and functions

1. Case sensitive

2. Distinct between blocks of the program; local declaration can
overrule global declaration

3. Contain [A-Z], [a-z], [0-9], [], and start with a letter.

4. Do use sensible names; use Hungarian notation for your own
sake

I <1, 2, 3> creates a row vector

I <1.1; 2.2; 3.3> creates a column vector

I <0, 1, 2; 3, 4, 5> creates a 2 × 3 matrix

I <1:4> is the same matrix as <1, 2, 3, 4>

I You cannot combine a matrix constant with a variable:
<1, 2, dSigma> leads to a compilation error

10/40

APQE12-Syntax

Getting started

Matrix creation
I Assign a matrix constant mX= <1, 2>;
I Assign another matrix or function of matrices mX= mY + mZ;
I Assign the result of a standard function,

mX= unit(2); mY= zeros(2, 6); mZ= range(0, 1, .05);
I Concatenate other elements

mX= 1~mY; mZ= mX|mY, mY= (0~1)|(2~3);

Check that the matrices ‘fit’ when you concatenate or sum.
Scalars fit everywhere.

Warning: Concatenating matrices is (relatively) slow, don’t do it
within a loop. Compare:

Listing 5: inefficient
mX= <>;

for (i= 0; i < 1000; ++i)

// Concatenate random numbers

mX|= rann(1, 5);

Listing 6: efficient
mX= zeros (1000, 5);

for (i= 0; i < 1000; ++i)

// Place random numbers

mX[i][]= rann(1, 5);

11/40

APQE12-Syntax

Getting started

Simple functions
The most simple Ox function has no arguments, and returns no
value. The syntax is:
function name ()
{

statements
}

For example:

Listing 7: func-sometext.ox
#include <oxstd.h>

sometext ()

{

print("Some text\n");

}

main()

{

sometext ();

}

12/40

APQE12-Syntax

Getting started

Function arguments
I Each function can take one or more arguments.

I [Each argument can be declared const, or non-constant. For
non-constant arguments, Ox copies the value of the argument
internally, and hence it is slower than using const arguments.]

I Always declare your arguments to be const.
I (The last argument may be a set of three dots, ..., indicate a

variable number of arguments. Advanced)

Listing 8: oxtut2d.ox
#include <oxstd.h>

dimensions(const mX)

{

println("the argument has ",

rows(mX), " rows");

}

main()

{

dimensions(zeros(40, 5));

}
13/40

APQE12-Syntax

Getting started

Forward function declarations (ugly...)

Ox can use a function only when it is known, or at least when the
calling sequence is known. Hence either

1. Put the functions before the main() routine

2. Put the function after the main() routine, and use a forward
declaration, putting the function heading with a semicolon up
front.

MyOls(const mY , const mX); // forward declaration

main()

{

// Now MyOls may be used here

}

MyOls(const mY , const mX)

{

// Specification of MyOls

}

The header files (e.g. oxstd.h) mainly list all the function
declarations together, whereas the source code resides elsewhere.

14/40

APQE12-Syntax

Getting started

Returning a value

The syntax of the return statement is:
return return value ;

Or, to exit from a function without a return value:
return;

You may exit from a function at the end, or also at an earlier
stage; remaining commands are not executed.
If you exit at the end, and do not want to return anything, return
statement is not needed.

15/40

APQE12-Syntax

Getting started

Multiple returns

Multiple values can be returned as an array:

func()

{

return { mA, sB, vC };

}

which can then be assigned as follows:

[mX , sY , vZ] = func ();

Note how the names within the routine should match, and the
names outside the routine (e.g. in the main() routine) should
match; what is called mX in main() can be called mA in func.

16/40

APQE12-Syntax

Getting started

Returning values through arguments
Quite often more convenient to call a routine such that an
argument can get changed, e.g.

ir= MyOlsc(vY, mX, &vBeta);

I This call passes an address of vBeta to MyOlsc

I The address itself is not changed in MyOlsc

I Only what is at the address [color of building], is changed

Listing 9: myolsc.ox
MyOlsc(const vY , const mX, const avBeta)

{

// Adapt the value at the address avBeta , its first array value

avBeta [0]= invertsym(mX’mX)*mX’vY;

return 1;

}

17/40

APQE12-Syntax

Getting started

Checking arguments

Listing 10: oxtut2g hun.ox
#include <oxstd.h>

test1(iX) // no const , because x will be changed

{

iX = 1;

println("in test1: x=", iX);

}

test2(const aiX)

{

// Change value AT address , not the address itself

aiX [0] = 2;

println("in test2: x=", aiX [0]);

}

main()

{

decl iX = 10;

println("x = ", iX);

test1(iX); // pass x

println("x = ", iX);

test2(&iX); // pass address of x

println("x = ", iX);

}

18/40

APQE12-Syntax

Getting started

Indexing

All items with multiple components can be indexed.

Note that indexing starts at 0, as in C/C++

I mX[0][1]: Element in the first row, second column of matrix
mX

I mX[][i]: All elements of column i + 1

I mX[3:4][i:j]: The submatrix from rows 4-5 and columns
i + 1 to j + 1.

I mX[:2][]: The first three rows of the matrix

I mX[miI][miJ]: Advanced: The cross-section of rows with
indices in miI and columns with indices in miJ are given.

19/40

APQE12-Syntax

Getting started

Indexing

All items with multiple components can be indexed.

Note that indexing starts at 0, as in C/C++

I mX[0][1]: Element in the first row, second column of matrix
mX

I mX[][i]: All elements of column i + 1

I mX[3:4][i:j]: The submatrix from rows 4-5 and columns
i + 1 to j + 1.

I mX[:2][]: The first three rows of the matrix

I mX[miI][miJ]: Advanced: The cross-section of rows with
indices in miI and columns with indices in miJ are given.

19/40

APQE12-Syntax

Getting started

Indexing

All items with multiple components can be indexed.

Note that indexing starts at 0, as in C/C++

I mX[0][1]: Element in the first row, second column of matrix
mX

I mX[][i]: All elements of column i + 1

I mX[3:4][i:j]: The submatrix from rows 4-5 and columns
i + 1 to j + 1.

I mX[:2][]: The first three rows of the matrix

I mX[miI][miJ]: Advanced: The cross-section of rows with
indices in miI and columns with indices in miJ are given.

19/40

APQE12-Syntax

Getting started

Indexing

All items with multiple components can be indexed.

Note that indexing starts at 0, as in C/C++

I mX[0][1]: Element in the first row, second column of matrix
mX

I mX[][i]: All elements of column i + 1

I mX[3:4][i:j]: The submatrix from rows 4-5 and columns
i + 1 to j + 1.

I mX[:2][]: The first three rows of the matrix

I mX[miI][miJ]: Advanced: The cross-section of rows with
indices in miI and columns with indices in miJ are given.

19/40

APQE12-Syntax

Getting started

Indexing

All items with multiple components can be indexed.

Note that indexing starts at 0, as in C/C++

I mX[0][1]: Element in the first row, second column of matrix
mX

I mX[][i]: All elements of column i + 1

I mX[3:4][i:j]: The submatrix from rows 4-5 and columns
i + 1 to j + 1.

I mX[:2][]: The first three rows of the matrix

I mX[miI][miJ]: Advanced: The cross-section of rows with
indices in miI and columns with indices in miJ are given.

19/40

APQE12-Syntax

Getting started

Indexing II

Other indexing

I sName[3:6]: Letters 4-7 of a string

I sName[3]: The (integer) ASCII value of letter 4 of a string!

I avX[2]: Element 3 of an array; according to the Hungarian
notation of the name, this seems to be a vector.

I amX[2][0][1]: Element in the first row, second column, of
the matrix at element 3 of the array. Matrices are
2-dimensional, further dimensions implemented as arrays.

20/40

APQE12-Syntax

Getting started

Indexing II

Other indexing

I sName[3:6]: Letters 4-7 of a string

I sName[3]: The (integer) ASCII value of letter 4 of a string!

I avX[2]: Element 3 of an array; according to the Hungarian
notation of the name, this seems to be a vector.

I amX[2][0][1]: Element in the first row, second column, of
the matrix at element 3 of the array. Matrices are
2-dimensional, further dimensions implemented as arrays.

20/40

APQE12-Syntax

Getting started

Indexing II

Other indexing

I sName[3:6]: Letters 4-7 of a string

I sName[3]: The (integer) ASCII value of letter 4 of a string!

I avX[2]: Element 3 of an array; according to the Hungarian
notation of the name, this seems to be a vector.

I amX[2][0][1]: Element in the first row, second column, of
the matrix at element 3 of the array. Matrices are
2-dimensional, further dimensions implemented as arrays.

20/40

APQE12-Syntax

Getting started

Indexing II

Other indexing

I sName[3:6]: Letters 4-7 of a string

I sName[3]: The (integer) ASCII value of letter 4 of a string!

I avX[2]: Element 3 of an array; according to the Hungarian
notation of the name, this seems to be a vector.

I amX[2][0][1]: Element in the first row, second column, of
the matrix at element 3 of the array. Matrices are
2-dimensional, further dimensions implemented as arrays.

20/40

APQE12-Syntax

Getting started

Operators

operator operation

’ transpose, m × n m × k n × k A′b
^ (matrix) power m ×m 1× 1 m ×m Ab

* (matrix) multiplication n × k k ×m n × k AB
/ (matrix) division m × n p × n p ×m AB−1

** (matrix) Kronecker product m × n p × q mp × nq aijB
+ addition m × n m × n m × n A+ B
- subtraction m × n m × n m × n A− B
~ horizontal concatenation m × n m × k m × n + k [A B]
| vertical concatenation m × n k × n m + k × n [A;B]

.^ element-by-element power m × n 1× 1 m × n abij

.* element-by-element multiplication m × n m × n m × n aijbij

./ element-by-element division m × n m × n m × n aij/bij

21/40

APQE12-Syntax

Getting started

Operators: Special cases

I A scalar combines with everything. Correct is 1 mX

(concatenate a vector of ones with mX), incorrect is <1> mX

(unless mX has one row; it results in a warning that the
matrix is padded with zeros to make things fit).

I Adding (or subtracting) a row and column vector is correct:

(
x0 x1

)
+

 y0

y1

y2

 =

 x0 + y0 x1 + y0

x0 + y1 x1 + y1

x0 + y2 x1 + y2

 .

22/40

APQE12-Syntax

Getting started

Relational and logical operators

Comparison can be done in two ways

I Using the standard operators: Results in one, scalar, outcome,
either TRUE≡ 1 or FALSE≡ 0. Note that e.g. mX > mY is true
only when all elements of mX are larger than the corresponding
elements of mY

I Dot-version: Using element-by-element operators results in a
matrix filled with 0’s and 1’s.

Relational operators
operator dot-version operation

< .< less than
> .> greater than
<= .<= less than or equal to
=> .=> equal or greater than
== .== is equal
!= .!= is not equal

Logical operators
operator dot-version operation

&& .&& logical-and
|| .|| logical-or

23/40

APQE12-Syntax

Getting started

Comments on operators

Question

If (mX < mY) = FALSE, then what is the outcome of the
comparison (mX >= mY)?

Boolean shortcut
If an expression involves several logical operators after each other,
evaluation will stop as soon as the final result is known. For
example in (1 || checkval(mX)) the function checkval is
never called, because the result will be true regardless of its
outcome. This is called a boolean shortcut.

24/40

APQE12-Syntax

Getting started

Assignments and combinations

Assignment is also an operator, i.e., an assignment ‘leaves a value’
which can be used in further assignments:

decl x1, x2, x3, x4;

x1= 0; x2= 0; x3= 0; x4= 0;

// or more concisely

x1= x2= x3= x4= 0;

Some others:
x1+= 2; x4/= (x1+x2);

x2 -= x1; x1∼= x2;

x3*= 5; x4|= x3;

++x1; --x2;

x1++; x2++;

25/40

APQE12-Syntax

Getting started

Quiz-question: 5-minute exercise

Check in a small program the difference between ++x1 and x1++.

Who is the first to find it?

26/40

APQE12-Syntax

Getting started

Conditional assignment

Advanced, but useful shortcut

Listing 11: oxcond.ox
if (dX > 0)

dY = 1;

else

dY = -1;

// is equivalent to

dY= (dX > 0) ? 1 : -1;

Can also be done element-by-element, i.e.

mY= (mX .> 0) .? 1 .: -1;

would create a matrix mY of the same size of mX, containing 1, -1
according to the sign of mX.
Very useful in creating dummies, think of probit models.

27/40

APQE12-Syntax

Getting started

Combining assignments: Comma operator (ugly...)

One statement runs from a ; to the next ;.
One statement may contain multiple assignments, split by the
comma operator:

i= 1, k=2;

You might just as well put

i= 1; k=2;

in most situations; using the comma operator is ugly in most
situations. A possible exception is in the initialisation of a for-loop:

decl i, k;

for (i= 0, k= 1; i < 5; i += 2)

print ("i= ", i, " k= ", k);

// Easier to read is the following

k= 1;

for (i= 0; i < 5; i += 2)

print ("i= ", i, " k= ", k);

28/40

APQE12-Syntax

Getting started

Operator precedence

See table 3.1 in the introduction, of the web-page on your
computer.
Be careful at first, use parentheses to make sure.

29/40

APQE12-Syntax

Getting started

For-loops
At a later stage, we discuss looping constructs in more detail. For
the exercise, you need the for-loop.
Syntax:
for (init_expr; test_expr ; increment_expr)

statement

Steps in the for-loop are

1. Initialise, executing the init_expr
2. If the test_expr is true

2.1 execute the statement,
2.2 execute the increment_expr, and go to 2.

3. Continue with first statement after the loop.

The statement can either be a singular statement, e.g.

dX= rann(1, 5);

or a compound statement, blocking together a group of statements
within curly parentheses { }.

30/40

APQE12-Syntax

Getting started

Example for-loop

Listing 12: oxforloop.ox
k= 1;

for (i= 0; i < 5; ++i)

{

k*= 2;

println ("i= ", i, " k= ", k);

}

What would be the output?

31/40

APQE12-Syntax

Getting started

Loops

Loop: For

See earlier frames. More extensive example

Listing 13: oxforloop ext.ox
#include <oxstd.h>

main()

{

decl i, k;

for (i= 0, k= 1; (i < 5) && (k < 7); ++i, k*= 2)

println ("i= ", i, " k= ", k);

...

}

The initialisation and increment statements can be split into many
segments separated by comma’s; the test statement can be a
compounded test.
For your own sake: Don’t follow the example, keep the loop
simple, e.g. use a while-loop instead.

32/40

APQE12-Syntax

Getting started

Loops

Loop: While

Listing 14: oxforloop ext.ox
println ("With a while -loop");

i= 0; k= 1;

while ((i < 5) && (k < 7))

{

println ("i= ", i, " k= ", k);

++i;

k*= 2;

}

or, to run the loop at least once:

Listing 15: oxforloop ext.ox
println ("With a do -while -loop");

i= 0; k= 1;

do

{

println ("i= ", i, " k= ", k);

++i;

k*= 2;

}

while ((i < 5) && (k < 7));

33/40

APQE12-Syntax

Getting started

Conditional statements

Conditional statements: If

if (condition)

statement

else if (condition)

statement

else

statement

A condition evaluating to a non-zero value is considered true. For
a matrix, only if the full matrix is FALSE (i.e. 0), then the result is
considered FALSE. Any non-zero element makes it true.
Note that FALSE = 0, TRUE = 1, and true is any non-zero value

34/40

APQE12-Syntax

Getting started

Conditional statements

Conditional statements: Case

Alternative way, if you know what values i can take on:

Listing 16: oxswitch.ox
switch_single (i)

{

case 0:

println ("zero"); // Single statement

case 1:

{

println ("one"); // Single compound statement

println ("So I said , one ...");

}

default:

println ("something else");

}

35/40

APQE12-Syntax

Getting started

Conditional statements

Conditional statements: Assignment

Also possible:

A= Condition .? Value if true .: Value if false

Listing 17: oxcond.ox
dY= (dX > 0) ? 1 : -1; // One check only , scalar

mY= (mX .> 0) .? 1 .: -1; // Multiple elements at once

Very useful in creating dummies, think of probit models.

36/40

APQE12-Syntax

Getting started

Missings

Further topics: NaN
Not a Number, or NaN for short is the missing value which is
supported by computer hardware.

I Use .NaN to represent the missing value in Ox code.
I In a matrix constant, you may use a dot to represent a NaN.
I Or use the predefined constant M NAN (defined in oxfloat.h).
I The format used when printing output is .NaN.

#include <oxfloat.h> // defines M_NAN

main()

{

decl mX, d1, d2;

mX = < . >; d1 = .NaN; d2 = M_NAN;

print(mX + 1, d1 == .NaN , " ", d2 / 2);

}

Any computation involving a NaN results in a NaN, so in this
example d2 / 2 is also .NaN. Comparison is allowed and d1 ==

.NaN evaluates to one (so is TRUE).
Preferably use ismissing(d1) or isdotmissing(mX) instead.

37/40

APQE12-Syntax

Getting started

Missings

Further topics: NaN II

Functions operating with missings:

I deleter(mX): deletes all rows which have a NaN,

I selectr(mX): selects all rows which have a NaN,

I isdotnan(mX): returns matrix of 0’s and 1’s: 1 if the element
is a NaN, 0 otherwise,

I isnan(mX): returns 1 if any element is a NaN, 0 otherwise.

I isdotmissing(mX): returns matrix of 0’s and 1’s: 1 if the
element is a NaN or ± infinity, i.e. M_NAN, M_INF or
M_INF_NEG, 0 otherwise.

I ismissing(mX): returns 1 if any element is a NaN or ±
infinity, i.e. M_NAN, M_INF or M_INF_NEG, 0 otherwise.

38/40

APQE12-Syntax

Getting started

Missings

Some constants

Using #include <oxfloat.h> delivers the constants

M_PI π
M_2PI 2π
M_PI_2 π/2
M_1_PI 1/π
M_SQRT2PI

√
2π

M_NAN Missing, test using isnan/ismissing
M_INF ∞, test using isdotinf/ismissing
M_INF_NEG −∞, test using isdotinf/ismissing

To exit Ox before reaching the end of the program, use

exit(iErr);

where iErr is an integer, the exit code Ox will return to the
operating system.

39/40

APQE12-Syntax

Getting started

Scope

Further topics: Scope
Any variable is available only within the block in which it is
declared.

static decl s_vY; // Available throughout this file

fnPrint(const mX)

{

decl vY; // Only available in fnPrint () block

vY= 4;

print ("vY: ", vY, ", Static s_vY: ", s_vY , ", mX: ", mX);

}

main()

{

decl vY; // Only available in main () block

vY= 6;

s_vY= 2; // Fill global variable

fnPrint(vY);

}

Use static variables only when absolutely needed; there are cases
where we cannot escape it.
Note: Ugly, confusing, incorrect use of Hungarian notation (where?)!

40/40

	Getting started
	Loops
	Conditional statements
	Missings
	Scope

