
PPEctr

Principles of Programming in Econometrics
Introduction, structure, and advanced programming techniques

Charles S. Bos

Vrije Universiteit Amsterdam
Tinbergen Institute

c.s.bos@vu.nl

August 2023 – Version Python
Exercises

Compilation: August 31, 2023

1/47

PPEctr

Afternoon Day 0

Afternoon session

Topics:

▶ Checking variables and functions

▶ Implementing Backsubstitution

▶ Secret message (if time permits, should be easy)

2/47

PPEctr

Get started: Assigning variables

Get started

▶ Log in using your vunet-ID (or use your laptop, with
Anaconda installed)

▶ Create a directory for this course on the network drive, e.g.
h:\ppectr\

▶ Unpack the files from lists py.zip from Canvas into your
h:\ppectr\lists_py

▶ Create a directory for this session, h:\ppectr\pp0b, and
within it one for the first exercise, h:\ppectr\pp0b\assign

▶ Copy a version of h:\ppectr\lists\empty.py to e.g.
h:\ppectr\pp0b\assign\vars.py, and edit it to ... start
testing variables

3/47

PPEctr

Get started: Assigning variables

Get Started: vars.py

Open (your newly created) vars.py from Spyder, such that you
can

▶ Assign/print a string
Hint: sS= ’Hello’; print (’My string is sS=’, sS)

▶ Assign/print a double/integer/boolean

▶ Assign/print a one/two-dimensional list

▶ Assign the list to a numpy ndarray Hint: mX= np.array(lX)

▶ Assign/print a function

PS: You might find it easy to first try things in IPython, before typing

the commands into the program vars.py

4/47

PPEctr

Get started: Assigning variables

Get started: func.py

Edit a new file func.py, such that you can start testing functions:

▶ Create a function to print an argument
Hint: sS= ’Hello’; PrintMe (sS)

▶ Create a function to assign one value through a return

statement

▶ Same thing, with two values: Can you ‘catch’ the two values
from the calling function?

5/47

PPEctr

Get started: Assigning variables

Get started: argument.py

Edit a new file argument.py, such that you can start testing
functions changing arguments.
Create a main and a function.

1. Pass a double to the function, return the square
Hint: return math.pow(dX, 2). What is the difference with return dX ** 2?

2. Try to change the argument itself within the function,
squaring it. Does this work? (Answer: No... Why not?)
Hint: dX= 5.5; SquareMeChangeArgument(dX)

3. Pass a list with a single double (lX= [5.5]) to the function,
pass the square back through changing the argument.
Hint: lX= [5.5]; SquareMeChangeList(lX)

6/47

PPEctr

Get started: Assigning variables

Get started: argument.py II

4. Pass a string, e.g. sX= ’Aargus’; to the function. Can you
change only the “g” to a “h”? (Answer: No... Why not?)

5. Then pass a list with a single string lsX= [’Aargus’] to the
function. Now you should be able to change letter
lsX[0][3], how?

6. Pass the list lX= [’Aargus’, 5, [2.4, 4.6]] to the
function, change the 5 to a 7, the 4.6 to its square, and the
“g” to a “h”.

Ensure you fully understand the list/mutable thing here... Talk to
the tutor if not.

7/47

PPEctr

Backsubstitution

BS: Print a matrix

Write a Python program which

▶ contains all necessary explanations

▶ declares a matrix and a vector, giving them the values

A =

6.0 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

 , b =

16.0
−6
−9
−3

▶ prints them, with output on screen as to which is which

▶ prints the maximum element of A, and the minimum of b.

▶ you save as bs0.py.

8/47

PPEctr

Backsubstitution

BS: Backsubstitution

Solve the system Ax = b for the matrices you defined before. As a
hint, the way to solve it is

xn = bn/ann, xi =

bi −
∑
j>i

aijxj

 /aii , i = n − 1, .., 1

Think about it before you begin: It might be easier to first define

s =
∑
j>i

aijxj

and for all xn, . . . , x1 use the same formula for solving.

9/47

PPEctr

Backsubstitution

BS: BS function

1. For this purpose, maybe start with a simple bs1for.py where
you show you can count backwards using a for-loop.

2. Initialise x as a vector of the correct size of zeros (see
np.zeros((iR, iC)), note the tuple in parentheses
indicating the size).
Write bs2solve.py, showing the solution for x . How can
you/the program check that your solution is correct?

3. Take the program e0_elim.py, and add a function vX=

Backsubstition(mA, vB). Make sure the function is
working correctly. How can you test? Save as bs3elim.py.

10/47

https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html

PPEctr

Backsubstitution

BS: Python elements to use?

Useful might be

▶ iK= mA.shape[0]: Never use ’4’, but read off the row-size of
mA instead

▶ Matrix multiplication using NumPy arrays is performed using
e.g. mA @ vX

▶ Calculate s smartly. I can see four different options, where the
simplest uses a simple loop. What are the options using
matrix multiplications?

▶ Print your outcome in matrix format using a DataFrame,
import pandas as pd; print (pd.DataFrame(mRes,

columns=[’A’, ’B’, ’C’]))

11/47

PPEctr

Backsubstitution

Secret

(on purpose, exercise is a bit confuse...)

You are surrounded by spies, and you want to pass the
secret message “This is a secret message” to your compa-
triots. The deal you made with them is that you would add
3 to the ASCII code of each letter, so that ‘A’ becomes
‘D’. What is the message you send to them?

12/47

PPEctr

Backsubstitution

Secret inputs

Inputs:

▶ empty.py (copy to your personal directory, give it another
name)

▶ Check out a for loop (details will follow):

for <element > in <some list/array/string >:

▶ Look up manual at
https://docs.python.org/3.7/

for functions ord() and chr()

▶ Strings can be concatenated using the + symbol, sS=
’a’+’b’

13/47

PPEctr

Backsubstitution

Secret outputs
▶ In groups of two (optionally)

▶ Keep a log-file: What are you trying? (not optionally...)

▶ Intermediate versions of your programs, every serious change,
save a file with extension indicating the time (for instance
myfile_hhmm.py).

▶ Clean out final version

Biggest mistake: Try to work on the exercise at once...

Big bonuspoints: Try to think of simpler exercises, how to test tiny
steps first, eventually combining to the outcome

Biggest bonuspoints: Clean log-file, purposeful search of info, small
tests (with corresponding tiny programs) and clean final version
with sufficient (not too much, not too little either) commenting.

14/47

PPEctr

Hand-in

Hand-in

Handin for today:

▶ Nothing...

Discuss results with tutors, make sure you understand what you
do/do not understand!

15/47

PPEctr

Afternoon Day 1

Afternoon session

Topics:

▶ Regression: Simulate data

▶ Regression: Estimate model

16/47

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen
Target of this exercise is to set up a program for a slightly larger task. The task itself is
not hard, but the idea is to do it in a structured, extensible way.

Target:

▶ Generate 20 observations from y = Xβ + σϵ, with
β = [1; 2; 3],X = [1 u1 u2], ui ∼ U(0, 1), ϵ ∼ N (0, 1), σ = 0.25

▶ Estimate OLS on the model. Initially, estimate only
β̂ = (X ′X)−1X ′y

▶ Provide interesting output

17/47

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen II

Step 1, analyse the exercise:

1. What variables do I need for initial settings (put them close
together, as magic numbers, in main());

2. what separate tasks do I have;

3. hence, what routines could I use;

4. what are inputs and outputs to those routines;

5. what is the final output.

Write, on paper, an indication of the plan for your program!
Check the plan, and especially the magic numbers, with a TA.

18/47

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen III

Step 2, start the programming, but in steps:

1. First write olsgen0.py, containing only the outline of the
program,

2. then olsgen1.py which does the initialisation,

3. when it works move to olsgen2.py which takes an extra
step, etc.

4. ...

19/47

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen IV

For the initialisation, you will need commands like

▶ np.shape(), np.size() for checking how large β is;

▶ np.random.rand() for draws from the uniform random
distribution;

▶ np.random.randn() for draws from the N (0, 1) distribution.
How do you transform to get variance σ2?

▶ Matrix multiplication mX @ vB: What shape would the result
be, if X is an (n × k) matrix, and β an (k × 1)? What if β is
a one dimensional vector, of shape (k,)?

20/47

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.shape.html#numpy.ma.shape
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.size.html
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.rand.html
https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.randn.html

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen V

In Econometrics, the basic estimation method is indeed OLS. Its
main equation comes from

y = Xβ + u,

⇔ X ′y = X ′Xβ + X ′u

⇔ 1

n
X ′y =

1

n
X ′Xβ +

1

n
X ′u ≡ 1

n
X ′X β̂ + 0

⇔ β̂ =

(
1

n
X ′X

)−1 1

n
X ′y = (X ′X)−1X ′y

where the switch to β̂ follows from the assumption that X and u
are unrelated, hence 1

nX
′u ≈ 0 when n → ∞.

21/47

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen VI

To estimate β in your program, you have (at least) three options:

1. using direct matrix multiplication;

2. using your elimination + backsubstitution, noting that

b ≡ X ′y = X ′X β̂ ≡ Ax .

Of course, use the routines from the elim0 exercise, and
yesterdays backsubstitution, here;

3. using a prepackaged function, (see np.linalg.lstsq()).

Write three routines EstimateMM(), EstimateEB(),

EstimatePF(), which implement the three options, and check
that the results indeed are the same.

22/47

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen VII

Eventually we might also be interested in

e = y − X β̂, σ̂2 =
1

n − k
e ′e =

1

n − k

∑
e2i ,

Σ̂ = σ̂2(X ′X)−1, s(β̂) = diag(Σ̂)1/2,

with n and k the size of y and β, respectively. Also the t-statistics,
t = β̂i/s(β̂i), could be of interest.

▶ Build a version of your program which also computes s(β̂)
and the t-value, and outputs this together with β̂.

▶ Try to obtain a nice output routine, using formatted printing.
Hint:

mRes= np.hstack ([vB, vS , vT]) # Or: mRes= np.vstack ([vB , vS , vT]).T ?

print (’Estimation results: ’)

print (pd.DataFrame(mRes , columns =[’b’, ’s(b)’, ’t’]))

23/47

PPEctr

Afternoon Day 1

Exercise: OlsGen

Exercise: OlsGen VI

Useful tricks:

▶ Use dSSR= vE.T@vE for computing the sum of squared
residuals e ′e

▶ To get a list with the (square roots of) the diagonal elements
of the covariance matrix Σ, take a list comprehension, or
(simpler), use np.diagonal()

▶ Other functions you might need: np.linalg.inv(),
np.linalg.lstsq(), np.sqrt().

Q, optional: The exercise is not clear whether to use one- or
two-dimensional vectors for e.g. β and y . What did you do? Can
you create a new version of your program where vY, vB, vE are
two-dimensional instead of one-dimensional vectors (or vice versa)
instead? What changes?

24/47

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt

PPEctr

Afternoon Day 2

Afternoon session

Topics:

▶ Cleaning OLS program

▶ Loops

▶ Bootstrap OLS estimation

▶ Handling data

25/47

PPEctr

Afternoon Day 2

Exercise: Fill

Exercise: Fill
Target of this exercise is to get used to writing functions, to
working with matrices and indexes in a smart manner
Goal:

Fill a matrix X such that

Xij = i × j , i = 1, . . . , n, j = 1, . . . , k

0. Create mX in main(), and fill it here as well

1. Work out a function RetXij(iN, iK), which returns mX

2. Create a matrix of zeros in main(), pass it along to
FillXij(mX), and have it filled there

3. (extra) Create mX in main(), using a list comprehension. Can
you get the final matrix in a single line?

26/47

PPEctr

Afternoon Day 2

Exercise: Fill

Exercise: Fill II
Hints:
▶ You’ll need the zeros((iN, iK)) function from numpy. Note

that it needs an argument shape, which must be a tuple (as
in (iN, iK)) of rows and columns, hence the double
parentheses.

▶ A for-loop looks like
for i in range(iN):

dosomething(i)

▶ In a function, you may indeed alter the contents of existing
arrays (or lists, or other mutable types), but you cannot
change the full variable. (Think hard, what does this indeed

imply? Discuss with TAs?
▶ See the List Comprehensions. Remaining question: How can

you get a double index? How can you move from a list to an
array? How can you reshape into the right size (or do you not
need to)? 27/47

https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

PPEctr

Afternoon Day 2

Exercise: Fill

Exercise: Fill III

Exercise:

▶ Download fill.zip from Canvas – Files

▶ Fill in fill0.py, . . . , fill3.py

and discuss doubts you have left...

28/47

PPEctr

Afternoon Day 2

OLSGen revisited

OLSGen revisited

As a starter: Take a renewed look at your code of yesterday

▶ Do you indeed split out magic numbers, initialisation,
estimation, output, in separate routines

▶ Do the routines have minimal input/output

▶ Is the output of the program clear

▶ Does the program have sufficient commenting?

▶ Do you consistently use Hungarian notation?

▶ Can you move the routines (except for main()) to
lib/incols.py, for clarity? See also stack/stackols3.py.

Finish this, ask a TA to check, discuss what might be done better.

29/47

PPEctr

Afternoon Day 2

OLS SA0

OLS SA0
The file sa0_180827.csv contains monthly data over the period
1920-2018 on the consumer price index of the US (source:
http://data.bls.gov/timeseries/cuur0000sa0).
With this file

1. Read the data, splitting into a vector vDT with the time period
as datetime object, and a vector with the price index, vP

2. Calculate the percentage inflation
yt = 100(log(Pt)− log(Pt−1)

3. Use only data from 1958 onwards
4. Prepare regressors X , containing a constant, 11 dummies for

months Jan-Nov, and dummies taking on the value 1 from
date 1973:7, 1976:7, 1979:1, 1982:7 resp. 1990:1 onwards.

5. Run a regression of y on X
6. Plot the inflation yt together with the prediction ŷt = Xt β̂

against time.
30/47

http://data.bls.gov/timeseries/cuur0000sa0

PPEctr

Afternoon Day 2

OLS SA0

OLS SA0 II

As always:

▶ Think hard on division of tasks in smaller steps

▶ Work in groups of two; use division in smaller steps to try out
things separately

▶ How do you organize data?

31/47

PPEctr

Afternoon Day 2

OLS SA0

OLS SA0 output

OLS results over 727 observations , average y= 0.299731:

BetaHat

Const 0.287291

M2 0.052188

M3 0.088552

M4 0.042134

M5 -0.023780

M6 0.025291

M7 -0.081820

M8 -0.086803

M9 -0.018356

M10 -0.101586

M11 -0.262592

M12 -0.286661

1973/7 0.463860

1976/7 -0.094496

1979/1 0.241878

1982/7 -0.546886

1990/1 -0.096746

32/47

PPEctr

Afternoon Day 2

OLS SA0

OLS SA0 output II

Figure: US Core inflation and prediction, 1958-2018

33/47

PPEctr

Afternoon Day 2

OLS SA0

OLS SA0 hints

Some hints:

▶ Read the csv file into a Pandas DataFrame, with
pd.read csv()

▶ The column vPer= df["Period"].values then contains
strings, in format "1920/1"

▶ Those strings can be pushed into datetime format, using
pd.to datetime(vPer)

▶ The advantage of the datetime format, is that you can
compare a date-time with a string, vI= vDT >= "1958",
resulting in an vector of booleans

▶ You can then index another vector by these booleans, to
extract a subset of a vector/matrix, see topic Boolean index.

▶ . . .

34/47

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html

PPEctr

Afternoon Day 2

OLS SA0

OLS SA0 hints II

Some further hints:

▶ . . .

▶ Or you can selectively set ones, vD[vI]= 1, to create a set of
dummies

▶ For seasonal dummies, indexing with a step may be
convenient. E.g. start with a vector of zeros, then fill
vD[i1::iSeas]= 1 every iSeas’th element with a one,
starting at period i1

▶ You can join matrices together using np.hstack([m1, m2]),
which horizontally concatenates the matrices m1, m2 in the
list [m1, m2].

▶ Use np.linalg.lstsq(mX, vY, rcond=None) for OLS (or
some other option)

35/47

https://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html

PPEctr

Afternoon Day 3

Afternoon session

Topics:

▶ Regression: Maximize likelihood

▶ GARCH-M: Intro and likelihood

36/47

PPEctr

Afternoon Day 3

ML-SA0

ML estimation of regression
Take the regression model,

y = Xβ + ϵ ϵ ∼ N (0, σ2I).

The likelihood of an observation of the data, for a specific vector
of parameters θ = (σ, β), is

et ≡ yt − Xtβ

l(yt ;Xt , θ) =
1√
2πσ2

exp

(
− e2t
2σ2

)
,

or in logarithms

log l(yt ;Xt , θ) = −1

2

(
log 2π + log σ2 +

e2t
σ2

)
.

37/47

PPEctr

Afternoon Day 3

ML-SA0

ML estimation of regression II

The loglikelihood of all observations is

log l(Y ;X , θ) =
∑

log l(yt ;Xt , θ).

Theory (to be explored in later courses) describes that

θ̂ = argmaxθ log l(Y ;X , θ),

Σ(θ̂) =
(
−H(θ̂)

)−1
H(θ̂) =

∂2 log l(Y ;X , θ)

∂θ∂θ′

⌋
θ=θ̂

are the Maximum Likelihood estimators of the model at hand, the
covariance matrix (if the model is correctly specified).
Work on this in steps...

38/47

PPEctr

Afternoon Day 3

ML-SA0

ML Estimation: Steps

Perform, in steps, for instance

1. Prepare data, simulate as before

2. Get the outline of your loglikelihood function. Call it from
main, with a valid vector of parameters, and set the likelihood
value equal to the average of your y ’s.

3. Extract β and σ from the vector of parameters. Print them
separately from the loglikelihood function.

4. Check the value of σ. If negative, maybe set LL=-math.inf,
and get out?

5. Construct a vector vLL of log l(yt ;Xt , θ)’s. Does this work?

39/47

PPEctr

Afternoon Day 3

ML-SA0

ML Estimation: Steps II

...

6. Construct full loglikelihood function. Does the value seem
‘logical’?

7. Write a wrapper function for minimize, where the wrapper
function will return the negative average loglikelihood

8. Run minimize(). What is the result res? Can you extract
the parameters? How do the parameters relate to the OLS
estimators?

40/47

PPEctr

Afternoon Day 3

ML-SA0

ML Estimation: Steps III

...

6. Now combine your code with the SA0 data of yesterday: Can
you obtain the same results as OLS, when linking inflation to
your constant, seasonal dummies, and step functions?

41/47

PPEctr

Afternoon Day 3

ML-SA0

ML: Standard errors
For the standard errors, you had to find

Σ(θ̂) = −H(θ̂)−1

H(θ̂) =
δ2l(Y ; θ)

δθδθ′

⌋
θ=θ̂

Some standard code could look like
res= opt.minimize(AvgNLnLRegrXY , vP0 , args=(vY, mX), method="BFGS")

vP= np.copy(res.x)

mH= hessian_2sided(AvgNLnLRegrXY , vP , vY , mX)

mS2= np.linalg.inv(mH)/iN

vS= np.sqrt(np.diag(mS2))

9. Get the standard errors with it. How do they change if you
only use N = 10 observations?

10. Beautify the output: Get a nice print with the maximum
likelihood you find, the type of convergence, the parameters,
standard errors and t-values

42/47

PPEctr

Afternoon Day 3

ML-SA0

ML estimation GARCH-M

Extend the model to

yt = Xtβ + at at ∼ N (0, σ2
t),

σ2
t+1 = ω + αa2t + δσ2

t , t = 1, . . . ,T − 1,

σ2
1 ≡ ω

1− α− δ
.

Note that loglikelihood now changes to

log l(Y ;X , θ) =
∑

log l(yt ;Xt , θ) = −1

2

∑(
log 2π + log σ2

t +
a2t
σ2
t

)
.

43/47

PPEctr

Afternoon Day 3

ML-SA0

ML estimation GARCH-M

Possible steps:

1. Generate data (yt ,Xt , σ
2
t) from the GARCH-M model, using

e.g. θ = (1, .05, .05, .9), using a single constant in X .

2. Create a function GetGARCH(), which constructs the vector of
variances, given the parameters θ = (β′, ω, α, δ)′ and the data
(y ,X). Can it reconstruct (exactly) the vS2 that was
generated?

3. Build a new AvgLnLiklGARCHM(), using old code for the
regression, and your GetGARCH(), to construct vLL and the
average loglikelihood.

4. Optimise... Maybe compare outcomes of optimisation of
regression only, or of GARCH-M?

5. . . .

44/47

PPEctr

Afternoon Day 3

ML-SA0

ML estimation GARCH-M II

Possible steps:

5. Go back to SA0 data; make a plot of inflation, and of σt , t =
1958:1–2017:7.

6. Extra: Compare the number of function evaluations needed
for each standard model without GARCH, and for model with
GARCH

45/47

PPEctr

Afternoon Day 3

ML-SA0

Possible output

To be added...

46/47

PPEctr

Closing thoughts

Closing thoughts

And so, the course comes to an end...
Please

▶ keep concepts, principles of programming, in mind

▶ structure your programs wisely

On a obligatory (TI/BDS) or voluntary (DHPQRM) basis:

▶ before Friday September 30 2022, 23.59h
▶ hand in your own solution to

1. GARCH-ML problem (similar to OLS exercise, minor
extensions)

2. BinTree problem (relevant to QRM students, nice setting for
others)

(see Canvas for details)

47/47

	Afternoon Day 0
	Get started: Assigning variables
	Backsubstitution
	Hand-in
	Afternoon Day 1
	Exercise: OlsGen

	Afternoon Day 2
	Exercise: Fill
	OLSGen revisited
	OLS SA0

	Afternoon Day 3
	ML-SA0

	Closing thoughts

