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PPEctr

Target

Target of course

▶ Learn

▶ structured

▶ programming

▶ and organisation

▶ (in Python/Julia/Matlab/Ox or other language)

Not only: Learn more syntax... (mostly today)
Remarks:

▶ Structure: Central to this course

▶ Small steps, simplifying tasks

▶ Hopefully resulting in: Robustness!

▶ Efficiency: Not of first interest... (Value of time?)

▶ Language: Theory is language agnostic
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Target

Target of course II

... Or move from
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PPEctr

Target

Target of course II

... Or move from

to
(Maybe discuss at end of first day?...)
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PPEctr

Syntax: Start

Syntax

What is ‘syntax’?

▶ Set of rules

▶ Define how program ‘functions’

▶ Should give clear, non-ambiguous, description of steps taken

▶ Depends on the language

Today:

▶ Learn basic Python syntax

▶ Learn to read manual/web/google for further syntax!
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Syntax: Start

Syntax II

What is not ‘syntax’?

▶ Rule-book on how to program

▶ Choice between packages

▶ Complete overview

For clarity:

▶ We will not cover all of Python

▶ We make a (conservative) choice of packages (numpy, scipy,
pandas, matplotlib)

▶ We focus on structure, principle, guiding thoughts

▶ ... and then you should be able to do the hard work
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https://docs.scipy.org/doc/numpy/reference/
https://docs.scipy.org/doc/scipy/reference/
http://pandas.pydata.org/
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PPEctr

Program

Overview

Principles of Programming in Econometrics

D0: Syntax, example 28 D1: Structure, scope

D2: Numerics, packages D3: Optimisation, speed
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PPEctr

Program

Day 0: Syntax

▶ Introduction

▶ Example: 28

▶ Elements

▶ Main concepts

▶ Closing thoughts

▶ Revisit E0
▶ Practical

▶ Checking variables, types, conversion and functions
▶ Implementing Backsubstitution
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Program

Day 1: Structure

▶ Introduction
▶ Programming in theory
▶ Science, data, hypothesis, model, estimation

▶ Structure & Blocks (Droste)
▶ Further concepts of

▶ Data/Variables/Types
▶ Functions
▶ Scope, globals

▶ Practical
▶ Regression: Simulate data
▶ Regression: Estimate model
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Program

Day 2: Numerics and flow

▶ Numbers and representation

▶ Steps, flow and structure

▶ Floating point numbers

▶ Practical Do’s and Don’ts

▶ Packages

▶ Graphics
▶ Practical

▶ Cleaning OLS program
▶ Loops
▶ Bootstrap OLS estimation
▶ Handling data: Inflation
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Program

Day 3: Optimisation

▶ Optimization (minimize)
▶ Idea behind optimization
▶ Gauss-Newton/Newton-Raphson
▶ Stream/order of function calls

▶ Standard deviations

▶ Restrictions

▶ Speed
▶ Practical

▶ Regression: Maximize likelihood
▶ GARCH-M: Intro and likelihood
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Program

Evaluation

▶ No old-fashioned exam

▶ Range of exercises, to try out during course

▶ Short final exercise (see VU Canvas), obligatory for TI/BDS
(and voluntary for DHPQRM). Hand it in, I’ll mark it
(pass/fail), plus you may receive some comments/hints on
programming style.

Main message: Work for your own interest, later courses will be
simpler if you make good use of this course...
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Day 0

Overview

Principles of Programming in Econometrics

D0: Syntax, example 28 D1: Structure, scope

D2: Numerics, packages D3: Optimisation, speed
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PPEctr

Day 0

Day 0: Syntax

▶ Introduction

▶ Example: 28

▶ Elements

▶ Main concepts

▶ Closing thoughts

▶ Revisit E0
▶ Practical

▶ Checking variables, types, conversion and functions
▶ Implementing Backsubstitution
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Example: 28

Programming by example

Let’s start simple

▶ Example: What is 28?

▶ Goal: Simple situation, program to solve it

▶ Broad concepts, details follow
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PPEctr

Example: 28

Power: Steps

First steps:

▶ Get a first program (pow0.py)

▶ Initialise, provide (incorrect) output (pow1.py)

▶ for-loop (pow2.py)

▶ Introduce function (pow3.py)

▶ Use a while loop (pow4.py)

▶ Recursion (pow5.py)

▶ Check output (pow6.py)
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Example: 28

Power: First program

Listing 1: pow0.py
"""

pow0.py

Purpose:

Calculate 2^8

Version:

0 Outline of a program

Date:

2023/7/29

Author:

Charles Bos

"""

# ###############################

### Imports

# import numpy as np

# ###############################

### main

print (’Hello world’)

To note:

▶ Explanation of program,
in triple quotes """
((docstring))

▶ Comments #

▶ Possible imports

▶ Main code at bottom
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https://numpydoc.readthedocs.io/en/latest/format.html
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Example: 28

Power: Initialise

Listing 2: pow1.py
# Magic numbers

dBase= 2

iC= 8

# Initialisation

dRes= 1

# Estimation

# Not done yet ...

# Output

print (f’The result of {dBase }^{iC}= {dRes}’)

To note:

▶ Each line is a command

▶ Distinction between
‘magics’, ‘initialisation’,
‘estimation’ and ‘output’

▶ Formatted print function
print(f’a= {a}’) is
used, printing value of
elements in {}
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Example: 28

Power: Estimate

Listing 3: pow2.py
# ##########################

### main

# Magic numbers

...

# Estimation

for i in range(iC):

dRes= dRes * dBase

# Output

...

To note:

▶ For loop, counts in extra
variable i

▶ Function range(iStop),
counts from 0, . . . , iStop-1

▶ Executes indented commands
after for i in range(iC):

▶ Mind the : after the for
statement

Intermezzo 1: Check output
Intermezzo 2: Check The for and while loops.

Intermezzo 3: Discuss why the range() function (and indexing, later), is

upper-bound exclusive.
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https://wiki.python.org/moin/ForLoop
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
https://stackoverflow.com/questions/11364533/why-are-slice-and-range-upper-bound-exclusive
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Example: 28

Power: Functions

Listing 4: pow3.py
def Pow(dBase , iPow):

"""

Purpose:

Calculate dBase^iPow

Inputs:

dBase double , base

iPow integer , power

Return value:

dRes

double , dBase^iPow

"""

dRes= 1

for i in range(iPow):

# print (f’i= {i}’)

dRes= dRes * dBase

return dRes

### Main

dRes= Pow(dBase , iC)

To note:

▶ Function has own docstring

▶ Function defines two arguments
dBase, iPow

▶ Function indents one tab
forward

▶ Uses local dRes, i

▶ returns the result

▶ And dRes= Pow(dBase, iC)

catches the result dRes= 256.

▶ Allows to re-use functions for multiple purposes
▶ Could also be called as dRes= Pow(4, 7)
▶ Here, only one output
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Example: 28

Power: While

Listing 5: pow3.py
dRes= 1

for i in range(iC):

dRes= dRes*dBase

Listing 6: pow4.py
dRes= 1

i= 0

while (i < iPow):

dRes= dRes*dBase

i+= 1

To note:
▶ The for i in range(iter) loop corresponds to a while

loop
▶ Look at the order: First init, then check, then action, then

increment, and check again.
▶ The for-loop is slightly simpler, as beforehand the number of

iterations is fixed.
▶ A loop command can be a compound command, multiple

commands all indented equally.
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Example: 28

Power: Recursion

Listing 7: pow5.py
def Pow_Recursion(dBase , iPow):

# print (f’In Pow_Recursion , with iPow= {iPow}’)

if (iPow == 0):

return 1

return dBase * Pow_Recursion(dBase , iPow -1)

To note:

▶ 28 ≡ 2× 27

▶ 20 ≡ 1

▶ Use this in a recursion

▶ New: If statement

Intermezzo: Check Python manual on if statement, or a simpler
Wiki on the same topic.
Q: What is wrong, or maybe just non-robust in this code?

A: Rather use if (iPow <= 0), do not continue for non-positive
iPow!
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https://docs.python.org/3/reference/compound_stmts.html#the-if-statement
https://en.wikibooks.org/wiki/Python_Programming/Conditional_Statements
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Example: 28

Power: Recursion

Listing 8: pow5.py
def Pow_Recursion(dBase , iPow):

# print (f’In Pow_Recursion , with iPow= {iPow}’)

if (iPow == 0):
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return dBase * Pow_Recursion(dBase , iPow -1)

To note:

▶ 28 ≡ 2× 27

▶ 20 ≡ 1

▶ Use this in a recursion

▶ New: If statement

Intermezzo: Check Python manual on if statement, or a simpler
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https://en.wikibooks.org/wiki/Python_Programming/Conditional_Statements
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Example: 28

Power: Check outcome

Always, (always...!) check your outcome

Listing 9: pow6.py
import math

...

# Output

print (f’The result of {dBase }^{iC}=’)

print (f’ - Using Pow (): {Pow(dBase , iC)}’)

print (f’ - Using Pow_Recursion (): {Pow_Recursion(dBase , iC)}’)

print (f’ - Using **: {dBase ** iC}’)

print (f’ - Using math.pow: {math.pow(dBase , iC)}’)

Listing 10: output
The result of 2^8 =

- Using Pow (): 256

- Using Pow_Recursion (): 256

- Using **: 256

- Using math.pow: 256.0
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Example: 28

Power: Check outcome II

To note:

▶ Yes, indeed, Python has (multiple. . . ) power operators readily
available.

▶ Always check for available functions. . .

▶ And carefully check the manual, for difference between x**y,
pow(x,y), math.pow().

Q: And what is this difference between the powers?

A: According to the manual, math.pow() transforms first to
floats, then computes. The others leave integers intact.
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https://docs.python.org/3/library/operator.html#mapping-operators-to-functions
https://docs.python.org/3/library/functions.html#pow
https://docs.python.org/3/library/math.html#math.pow
https://docs.python.org/3/library/math.html#math.pow
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Example: 28

Power: Check outcome II

To note:

▶ Yes, indeed, Python has (multiple. . . ) power operators readily
available.

▶ Always check for available functions. . .

▶ And carefully check the manual, for difference between x**y,
pow(x,y), math.pow().

Q: And what is this difference between the powers?
A: According to the manual, math.pow() transforms first to
floats, then computes. The others leave integers intact.
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https://docs.python.org/3/library/operator.html#mapping-operators-to-functions
https://docs.python.org/3/library/functions.html#pow
https://docs.python.org/3/library/math.html#math.pow
https://docs.python.org/3/library/math.html#math.pow
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Elements

Elements to consider
▶ Comments: # (until end of line)

▶ Docstring: """ Docstring """

▶ import statements: At front of each code file

▶ Spacing: Important for routines/loops/conditional statements

▶ Variables, types and naming (subset):
boolean bX=True

scalar integer iN= 20

scalar double/float dC= 4.5

string sName= ’Beta1’

list lX= [1, 2, 3], lY= [’Hello’, 2, True]

tuple tX= (1, 2, 3)

vector vX= np.array([1, 2, 3, 4])

matrix mX= np.array([[1, 2.5], [3, 4]])

function fnFunc = print
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Elements

Elements: Comments

Use: # (until end of line)

▶ To explain reasoning behind code

▶ . . . but sparingly: Code should be self-explanatory(?)

▶ . . . while maintaining readability: Will you, or someone else,
understand after three yearsmonths?

▶ . . . Hence use for quick additions to code

▶ and . . . for temporarily turning off parts of the code (e.g.,
checks?)

Important, very...
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Elements

Elements: Docstrings
Use:
▶ To explain the functions/modules you write
▶ Either single-line

(‘"""Return the iPow’th power of dBase."""),
▶ or multi-line, after function defintion:

def Pow_Recursion(dBase, iPow):
"""
Purpose:

Calculate dBase^iPow through recursion

Inputs:
dBase double, base
iPow integer, power

Return value:
dRes double, dBase^iPow

"""

▶ . . . and at start of module, explaining
name/purpose/version/date/author

Important, indeed...
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Elements

Elements: Docstrings II

IPython 8.12.0 -- An enhanced Interactive Python. Type ’?’ for help.

In [1]: run pow6
The result of 2^8=

- Using Pow(): 256
- Using Pow_Recursion(): 256
- Using **: 256
- Using math.pow: 256.0

In [2]: ?Pow_Recursion
Signature: Pow_Recursion(dBase, iPow)
Docstring:
Purpose:

Calculate dBase^iPow through recursion

Inputs:
dBase double, base
iPow integer, power

Return value:
dRes double, dBase^iPow

File: ~/vu/ppectr23/lists_py/power/pow6.py
Type: function
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Elements

Elements: Imagine variables

iX= 5

5

dX= 5.5

5.5

sX= 'Beta'

Beta

lX= [1, 2, 3]

1 2 3

mY= [[1, 2, 3], [4, 5, 6]]

1 2 3

4 5 6

Every element has its representation in memory — no magic
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Elements

Try out variables

Listing 11: variables.py
bX= True
type(bX)

iN= 20
type(iN)

dC= 4.5
type(dC)

sX=’Beta1’
type(sX)

lX= [1, 2, 3]
type(lX)

mY= [[1, 2, 3], [4, 5, 6]]
type(mY)

mZ= np.array(mY)
type(mZ)

fnX= print
type(fnX)

rX= range (4)
type(rX)
print (’Range rX= ’, rX)
print (’List of contents of range rX= ’, list(rX))
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Elements

Hungarian notation

Hungarian notation prefixes

prefix type example
i integer iX
b boolean bX
d double dX
m matrix mX
v vector vX
s string sX
fn Function fnX
l list lX
g variable with global scope g mX

Use them everywhere, always.
Possible exception: Counters i, j, k etc.
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Elements

Hungarian notation

Hungarian 2

Python does not force Hungarian notation. Why would you?

▶ Forces you to think: What should each object be?

▶ Improves readability of code

▶ Helps (tremendously) in debugging

Drawbacks:

▶ Python recognizes many different types; in ‘EOR/QRM/PhD’,
not all are useful to track

▶ Hungarian notation best used for ‘intention’: vector vX for
1-dimensional list or array or a n × 1 or 1× n matrix, matrix
mX for 2-dimensional list/array
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Elements

Hungarian notation

Hungarian 3

Correct but very ugly is

Listing 12: nohun.py
def main ():

iX= ’Hello’

sX= 5

Instead, always use

Listing 13: hun.py
def main ():

sX= ’Hello’

iX= 5
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Recap

Recap

But let us recap the first lessons, and extend the knowledge...
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Recap of main concepts

Functions

All work in functions
All work is done in functions (or at least, that’s what we’ll do!)

Listing 14: recap1.py
def main ():

dX= 5.5

dX2= dX ** 2

print ("The square of ", dX , " is ", dX2)

# ##########################################################

### start main

if __name__ == "__main__":

main()

Note:

▶ This function main() takes no arguments
▶ . . . but Python only executes the first line outside a function
▶ . . . which is an if statement, calling main()

▶ . . . only if we call this routine as a separate program (allows us
to import files later)
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Recap of main concepts

Functions

Quiz-time: Main

Listing 15: recap quiz.py
def main ():

print (’Hello world’)

# ##########################################################

### start main

print (’This is an orphan statement ’)

if __name__ == "__main__":

main()

Q1 What is the output of this program?

Q2 Would anything change if the line starting with if is skipped?

Q3 And why does one use the conditional statement?

Answer: Deep Python philosophy. But follow the custom...
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Recap of main concepts

Functions

Quiz-time: Main

Listing 16: recap quiz.py
def main ():
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Recap of main concepts

Functions

Squaring and printing
Use other functions to do your work for you

Listing 17: recap2.py
import math

def printsquare(dIn):

dOut= math.pow(dIn , 2)

print (f’The square of {dIn} is {dOut}’)

def main ():

dX= 5.5

printsquare(dX)

printsquare (6.3)

Here, printsquare does not give a return value, only screen
output.
printsquare takes in one argument, with a value locally called
dIn. Can either be a true variable (dX), a constant (6.3), or even
the outcome of a calculation (dX-5).
Note the usage of import math for the math.pow() function.
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Recap of main concepts

Return statement

Return

Use return a to give one value back to the calling function (as
e.g. the math.pow() function also gives a value back).

Listing 18: recap return.py
def createones(iR, iC):

mX= np.ones((iR , iC)) # Use numpy , handing over Tuple (iR , iC)

return mX

def main ():

iR= 2 # Magic numbers

iC= 5

mX= createones(iR, iC) # Estimation , catch output of createones

print ("Matrix mX=\n", mX) # Output

Alternative: See below, altering pre-defined mutable (= matrix) argument
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Recap of main concepts

Return statement

Return: A tuple

Alternatively, return a tuple if multiple values should be handed
back to the calling routine:

Listing 19: recap return tuple.py
def createones_size(iR, iC):

mX= np.ones((iR , iC)) # Use numpy , handing over Tuple (iR , iC)

iSize= iR*iC

return (mX, iR*iC)

def main ():

iR= 2 # Magic numbers

iC= 5

(mX , iSize)= createones_size(iR, iC) # Estimation

print (f’Matrix mX=\n{mX}\nof size {iSize}’) # Output

Alternative: See below, altering pre-defined mutable (= matrix) argument

Q: Why is this example rather stupid/non-robust?

A: Rather use mX.size, no space for errors
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Recap of main concepts

Return statement

Return: A tuple

Alternatively, return a tuple if multiple values should be handed
back to the calling routine:

Listing 20: recap return tuple.py
def createones_size(iR, iC):

mX= np.ones((iR , iC)) # Use numpy , handing over Tuple (iR , iC)

iSize= iR*iC

return (mX, iR*iC)
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iR= 2 # Magic numbers

iC= 5

(mX , iSize)= createones_size(iR, iC) # Estimation

print (f’Matrix mX=\n{mX}\nof size {iSize}’) # Output

Alternative: See below, altering pre-defined mutable (= matrix) argument

Q: Why is this example rather stupid/non-robust?
A: Rather use mX.size, no space for errors
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Recap of main concepts

Indexing and matrices

Indexing
A matrix is a NumPy array of multiple doubles, a string consists of
multiple characters, a list of multiple elements. Get to those
elements by using indices (starting at 0):

Listing 21: recap3.py
def index(mA, sB, lC):

print (’Element [0,1] of\n’, mA, f’\nis {mA[0,1]}’)

print (f’Elements [0:5] of {sB} are {sB [0:5]} ’)

print (f’Element [4] of {sB} is letter {sB[4]}’)

print (f’Element [1] of\n{lC}\nis {lC[1]}’)

# ##########################################################

### main

def main ():

mX= np.random.randn(2, 3) # Some random numbers

sY= ’Hello world’ # A string

lZ= [mX, sY, 6.3] # A list of items

index(mX, sY, lZ)

Warnings:
▶ Indexing starts at [0] (as in C, Java, Julia, Ox etc, fine)
▶ Selecting a range indicates [start:end+1]... Extremely

dangerous, if you use other languages... And ugly,
according to Prof E.W. Dijkstra
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Recap of main concepts

Indexing and matrices

Indexing matrices

Python indexes ‘logically’. . . , but sometimes counterintuitively.

▶ A matrix is effectively an array of an array

▶ A one-dimensional array can (often) be used as both
row/column vector, vX1d= np.array([1,2,3]).

▶ Though sometimes an explicitly two-dimensional array is more
useful, vX2d= np.array([1, 2, 3]).reshape(-1, 1)

(depends on the situation, be careful)

▶ But then check the difference between vX1d[0], vX2d[0],
vX2d[0,0], vX2d[0:1] and vX2d[0:1,0]

See recap4.py. . .
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Recap of main concepts

Indexing and matrices

Indexing matrices II

Listing 22: recap4.py
import numpy as np

# ##########################################################

### main

def main ():

vX= np.array([1, 2, 3]). reshape(-1, 1) # A column vector

print (’vX=\n’, vX)

print (’Note how vX is a lists -of -lists , cast to a two -dimensional array\n’)

print (’vX[0]= ’, vX[0], ’(a one -dimensional array)’)

print (’vX[0,0]= ’, vX[0,0], ’(a scalar)’)

print (’vX [0:1]= ’, vX[0:1], ’(a 1 x 1 matrix)’)

# ##########################################################

### start main

if __name__ == "__main__":

main()
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Recap of main concepts

Indexing and matrices

Stepwise Indexing

An index may also take a step:

Listing 23: recap4b.py
import numpy as np

# ##########################################################

### main

def main ():

vX= np.random.randn (10)

print (’Full vX:\n’, vX)

print (’Every second element :\n’, vX [::2])

print (’Every second element , starting at second :\n’, vX [1::2])

Convenient for selecting subsets!
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Recap of main concepts

Indexing and matrices

Boolean Indexing

One can also index using (a vector of) booleans, to select only the
rows/columns/elements where the boolean is True:

Listing 24: recap4c.py
import numpy as np

# ##########################################################

### main

def main ():

vX= np.random.randn (10)

vI= vX >= 0

print (’vX:’, vX)

print (’vI:’, vI)

vXP= vX[vI]

print (’Non -negative elements :\n’, vXP)

print (’(Careful with resulting type/size!)’)

Convenient for selecting subsets!
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Recap of main concepts

Indexing and matrices

Matrices
A matrix:

▶ . . . is the work-horse of most econometric work (data, linear
algebra, likelihoods and derivatives etc)

▶ . . . is not natively included in Python

▶ . . . hence we’ll take the numpy array instead

▶ (Note: We’ll choose nòt to use the numpy matrix)

▶ Matrices tend to be two-dimensional

▶ . . . hence we’ll often force our matrices/vectors into such
shape:

vX= [1, 2, 3] # A one - dimensional list

vX= np.array(vX) # ... transformed into a one - dimensional array

vX= vX.reshape(3, 1) # ... and made into a two - dimensional matrix

vX= vX.reshape(-1, 1) # ... same thing (or more robust), Python checks row size

▶ Important: Check your matrices, make sure you distinguish
matrix/one-dimensional array/scalar!
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Recap of main concepts

Indexing and matrices

Matrices II

Matrices can be used, after starting with e.g. mX=
np.random.randn(3, 4),

▶ as arguments of functions: dSum= np.sum(mX)

▶ or applying a function on a matrix directly, dSum= mX.sum();

vSum= mX.sum(axis=0); vX= mX.reshape(1, -1)

▶ looking at its characteristics, (iR, iC)= mX.shape

▶ changing its characteristics even: mX.shape= (1, iR*iC)

(see recap4d.py)
Q: What is difference between dSum and vSum?

Hint: Always, always keep track of what your matrix is, and check
yourself...
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Recap of main concepts

Indexing and matrices

Indexing and non-matrices
There is more than matrices...
▶ Strings, lists, . . .

Listing 25: recap5.py
def showelement(sElem , aElem ):

print (sElem , ’= ’, aElem , ’ with type ’, type(aElem),

’ with shape ’, np.shape(aElem), ’, size ’, np.size(aElem),

’ and len ’, len(aElem ))

def main ():

lX= [[1, 2, ’hello’],

[’there’, ’A’, 4.5]]

print (’Show the full list:’)

showelement(’lX’, lX) # a two - dimensional list

print (’Reference first list:’)

showelement(’lX[0]’, lX[0]) # a one - dimensional list

print (’Reference the third element [2] of the first list lX[0]:’)

showelement(’lX [0][2] ’, lX [0][2]) # a string

print (’It would be incorrect to reference lX[0,2]’)

# showelement (’lX[0,2]’, lX [0 ,2]) # an error ...

Q1: How do I get ‘here’ by referencing a part of lX?
Q2: What is difference in np.shape(), np.size(), len()?
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Recap of main concepts

Scope

Scope
Each variable has a scope, a part of the program where it is
known. The scope is either

▶ local: The variable is known within the present function only

▶ global: . . .

Listing 26: recap6.py
def localfunc(aX):

sX= ’local var’

print (’In localfunc: Local arg aX: ’, aX)

print (’In localfunc: Local var sX: ’, sX)

# Next line gives an error

# print (’Double dY: ’, dY)

def main ():

dY= 5.5

localfunc(’a variable from main’)

print (’In main: Double dY= ’, dY)

# Next line gives an error

# print (’In main: sX= ’, sX)

Q: What variable is known where exactly?
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Recap of main concepts

Scope

Scope II

Each function (including main)

▶ can create/use at will new local variables

▶ can receive through arguments variables from other functions

Additionally, each function can

▶ share a global variable

▶ where the global variable shall be prefixed by g , as in g mX

▶ . . . where the variable is declared global within a function,
before its use, see recap7.py
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Recap of main concepts

Scope

Scope III

Listing 27: recap7.py
# ##########################################################

### localfunc (iX)

def localfunc(iX):

global g_lX

print (’In localfunc: argument iX: ’, iX)

print (’In localfunc: g_lX: ’, g_lX)

g_lX [1]= iX # Change a single element in global

print (’In localfunc: g_lX after changing an element: ’, g_lX)

g_lX= list(range(iX, 2*iX)) # Change the full variable

print (’In localfunc: g_lX , after changing all: ’, g_lX)

# ##########################################################

### main

def main ():

global g_lX

iY= 5

g_lX= [1, 2, 3]

localfunc(iY)

print (’In main: Global var= ’, g_lX)
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Recap of main concepts

Scope

Scope IV

Each function (including main)

▶ can create/use at will new local variables

▶ can receive through arguments variables from other functions

▶ can use global variables (but please forget them...)

Additionally, each function can

▶ change part of the mutable variable (list/array/matrix) ...
Then the variable does not change, only part of the contents

[Example: See recap8.py below]
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Recap of main concepts

Function arguments

Function arguments

In Python, functions can alter contents of variables, but not the
full variable itself:

Listing 28: recap8.py
def func_nochange(mX):

mX= np.random.randn(3, 4)

print (’In func_nochange , changing mX locally to mX=\n’, mX)

def func_change(mX):

iR, iC= mX.shape

mX[:,:]= np.random.randn(iR, iC)

print (’In func_change , changing mX locally to mX=\n’, mX)

def main ():

mX= np.array ([[1.0 ,2 ,3] ,[4 ,5 ,6]])

func_nochange(mX)

print (’In main , after func_nochange: mX=\n’, mX)

func_change(mX)

print (’In main , after func_change: mX=\n’, mX)
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Recap of main concepts

Function arguments

Function arguments II
Limitations: Changing function arguments

▶ works with mutable variables (i.e. lists, arrays, NumPy
matrices, Pandas dataframes),

▶ does not work with immutable variables (i.e. strings, tuples,
doubles, integers)

▶ allows for changes in value, (generally (...)) not in size of
argument

▶ which implies that arguments have to be pre-assigned at the
correct size

Example:

Listing 29: e0 elim.py
def ElimElement(mC , i, j):

...

mC[i,j:]= mC[i,j:] - dF*mC[j,j:]

return True
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Recap of main concepts

Function arguments

Function arguments III

Notes (IMPORTANT):

▶ If you are going to change an input argument to a function
MENTION IT IN THE DOCSTRING, listing the variable
under the Outputs

▶ General rule of thumb: A function argument can be changed
when you assign to a part of the argument, as in mC[1,2]=

5. The moment you do a full mC= np.random.rand(3,4)

the full variable is overwritten, and the result is not available
to the outside routine.

▶ Exception to size changing argument: In Pandas, you are
allowed to extend an existing dataframe with additional
columns.
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Closing thoughts

Closing thoughts

Almost enough for today...
Missing are:

▶ Operators for ndarrays
▶ Precise definition of compound statements

▶ if-elif-else
▶ while
▶ for

▶ Corresponding concepts in Matlab

▶ Many, many details. . .

During this course,

Open the Python/NumPy documentation

and learn to find your way
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Installation

Installation of Python
Many ways. . . Here:

▶ AnaConda (https://www.anaconda.com/download/): This
installs the base Python 3.X+packages+Spyder, with minimal
fuss.

▶ At Conda command prompt (= terminal on OSX/Linux),
install missing packages (hardly ever needed, most was
included already)

conda install numpy

▶ Once in a while, update it all from Conda command prompt,
using

conda update --all

conda clean --all
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Installation

Editor/IDE
For editing/running programs, several options again:
▶ Whatever editor of choice, run from command line (go ahead)
▶ Spyder: Install (if needed) through

conda install spyder

▶ Atom: Install from https://atom.io with packages
Hydrogen, Autocomple-python (Deprecated), and add

conda install jupyter

▶ VSCode: Install from https://code.visualstudio.com/,
with Python extension

▶ PyCharm: Install from
https://www.jetbrains.com/pycharm/

▶ IPython: Install (if needed) through

conda install ipython

(You’ll probably see me switching; I used Atom for all editing of Python, R, Ox, LATEX,

but sometimes prefer Spyder, IPython for quick testing, lately moved to VSCode)
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Installation

Spyder

Spyder environment

57/235



PPEctr

Installation

VSCode

VisualStudio Code environment
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Installation

IPython

IPython environment
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Day 1

Overview

Principles of Programming in Econometrics

D0: Syntax, example 28 D1: Structure, scope

D2: Numerics, packages D3: Optimisation, speed
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Day 1

Day 1: Structure

▶ Introduction
▶ Programming in theory
▶ Science, data, hypothesis, model, estimation

▶ Structure & Blocks (Droste)
▶ Further concepts of

▶ Data/Variables/Types
▶ Functions
▶ Scope, globals

▶ Practical
▶ Regression: Simulate data
▶ Regression: Estimate model
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Introduction

Target of course

▶ Learn

▶ structured

▶ programming

▶ and organisation

▶ (in Python/Julia/Matlab/Ox or other language)

Not: Just learn more syntax...
Remarks:

▶ Structure: Central to this course

▶ Small steps, simplifying tasks

▶ Hopefully resulting in: Robustness!

▶ Efficiency: Not of first interest... (Value of time?)

▶ Language: Theory is language agnostic
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Introduction

What? Why?

Wrong answer:
For the fun of it

A correct answer
To get to the results we need, in a fashion that is con-
trollable, where we are free to implement the newest and
greatest, and where we can be ‘reasonably’ sure of the an-
swers

Data

Hypothesis
E= f(m)

Model
E= m c2

Estimation
E²= m² (c²)2

0

1

1

1

1

1

1

1
0

1

1

0

0

1

1

P
ro

g
ra

m
m
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g

Science
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Introduction

Aims and objectives

▶ Use computer power to enhance productivity

▶ Productive Econometric Research:
combination of interactive modules and programming tools

▶ Data Analysis, Modelling, Reporting

▶ Accessible Scientific Documentation (no black box)

▶ Adaptable, Extendable and Maintainable (object oriented)

▶ Econometrics, statistics and numerical mathematics
procedures

▶ Fast and reliable computation and simulation
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Introduction

Options for programming

G
U
I

C
L
I

P
ro
gr
am

S
p
ee
d

Q
u
an
E
co
n

Comment
EViews + - - ± + Black box, TS
Stata ± + - - - Less programming

Matlab + + + + ± Expensive, other audience
Gauss ± ± + ± + ‘Ugly’ code, unstable
S+/R ± + + - ± Very common, many packages

Ox + ± + + + Quick, links to C, ectrics
Python + + + + ± Neat syntax, common

Julia + + + ++ + General/flexible/difficult, quick
C(++)/Fortran - - + ++ - Very quick, difficult

Here: Use Ox Matlab Python as environment, apply theory
elsewhere
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Introduction

History

There was once. . .
Apple II, CPU 6502, 1Mhz, 48kB of memory. . .
Now: More possibilities, also computationally:

Timings for OLS (30 observations, 4 regressors):
2020 R5 2500U 2.0Ghz 64b 1.318.000†/sec
2017 I5-7Y54 1.2Ghz 64b 1.047.000†/sec
2014 I5-4460S 2.9Ghz 64b 1.100.000†/sec
2012 Xeon E5-2690 2.9Ghz 64b 950.000†/sec
2009 Xeon X5550 2.67Ghz 64b 670.000†/sec
2008 Xeon 2.8Ghz OSX 392.000†/sec
2006 AMD3500+ 64b 320.000†/sec
2004 PM-1200 147.000†/sec
2001 PIII-1000 104.000†/sec
1996 PPro200 30.000/sec
1993 P5-90 6.000/sec
1989 386/387 300/sec
1981 86/87 (est.) 30/sec

Increase:
≈ × 1000 in 15 years
≈ × 10000 in 25 years.

Note: For further speed increase, use multi-cpu.

66/235



PPEctr

Introduction

Speed increase — but keep thinking

x ∼ NIG(α, β, δ, µ) P(X < x) =

∫ x

0
f (z)dz = F (x) xq = F−1(q)

S(q) =
x1−q + xq − 2x 1

2

x1−q − xq
KL(q) =

x 1−q
2

+ x q
2
− 2x 1

4

x 1−q
2

− x q
2

KR(q) = ...
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Direct calculation of graph: > 40 min

Pre-calc quantiles (=memoization): 5 sec
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Programming in theory

Programming in Theory

Plan ahead

▶ Research question: What do I want to know?

▶ Data: What inputs do I have?

▶ Output: What kind of output do I expect/need?
▶ Modelling:

▶ What is the structure of the problem?
▶ Can I write it down in equations?

▶ Estimation: What procedure for estimation is needed (OLS,
ML, simulated ML, GMM, nonlinear optimisation, Bayesian
simulation, etc)?
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Programming in theory

Blocks & names

Closer to practice

Blocks:

▶ Is the project separable into blocks, independent, or possibly
dependent?

▶ What separate routines could I write?

▶ Are there any routines available, in my own old code, or from
other sources?

▶ Can I check intermediate answers?

▶ How does the program flow from routine to routine?

... names:

▶ How can I give functions and variables names that I am sure
to recognise later (i.e., also after 3 months)?
Use (always) sensible Hungarian notation
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Programming in theory

Input/output

Even closer to practice

Define, on paper, for each routine/step/function:

▶ What inputs it has (shape, size, type, meaning), exactly

▶ What the outputs are (shape, size, type, meaning), also
exactly...

▶ What the purpose is...

Also for your main program:

▶ Inputs can be magic numbers, (name of) data file, but also
specification of model

▶ Outputs could be screen output, file with cleansed data,
estimation results etc. etc.
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Elements

Elements to consider
▶ Explanation: Be generous (enough)
▶ Initialise from main
▶ Then do the estimation
▶ ... and give results

Listing 30: stack/stackols.py
def main ():

# Magic numbers

sData= ’data/stackloss.csv’

sY= ’Air Flow’

asX= [’Water Temperature ’, ’Acid Concentration ’, ’Stack Loss’]

# Initialisation

...

# Estimation

...

# Output

...

NB: These steps are usually split into separate functions
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Droste

The ‘Droste effect’
▶ The program performs a certain function

▶ The main function is split in three (here)

▶ Each subtask is again a certain function that has to be
performed

Apply the Droste effect:
▶ Think in terms of functions

▶ Analyse each function to split it

▶ Write in smallest building blocks
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Droste

Preparation of program
What do you do for preparation of a program?

1. Turn off computer

2. On paper, analyse your inputs

3. Transformations/cleaning needed? Do it in a separate
program...

4. With input clear, think about output: What do you want the
program to do?

5. Getting there: What steps do you recognise?

6. Algorithms

7. Available software/routines

8. Debugging options/checks

Work it all out, before starting to type...

KISS
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KISS

KISS
Keep it simple, stupid

Implications:

▶ Simple functions, doing one thing only

▶ Short functions (one-two screenfuls)

▶ With commenting on top

▶ Clear variable names (but not too long either; Hungarian)

▶ Consistency everywhere

▶ Catch bugs before they catch you

See also:

▶ https://www.kernel.org/doc/Documentation/process/

coding-style.rst (General Kernel)

▶ https://www.python.org/dev/peps/pep-0008/ (PEP 8:
Python coding guide)
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Concepts: Data, variables, functions, actions
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Concepts: Data, variables, functions, actions

’

What is programming about?

Managing DATA, in the form of VARIABLES, usually
through a set of predefined FUNCTIONS or ACTIONS

Of central importance: Understand variables, functions at all
times...

So let’s exagerate
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Concepts: Data, variables, functions, actions

Variables

Variable

▶ A variable is an item which can have a certain value.

▶ Each variable has one value at each point in time.

▶ The value is of a specific type.

▶ A program works by managing variables, changing the values
until reaching a final outcome

[ Example: Paper integer 5 ]
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Concepts: Data, variables, functions, actions

Variables

Integer

iX= 5

5

▶ An integer is a number without fractional part, in between
−231 and 231 − 1 (C/Ox/Matlab) or limitless (Python 3.X)

▶ Distinguish between the name and value of a variable.

▶ A variable can usually change value, but never change its
name
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Concepts: Data, variables, functions, actions

Variables

Double
dX= 5.5

5.5

▶ A double (aka float) is a number with possibly a fractional
part.

▶ Note that 5.0 is a double, while 5 is an integer.
▶ A computer is not ‘exact’, careful when comparing integers

and doubles
▶ If you add a double to an integer, the result is double (in

Python 3/Ox at least, language dependent)

[ Example: dAdd= 1/3; iD= 0; dD= iD + dAdd; type(dD) ]
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Concepts: Data, variables, functions, actions

Variables

String
sX= 'A'

A

sY= 'Hello world'

Hello world

▶ A character is a string of length one.

▶ A string is a collection of characters.

▶ The ’ are not part of the string, they are the string delimiters.

▶ One or multiple characters of a string are a string as well,
sY[0:4], sY[1], sY[1:2] are strings.

[ Example: sY= ’Hello world’ ]
Q: Trick question: What is difference between sY[1] and sY[1:2]?

A: Check sY[1] == sY[1:2]
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Concepts: Data, variables, functions, actions

Variables

‘Simple’ types

▶ Boolean

▶ Integer

▶ Double/float

▶ String

Check type using

bX= True

type(bX)

80/235



PPEctr

Concepts: Data, variables, functions, actions

Variables

‘Difficult’ types

▶ List

▶ Tuple

▶ Matrix

▶ Function

▶ Lambda function

▶ DataFrame

▶ . . .
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Concepts: Data, variables, functions, actions

Variables

List

lX= ['Beta', 5, [5.5]]

Beta 5 5.5

▶ A list is a collection of other objects.

▶ A list itself has one dimension, but can contain lists.

▶ An element of a list can be of any type (integer, double,
function, matrix, list etc)

▶ A list of a list of a list has three dimensions etc.

▶ One may replace elements of a list (a list is mutable)

[ Example: lX= [’Beta’, 5, [5.5]]; lX[0]= ’Alpha’ ]
82/235



PPEctr

Concepts: Data, variables, functions, actions

Variables

Tuple

tX= ('Beta', 5, [5.5])

Beta 5 5.5

▶ A tuple is a collection of other objects.
▶ A tuple itself has one dimension, but can contain lists.
▶ An element of a tuple can be of any type (integer, double,

function, matrix, list, tuple etc)
▶ A tuple of a tuple of a tuple has three dimensions etc.
▶ One may NOT replace elements of a tuple (a tuple is

immutable)

[ Example:
tX= (’Beta’, 5, [5.5]); # Error: tX[0]= ’Alpha’ ] 83/235
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Concepts: Data, variables, functions, actions

Variables

Matrix
mX= np.array([[1.0, 2, 3], [4, 5, 6]])

1.0 2.0 3.0

4.0 5.0 6.0

▶ A matrix (to an Econometrician at least) is a collection of
doubles; in Python a matrix may also contain other types.

▶ A matrix has (generally) two dimensions.
▶ A matrix of size k × 1 or 1× k we tend to call a vector, vX
▶ Watch out: NumPy allows single-dimensional k vectors,

different from k × 1 matrices.
▶ Later on we’ll see how matrix operations can simplify/speed

up calculations.
84/235



PPEctr

Concepts: Data, variables, functions, actions

Variables

Matrix II

mX= np.array([[1.0, 2, 3], [4, 5, 6]])

1.0 2.0 3.0

4.0 5.0 6.0

In Python:

▶ we’ll use a list-of-lists as input into a NumPy array

▶ ensure we have doubles by making at least one of the entries a
double (here: 1.0), type(mX[1,2]), or use
mX= np.array([[1,2,3], [4, 5, 6]]).astype(float)

▶ if needed force it into a 2-dimensional shape,
mX.shape= (6, 1)

[ Example: mX= np.array([[1.0, 2, 3], [4, 5, 6]]) ]
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Concepts: Data, variables, functions, actions

Variables

Function

print ("Hello world")

print()

▶ A function performs a certain task, usually on a (number of)
variables

▶ Hopefully the name of the function helps you to understand
its task

▶ You can assign a function to a variable,
fnMyPrintFunction= print

[ Example: fnMyPrintFunction(’Hello world’) ]
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Concepts: Data, variables, functions, actions

Variables

Function II

Listing 31: pow6.py
def Pow(dBase , iPow):

dRes= 1

i= 0

while (i < iPow):

# print (’i= ’, i)

dRes= dRes * dBase

i+= 1

return dRes

▶ You can define your own routines/functions

▶ You decide the output

▶ You tend to return the output

▶ (later: You may alter mutable arguments)

[ Example: dPow= Pow(2.0, 8) ]
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Concepts: Data, variables, functions, actions

Variables

Lambda Function
Pow(2.0, 8)

Pow= lambda dB, i: dB*Pow(dB, i-1) if (i > 0) else 1.0

▶ A lambda function is a single line locally declared function
▶ It can access the present value of variables in the scope
▶ Hence it can hide passing of variables
▶ More details in the last lecture, when useful for optimising
▶ Syntax:

name= lambda arguments: expression(arguments)

Listing 32: pow lambda.py
Pow= lambda dB,i: dB*Pow(dB,i-1) if (i > 0) else 1.0

dPow= Pow(2.0, 8)
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Concepts: Data, variables, functions, actions

Variables

List comprehension

Alternative to a Lambda function can be a list comprehension, in
certain cases. A list comprehension

▶ applies a function successively on all items in a list

▶ and returns the list of results

Structure:
List = [ func(i) for i in somelist]

Examples:

[i for i in range (10)]

[i for i in range (10) if i%2 == 0]

[i**2 for i in range (10)]

[np.sqrt(mS2[i,i]) for i in range(iK)]

Q: Can you predict the outcome of each of these statements?
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Concepts: Data, variables, functions, actions

Variables

DataFrame

▶ A Pandas dataframe is an object made for input/output of
data

▶ It can be used to read/store/show your data

▶ And has plenty more options

▶ Very useful for data handling!

[ Example: import pandas as pd; lc= list(’ABC’);

df= pd.DataFrame(np.random.randn(4,3), columns=lc); df ]
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Concepts: Data, variables, functions, actions

Variables

DataFrame II

Listing 33: stackols.py
sData= ’data/stackloss.csv’

sY= ’Air Flow’

asX= [’Water Temperature ’, ’Acid Concentration ’, ’Stack Loss’]

# Initialisation

df= pd.read_csv(sData) # Read csv into dataframe

vY= df[sY]. values # Extract y-variable

mX= df[asX]. values # Extract x-variables

iN= vY.size # Check number of observations

mX= np.hstack ([np.ones((iN, 1)), mX]) # Append a vector of 1s

asX= [’constant ’]+asX

# Estimation

vBeta= np.linalg.lstsq(mX, vY)[0] # Run OLS y= X beta + e

# Output

print (’Ols estimates ’)

print (pd.DataFrame(vBeta , index=asX , columns =[’beta’]))
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Variables: View or copy

View or copy

What does assignment do in Python? Check out this code:

view copy.py
mX= np.arange (6)+1.0 # Get vector of numbers 1.0, 2.0, .., 6.0

print (’Shape :’, mX.shape)

mX.shape= (2, 3) # Assign TO shape characteristic

print (’Shape :’, mX.shape)

print (’What is mX now?\n’, mX)

mY= mX # New view of mX

mY[0, 0]= 0 # Change element of Y

print (’What is mX now , after changing element of Y?\n’, mX)

mY= np.copy(mX) # New copy of mX

mY[0, 0]= -1

print (’What is mX now , after re-copying y, putting a -1 in first location ?\n’, mX)

print (’What is mY now?\n’, mY)

What happens here?
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Variables: View or copy

View or copy II

1.0 2.0 3.0

4.0 5.0 6.0

mX

Step 1: Creating mX
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Variables: View or copy

View or copy II

1.0 2.0 3.0

4.0 5.0 6.0

mX mY= mX

Step 2: Creating mY= mX, new view of same matrix
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Variables: View or copy

View or copy II

1.0 2.0 3.0

4.0 5.0 6.0

mX mY= mX

0.0

mY[0,0]= 0

Step 3: Alter mY[0,0]= 0 changes mX as well...
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Variables: View or copy

View or copy II

1.0 2.0 3.0

4.0 5.0 6.0

mX mY= mX

0.0

mY[0,0]= 0

0.0 2.0 3.0

4.0 5.0 6.0

mY= np.copy(mX)

Step 4: Now explicitly copy over mY= np.copy(mX)

93/235



PPEctr

Variables: View or copy

View or copy II

1.0 2.0 3.0

4.0 5.0 6.0

mX mY= mX

0.0

mY[0,0]= 0

0.0 2.0 3.0

4.0 5.0 6.0

mY= np.copy(mX)

-1.0

mY[0,0]= -1

Step 5: Change mY[0,0]= -1 leaves mX unaltered
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Variables: View or copy

View or copy III

How can I know whether I get a view or a copy?

print (’Is mX the same as mY? ’, id(mX) == id(mY))

print (’id(mX)=%i, id(mY)=%i’ % (id(mX), id(mY)))

Check the id...

What is the advantage of the ‘view’ of an object, not copying?

▶ Save memory, not having multiple copies of same (large)
object

▶ Pass a (view to) a mutable object
(ndarray/matrix/vector/dataframe) to a function, change part
of it
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Variables: View or copy

View or copy III

How can I know whether I get a view or a copy?
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Check the id...
What is the advantage of the ‘view’ of an object, not copying?

▶ Save memory, not having multiple copies of same (large)
object

▶ Pass a (view to) a mutable object
(ndarray/matrix/vector/dataframe) to a function, change part
of it
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Variables: View or copy

View or copy IV
Change part of a matrix, output value through argument:

view copy2.py
def FillRes(mRes):

"""

Purpose:

Perform (fake) calculating , filling mRes column by column

Inputs:

mRes iR x iC matrix , to be overwritten

Outputs:

mRes iR x iC matrix , filled by column

Return value:

dR double , sum of all results

"""

(iR , iC)= mRes.shape

dR= 0.0

for c in range(iC):

vC= np.random.randn(iR) # Do computations . Here: Get R random outcomes

mRes[:,c]= vC

dR+= vC.sum()

return dR

Passing a ‘basket’ to function, allow change of contents of basket...
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Variables: View or copy

Basket: Mutable vs immutable
Python hands over a new ‘view’ of a list to a function. This
implies:

▶ The function can access the same list/matrix/array/dataframe

▶ As long as it is careful not to replace the list, it can alter
elements

▶ Replaced elements will be handed back to the main program,
as such

Examples:

▶ lX[1]= ’hello’: Replace second list item by a new string

▶ mX[0,4]= 3.14: Replace element in row 1, column 5, by 3.14

▶ mX[:,:]= mX * mX: Replace all elements of existing matrix
mX by their squares, keeping same ‘basket’

Q: What is difference of last example, mX[:,:]= mX * mX, with
mX= mX * mX?
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Python and other languages?

Python and other languages
Concepts are similar
▶ Python (and e.g. Ox/Gauss/Matlab) have automatic typing.

Use it, but carefully...
▶ C/C++/Fortran need to have types and sizes specified at the

start. More difficult, but still same concept of variables.
▶ Precise manner for specifying a matrix differs from language

to language. Python needs some getting used to, but is
(very...) flexible in the end

▶ Remember: An element has a value and a name
▶ A program moves the elements around, hopefully in a smart

manner

Keep track of your variables,
know what is their type, size, and scope
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Python and other languages?

Python and other languages II

Concepts similar, implementation different:

▶ Python (and e.g. R, Julia) have object-like variables: Each
variable has characteristics

▶ Python uses views of the data, often without copying,
dangerous

▶ Powerful but sometimes confusing (see before)

Warning: Too much to discuss here, but dangerous implications... See e.g. https://medium.com/@larmalade/

python-everything-is-an-object-and-some-objects-are-mutable-4f55eb2b468b
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Python and other languages?

All languages

Programming is exact science

▶ Keep track of your variables

▶ Know what is their scope

▶ Program in small bits

▶ Program extremely structured

▶ Document your program wisely

▶ Think about algorithms, data storage, outcomes etc.
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Python and other languages?

Scope

Further topics: Scope

Any variable is available only within the block in which it is
declared.
In practice:

1. Arguments to a function, e.g. mX in fnPrint( mX), are
available within this function

2. A local variable mY is only known below its first use, within
the present function

3. A global variable, indicated with global g_mZ at the start of
a function, and retains its value between functions.
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Python and other languages?

Scope

Further topics: Scope

Any variable is available only within the block in which it is
declared.
In practice:

1. Arguments to a function, e.g. mX in fnPrint( mX), are
available within this function

2. A local variable mY is only known below its first use, within
the present function

3. A global variable, indicated with global g_mZ at the start of
a function, and retains its value between functions.

(but forget about globals... or use them the absolute minimum? )
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Python and other languages?

Scope

Further topics: Scope II

Listing 34: scope global.py
def localfunc ():

global g_sX

print ("In localfunc: g_sX= ", g_sX)

g_sX= "and goodbye" # Change the full global variable

# ##########################################################

### main

def main ():

global g_sX

g_sX= "Hello"

localfunc ()

print ("In main , after localfunc: g_sX= ", g_sX)

Rules for globals:

▶ Only use them when absolutely necessary (dangerous!)
▶ Annotate them, g_
▶ Fill them at last possible moment
▶ Do not change them afterwards (unless absolutely necessary)
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Day 2

Overview

Principles of Programming in Econometrics

D0: Syntax, example 28 D1: Structure, scope

D2: Numerics, packages D3: Optimisation, speed
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Day 2

Day 2: Numerics and flow

▶ Numbers and representation

▶ Steps, flow and structure

▶ Floating point numbers

▶ Practical Do’s and Don’ts

▶ Packages

▶ Graphics
▶ Practical

▶ Cleaning OLS program
▶ Loops
▶ Bootstrap OLS estimation
▶ Handling data: Inflation
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Day 2

Reprise: What? Why?

Wrong answer:
For the fun of it

A correct answer
To get to the results we need, in a fashion that is con-
trollable, where we are free to implement the newest and
greatest, and where we can be ‘reasonably’ sure of the an-
swers

Data

Hypothesis
E= f(m)

Model
E= m c2

Estimation
E²= m² (c²)2

0

1

1

1

1

1

1

1
0

1

1

0

0

1

1

P
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g
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m
m

in
g

Science
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Steps

Step P1: Analyse the data
▶ Read the original data file
▶ Make a first set of plots, look at it
▶ Transform as necessary (aggregate, logs, first differences,

combine with other data sets)
▶ Calculate statistics
▶ Save a file in a convenient format for later analysis

Data

Hypothesis
E= f(m)

Model
E= m c2

Estimation
E²= m² (c²)2

0

1

1

1

1

1

1

1
0

1

1

0

0

1

1

P
ro

g
ra

m
m

in
g

P1

mData= np.hstack ([vDate , mFX])

df= pd.DataFrame(mData , columns =["Date", "UKUS", "EUUS", "JPUS"])

df.to_csv("data/fx9709.csv")

df.to_csv("data/fx9709.csv.gz", compression="gzip")

df.to_excel("data/fx9709.xlsx")
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Steps

Step P2: Analyse the model

▶ Can you simulate data from the model?

▶ Does it look ‘similar’ to empirical data?

▶ Is it ‘the same’ type of input?

Data

Hypothesis
E= f(m)

Model
E= m c2

Estimation
E²= m² (c²)2

0

1

1

1

1

1

1

1
0

1

1
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0

1

1
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m
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g

P2

mU= np.random.randn(iT, 4); # Log -returns US , UK , EU , JP factors

mF= np.cumsum(mU, axis =0); # Log -factors

mFX= np.exp(mF[:,1:]-mF [:.0]); # FX UK EU JP wrt US
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Steps

Step P3: Estimate the model

▶ Take input (either simulated or empirical data)

▶ Implement model estimation

▶ Prepare useful outcome

Data

Hypothesis
E= f(m)

Model
E= m c2

Estimation
E²= m² (c²)2
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Steps

Step P4: Extract results

▶ Use estimated model parameters

▶ Calculate policy outcome etc.

Data

Hypothesis
E= f(m)

Model
E= m c2

Estimation
E²= m² (c²)2

0
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Results
P4

108/235



PPEctr

Steps

Step P5: Output

▶ Create tables/graphs

▶ Provide relevant output

Often this is the hardest part: What exactly did you want to
know? How can you look at the results? How can you go back to
original question, is this really the (correct) answer?
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Steps

Result of steps
def main ():

# Magic numbers

sData= "data/fx0017.csv" # Or use "data/sim0017.csv"

asFX= ["EUR/USD","GBP/USD","JPY/USD"]

vYY= [2000, 2015] # Years to analyse

# Initialise

(vDate , mRet)= ReadFX(asFX , vYY , sData)

# Estimate

(vP , vS , dLnPdf )= Estimate(mRet , asFX)

mFilt= ExtractResults(vP, mRet)

#Output

Output(vP, vS, dLnPdf , mFilt , asFX)

▶ Short main

▶ Starts off with setting items that might be changed: Only up
front in main (magic numbers)

▶ Debug one part at a time (t.py)!

▶ Easy for later re-use, if you write clean small blocks of code

▶ Input for estimation is prepared data file, not raw data (...).
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Flow

Program flow

Programming is (should be) no magic:

▶ Read your program. There is only one route the program will
take. You can follow it as well.

▶ Statements are executed in order, starting at main()

▶ A statement can call a function: The statements within the
function are executed in order, until encountering a return

statement or the end of the function

▶ A statement can be a looping or conditional statement,
repeating or skipping some statements. See below.

▶ (The order can also be broken by break or continue
statements. Don’t use, ugly.)

And that is all, any program follows these lines.
(Sidenote: Objects/parallel programming etc)
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Flow

Flow 2: Reading easily

As a general hint:
▶ Main .py file:

▶ import packages
▶ import your routines (see next page)
▶ Contains only main()
▶ Preferably only contains calls to routines (Initialise,

Estimate, Output)

▶ Each routine: Maximum 30 lines / one page. If longer, split!
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Flow

Flow 3: Using modules
A module is a file containing a set of functions

All content from module incstack.py in directory lib can be
imported by

from lib.incstack import *

Result: Nice short stackols3.py
# ##########################################################

### main

def main ():

# Magic numbers

...

# Initialisation

(vY , mX)= ReadStack(sData , sY, asX , True)

...

Q: What would be the difference between from

lib.incstack import * and import lib.incstack?
In Spyder:

▶ check current directory (pwd), make sure that you are in your working directory (use cd if need be)
▶ add general directory with modules to the PYTHONPATH, using Tools-PYTHONPATH manager
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Flow

Flow 4: Cleaning out directory structure

Use structure for programming, and for storing results:

stack/stackols3.py # Main routine

stack/lib/incstack.py # Included functions

stack/data/stackloss.csv # Data

stack/output/ # Space for numerical output

stack/graphs/ # Space for graphs

Ensure you program cleanly, make sure you can find
routines/results/graphs/etc...
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Floating point numbers and rounding errors

Precision

Not all numbers are made equal...
Example: What is 1/3 + 1/3 + 1/3 + ...?

Listing 35: precision/onethird.py
def main ():

# Magic numbers

dD= 1/3

# Estimation

print ("i j sum diff");

dSum= 0.0

for i in range (10):

for j in range (3):

print (i, j, dSum , (dSum -i))

dSum+= dD # Successively add a third

See outcome: It starts going wrong after 16 digits...
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Floating point numbers and rounding errors

Decimal or Binary

1-to-10 (Source: XKCD, http://xkcd.com/953/)
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Floating point numbers and rounding errors

Representation: Int
In many languages...

▶ Integers are represented exactly using 4 bytes/32 bits (or
more, depending on system)

▶ 1 bit is for sign, usually 31 for number
▶ Hence range is [-2147483648, 2147483647]=

[-2^31, 2^31-1]

Q: Afterwards, when i= 2^31-1 + 1, what happens?

Answer:

▶ Ox: Circles around to a negative integer, without warning...
▶ Matlab: Gets stuck at 2^31-1...
▶ Python2: Uses 8 bytes, 64 bits. After 263 − 1, moves to long

type, without limit
▶ Python3: long is the standard integer type, without any limit!

See precision/intmax.py, or http://xkcd.com/571/
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Floating point numbers and rounding errors

Representation: Int
In many languages...

▶ Integers are represented exactly using 4 bytes/32 bits (or
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Floating point numbers and rounding errors

Representation: Double
▶ Doubles are represented in 64 bits. This gives a total of

264 ≈ 1.84467× 1019 different numbers that can be
represented.

How?

Double floating point format (Graph source: Wikipedia)

Split double in
▶ Sign (one bit)
▶ Exponent (11 bits)
▶ Fraction or mantissa (52 bits)
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Floating point numbers and rounding errors

Representation: Double II

x =


(−1)sign × 2exponent−1023 ×

(
1 +

∑52
i=1 b52−i2

−i
)

Generally

(−1)sign × 21−1023 × 0.mantissa if exp=0x.000
(−1)sign ×∞ if exp=0x.7ff, mant = 0
NaN if exp = 0x.7ff, mant ̸= 0

Note: Base-2 arithmetic

Sign Expon Mantissa Result
0 0x.3ff 0000 0000 000016 −10 × 2(1023−1023) × 0.0

= 0
0 0x.3ff 0000 0000 000116 −10 × 2(1023−1023) × 1.000000000000000222

= 1.000000000000000222
0 0x.400 0000 0000 000016 −10 × 2(1024−1023) × 1.0

= 2
0 0x.400 0000 0000 000116 −10 × 2(1024−1023) × 1.000000000000000222

= 2.000000000000000444
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Floating point numbers and rounding errors

Consequence: Addition

Let’s work in Base-10 arithmetic, assuming 4 significant digits:

Sign Exponent Mantissa Result x

+ 4 0.1234 0.1234 × 104 1234
+ 3 0.5670 0.5670 × 103 567

What is the sum?

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 4 0.0567 0.0567× 104 567
+ 4 0.1801 0.1801× 104 1801

Shift to same exponent, add mantissas, perfect
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Floating point numbers and rounding errors

Consequence: Addition II
Let’s use dissimilar numbers:

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 1 0.5670 0.5670× 101 5.67

What is the sum?

Sign Exponent Mantissa Result x
+ 4 0.1234 0.1234× 104 1234
+ 4 0.000567 0.0005× 104 5
+ 4 0.1239 0.1239× 104 1239

Shift to same exponent, add mantissas, lose precision...

Further consequence:

Add numbers of similar size together, preferably!

In Python/Ox/C/Java/Matlab/Octave/Gauss: 16 digits (≈ 52
bits) available instead of 4 here
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Floating point numbers and rounding errors

Consequence: Addition III

Check what happens in practice:

Listing 36: precision/accuracy.py
def main ():

dA= 0.123456 * 10**0

dB= 0.471132 * 10**15

dC= -dB

print ("a: ", dA, ", b: ", dB, ", c: ", dC)

print ("a + b + c: ", dA+dB+dC)

print ("a + (b + c): ", dA+(dB+dC))

print ("(a + b) + c: ", (dA+dB)+dC)

results in
a: 0.123456 , b: 471132000000000.0 , c: -471132000000000.0

a + b + c: 0.125

a + (b + c): 0.123456

(a + b) + c: 0.125
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Floating point numbers and rounding errors

Consequence: Addition III
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print ("a + b + c: ", dA+dB+dC)

print ("a + (b + c): ", dA+(dB+dC))

print ("(a + b) + c: ", (dA+dB)+dC)

results in
a: 0.123456 , b: 471132000000000.0 , c: -471132000000000.0

a + b + c: 0.125

a + (b + c): 0.123456

(a + b) + c: 0.125
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Floating point numbers and rounding errors

Other hints

▶ Adding/subtracting tends to be better than multiplying

▶ Hence, log-likelihood
∑

logLi is better than likelihood
∏

Li

▶ Use true integers when possible

▶ Simplify your equations, minimize number of operations

▶ Don’t do x = exp(log(z)) if you can escape it

(Now forget this list... use your brains, just remember that a
computer is not exact...)
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Do’s and Don’ts

Do’s and Don’ts
The do’s:

+ Use commenting through DocString for each routine,
consistent style, and inline comments elsewhere if necessary

+ Use consistent indenting

+ Use Hungarian notation throughout (exception: counters
i , j , k , l etc)

+ Define clearly what the purpose of a function is: One action
per function for clarity

+ Pass only necessary arguments to function

+ Analyse on paper before programming

+ Define debug possibilities, and use them

+ Order: Header – DocString – Code

+ Debug each bit (line...) of code after writing
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Do’s and Don’ts

Do’s and Don’ts

The don’ts:

- Multipage functions

- Magic numbers in middle of program

- Use globals g vY when not necessary

- Unstructured, spaghetti-code

- Program using ‘write – write – write – debug’...

- Replicate code for similar tasks
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Import modules

import

Enlarging the capabilities of Python beyond basic capabilities:
import Use through:

▶ import package: You’ll have to use package.func() to
access function func() from the package

▶ import package as p: You may use p.func() as shorthand

▶ from package import func: You can use func() directly,
but no other functions from the package

▶ from package import *: You can use all functions from the
package directly

Custom use:
import numpy as np # Shorten numpy to np

import pandas as pd # Etc ...

import matplotlib.pyplot as plt

from lib.incmyfunc import * # Get all my own functions directly

126/235



PPEctr

Import modules

Python modules

Python packages

Package Purpose
numpy Central, linear algebra and statistical operations
scipy Additional scientific python routines
matplotlib.pyplot Graphical capabilities
pandas Input/output, data analysis
... Many others...

Warning: Use packages, but with care. How can you ascertain that
the package computes exactly what you expect? Do you
understand?
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Import modules

Private modules

Private modules

▶ Convenient to package routines into modules, for use from
multiple (related) programs

▶ Stored in local project/lib directory, if only related to current
project

▶ ... or stored at central python/lib directory: Use environment
variable PYTHONPATH to tell Python where modules may be
found; see Spyder – Tools – PYTHONPATH Manager
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Graphics

A module: matplotlib.pyplot
Several options available, here we focus on pyplot.

Listing 38: matplotlib/plot1.py
import matplotlib.pyplot as plt

import numpy as np

# Initialisation

mY= np.random.randn (100, 3)

# Output

plt.figure(figsize =(8 ,4)) # Choose alternate size (def= (6.4 ,4.8))

plt.subplot(2, 1, 1) # Work with 2x1 grid , first plot

plt.plot(mY) # Simply plot the white noise

plt.legend (["a", "b", "c"]) # Add a legend

plt.title("White noise") # ... and a title

plt.subplot(2, 1, 2) # Start with second plot

plt.plot(mY[:,0], mY[:,1:], ".") # Plot here some cross -plots

plt.ylabel("b,c")

plt.xlabel("a")

plt.title("Unrelated data") # ... and name the graph

plt.savefig("graphs/plot1.png"); # Save the result

plt.show() # Done , show it

Details: matplotlib documentation, or e.g. Kevin Sheppard’s
Python Introduction

129/235

https://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/contents.html
https://www.kevinsheppard.com/Python_for_Econometrics


PPEctr

Graphics

A module: matplotlib.pyplot II

Basic plot:

▶ Initialise the plot with plt.figure()

▶ (Optionally) also set the size with
plt.figure(figsize=(8,4)) (I prefer a wider shape)

▶ Graphing appears in subplots, choose i ’th plot out of R × C
using plt.subplot(iR, iC, i) (counting starts at 1,
following matlab customs)

▶ Plot either y values against x-axis (plt.plot(mY))

▶ ... or plot x against y , plt.plot(mY[:,0], mY[:,1:])
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Graphics

A module: matplotlib.pyplot III

Embellish plot:

▶ Place a legend for multiple lines using plt.legend([’a’,

’b’, ’c’])

▶ Alternatively, specify the label with the plot, plt.plot(vY,
label=’y’); plt.legend(). In the latter case, don’t forget
to turn on the legend.

▶ Plot takes extra arguments specifying line types, colours etc:
plt.plot(vX, vY, ’r+’) for red crosses

▶ After drawing the graph, and before showing it, possibly save
the figure, as .eps, .png, .pdf, .jpg, .svg or others,
plt.savefig(’graphs/plot1.png’)
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Graphics

A module: matplotlib.pyplot IV

Figure: The resulting plot1.png
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Graphics

A module: matplotlib.pyplot V

All plotting is done against the last figure and/or axes. This one
can make explicit as well:

Listing 39: matplotlib/plot1b.py
fig= plt.figure(figsize =(8, 6)) # Choose alternate size

ax=fig.add_subplot (2, 1, 1) # Work with 2x1 grid , first plot

ax.plot(mY) # Simply plot the white noise

ax.legend (["a", "b", "c"]) # Add a legend

ax.set_title("White noise") # ... and a title

ax2=fig.add_subplot (2, 1, 2) # Start with second plot

ax2.plot(mY[:,0], mY[:,1:], ".") # Plot here some cross -plots

ax2.set_ylabel("b,c")

ax2.set_xlabel("a")

ax2.set_title("Unrelated data") # ... and name the graph

fig.savefig("graphs/plot1b.png") # Save the result

fig.show() # Done , show figure
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Graphics

A module: matplotlib.pyplot + LATEX

For inclusion in LATEX, true formulas might be nice.
Example:

Listing 40: plot latex.py
plt.rc(’text’, usetex=True) # Start using latex text

plt.figure ()

plt.plot(mY , ’.’) # Simply plot the white noise , with dots

plt.legend ([r’$E=m C^2$’, r’$s=\sum_{i=1}^n y_j$’]) # Add a legend

plt.title(r’Use \textbf {(most)} \LaTeX\ commands {\em at will}’)

plt.savefig(’graphs/plot_latex1.png’)

plt.show()

Note: Without the usetex=True, you can still use simple LATEX
commands, but get different fonts.

134/235



PPEctr

Graphics

A module: matplotlib.pyplot + LATEX II

Figure: The resulting plot latex1.png
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Graphics

A module: matplotlib.pyplot + ???

Other options:

▶ Zillions...

▶ Check the examples

▶ Use google, get some practice!
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A module: Pandas

Extensive set of data analytics and data handling routines, Pandas.
Goal:

▶ Loading/saving

▶ Indexing/selecting

▶ Manipulating

▶ ...

▶ Printing nicely

▶ Plotting

▶ and other?

Initialisation:
import pandas as pd
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Pandas

Pandas Types

From Pandas we’ll use two types:

▶ DataFrame: matrix-like format, with row index and columns

names

▶ Series: vector-like format, with row index and name

import pandas as pd

sData= ’shoesize_bk2020 ’

# Initialisation

df= pd.read_csv(’data/%s.csv’ % sData) # DataFrame

sf= df[’Gender ’] # Series

print (’Type df: %s\nType sf: %s’ % (type(df), type(sf)))

NB: Normally, work with the DataFrame itself... Not much use to
extract the separate series

138/235



PPEctr

Pandas

Pandas Types II

Instead of reading data into a DataFrame, we can also create one
based on data:

dfR= pd.DataFrame(np.random.randn (10,4), columns =[’a’, ’b’, ’c’, ’d’])

print (dfR)

print (dfR.to_latex(float_format=’%.4f’))

Why?

▶ To store a set of results, in a convenient dataframe

▶ Also, to print them in a clean format (even as LATEX)
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Pandas

Pandas Input files
Reading files: Use df= pd.read_... with

▶ csv: Clean input, easy to check in editor or excel, but large in
size

▶ excel: Convenient, but a bit dangerous as each version of
excel behaves differently

▶ csv.gz: Gzipped csv, smaller
▶ hdf, pickle, ...: Many formats available

Extra options (and many others):

▶ CSV: skiprows=8, sep=’;’, for choosing to skip some input,
or indicate the separator

▶ Excel: sheet_name=’Sheet 2’, usecols=[0, 3, 4], for
choosing specific sheet, or only some columns

▶ with both: index_col=[’Year’, ’Period’], to indicate
what column(s) will be the index
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Pandas

Pandas elements
Check the contents of the DataFrame and Series, either printing
all, or only the .head() or .tail():
print (’Head of df: \n’, df.head(), sep=’’)

print (’Tail of sf:\n’, sf.tail(), sep=’’)

resulting in

Head of df:

Shoesize Length Gender

0 45.0 187.0 Male

1 40.0 180.0 Female

2 45.0 185.0 Male

3 43.0 185.0 Male

4 43.0 174.0 Male

Tail of sf:

114 Male

115 Male

116 Male

117 Male

118 Male

Name: Gender, dtype: object

Notice: index 0, .., 118, columns Shoesize, Length,

Gender, Name: Gender
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Pandas

Pandas: Information
Check out the contents of the data with e.g.

▶ df.head(), df.tail(), df: Either show a part, or the full
data frame (or a limited number of rows and columns, that is)

▶ df.mean(), df.var(), df.min(), df.max(): Find the
mean/var/min/max over the columns

▶ df.info(), df.describe(): More detailed information on
the contents

▶ df.shape, df.size: What shape (rows × columns) or size
(number of elements) is it?

▶ df.index, df.columns: What are the row/column indices?
▶ ...

and especially:

▶ df.values: Extract the values from the dataframe, as a
numpy matrix...!
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Pandas

Pandas: Indexing

Different methods:
asC= [’Shoesize’, ’Length’]; asR= range(4, 8)

df[asC] Select columns by name
vI= df[’Gender’] == ’Male’; df[vI] Select rows by boolean masking
df.loc[asR,:] Select rows by index, all columns
df.loc[asR, asC] Subset of rows and columns
df.iloc[8, 2] Read out single element, indexed by integer row/-

column location
df.iloc[vR, vC] Subset of rows and columns, indexed by integer

ranges
Remarks:

▶ Needs practice...

▶ I regularly move to a NumPy matrix/array, leaving DataFrames
only for input/output
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Pandas

Pandas: Advanced indexing I

What if I want to find the average length of the males?

a. Index, find only the males: vI= df[’Gender’] == ’Male’;

dfM= df[vI]; dfM[’Length’].mean()

b. Move to wide instead of long table...

Definition:

▶ Long format: All subjects are placed one below the other,
with observations on the necessary variables in a single row

▶ Wide format: Observations on several types of subjects may
be placed next to eachother, for the same index

144/235



PPEctr

Pandas

Pandas: Long vs wide

Long vs. wide table

df1= df.pivot(columns=’Gender ’, values =[’Shoesize ’, ’Length ’])

df1[asC].mean() # Give means of both values , per Gender

Here: Not too useful. But what about data with observations for
each month/quarter/half year?
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Pandas

Pandas: Advanced indexing II

With pivoted table, one gets to MultiIndex tables:

In[74]: df1.columns

Out [74]: MultiIndex ([(’Shoesize ’, ’Female ’),

(’Shoesize ’, ’Male’),

( ’Length ’, ’Female ’),

( ’Length ’, ’Male’)],

names=[None , ’Gender ’])

Or: Index contains both variable name and pivot value, in a tuple.
Hence: Select a single column with a tuple etc:

df1[(’Shoesize ’, ’Male’)]. mean() # Single mean

df1[’Shoesize ’].mean() # Both Female and Male means

Warning: Do try this at home... Options, way to work with
MultiIndex, takes lots of practice...
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Pandas

Pandas: Saving

With data, you also want to save... Options: Many...
Personal preference (with e.g. sData=’shoesize_bk2020’):

1. df.to_csv(’data/%s_out.csv’ % sData): Clean csv file,
easy to read in editor or excel, robust

2. df.to_csv(’data/%s_out.csv.gz’ % sData): Clean csv
file, but gzipped: Smaller, quite easy to read in editor or excel

3. df.to_excel(’data/%s_out.xlsx’ % sData): Pure excel
file (but with limits on number of columns/rows!)

4. df.to_excel(’data/%s_out.ods’ % sData): Pure
OpenDocument format file (but with limits on number of
columns/rows!)
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Pandas

Pandas: Saving II

Extra options for saving:

▶ df.to_...(sOut, index=False): Do not write the index
column along (sometimes not informative)

▶
df.to_excel(sOut, sheet_name=’BK2020 shoe sizes vs length’)

(and many others... Do check the excellent reference guide at as
well!)
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Pandas: Plotting
Plotting is a separate chapter, with too many details to cover here.
Hence an example:
df.plot.area(figsize =(8 ,4))

df.plot.area(subplots=True)

df.plot.density(subplots=True)

plt.figure(figsize =(8 ,4))

df.plot.box()

plt.savefig(’graphs/shoesize_box ’)

plt.show()

Figure: Shoesize and length of 2020 class of BK Statistics

Q: What is the origin of those dots at the bottom of the figure?
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Pandas

Pandas: Printing

And at last, the printing: Often, I write results as a DataFrame, as
in

Listing 41: pandas print.py
vP0= np.array ([0.5, 1, 4])

vP= np.array ([0.745 , .986, 3.74])

vS= np.array ([.045 , .062, .254])

asR= [’B0’, ’B1’, ’s2’]

asC= [’p0’, ’pHat’, ’sHat’]

mRes= np.vstack ([vP0 , vP, vS]).T # Stack underneath , transpose

df= pd.DataFrame(mRes , index=asR , columns=asC)

print ("Simply printing the dataframe:")

print (df)

print ("\nPrinting the dataframe towards LaTeX:")

print (df.to_latex(float_format=’%6.3f’))
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Pandas

Pandas: Other

And further?

▶ Unimaginable, what Pandas may do for you

▶ Do check the manuals, great

▶ Prediction: Your usage of Pandas may explode, once you get
hooked...
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Day 3

Overview

Principles of Programming in Econometrics

D0: Syntax, example 28 D1: Structure, scope

D2: Numerics, packages D3: Optimisation, speed
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Day 3

Day 3: Optimisation

▶ Optimization (minimize)
▶ Idea behind optimization
▶ Gauss-Newton/Newton-Raphson
▶ Stream/order of function calls

▶ Standard deviations

▶ Restrictions

▶ Speed
▶ Practical

▶ Regression: Maximize likelihood
▶ GARCH-M: Intro and likelihood
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Optimisation
Doing Econometrics ≡ estimating models, e.g.:

1. Optimise likelihood

2. Minimise sum of squared residuals

3. Minimise difference in moments

4. Solving utility problems (macro/micro)

5. Do Bayesian simulation, MCMC

Options 1-3 evolve around

θ̂ = argmin
θ

f (y ; θ), f (y ; θ) : ℜp → ℜ

Option 4 evolves around

r(y ; θ̂) ≡ 0, r(y ; θ) : ℜp → ℜp
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Optimisation

Example

For simplicity: Econometrics example, ...

l(y ; θ) = − 1

2n

n∑
i=1

(
log 2π + log σ2 +

(yi − µ)2

σ2

)

 3.4
 3.6

 3.8
 4

 4.2
 4.4

 4.6
 4.8

 5

µ
 1.4  1.6  1.8  2  2.2  2.4  2.6σ

-2.3

-2.25

-2.2

-2.15

-2.1

-2.05

-2

-1.95

ln

Relatively simple function to optimize, but how?
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Example II

... translated to Macro/Micro solving equations

r(y ; θ) ≡ ∂l(y ; θ)

∂θ
=

(
1

nσ2

∑
(yi − µ)

− 1
σ +

∑
(yi−µ)2

nσ3

)

 3.4
 3.6

 3.8
 4

 4.2
 4.4

 4.6
 4.8

 5

µ
 1.4  1.6  1.8  2  2.2  2.4  2.6σ

-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

r1

 3.4
 3.6

 3.8
 4

 4.2
 4.4

 4.6
 4.8

 5

µ
 1.4  1.6  1.8  2  2.2  2.4  2.6σ

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

r2

Score = derivative of (avg) loglikelihood l(y ; θ), ℜ2 → ℜ2
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Optimisation

Crawling up a hill

Step back and concentrate:

▶ Searching for

θ̂ = argminθ f (y ; θ) = argmaxθ −f (y ; θ)

▶ How would you do that?

▶ Imagine Alps:

a. Step outside hotel
b. What way goes up?
c. Start Crawling up a hill
d. Continue for a while
e. If not at top, go to b.
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Optimisation

Use function characteristics

Translate to mathematics:

a. Set j = 0, start in some point θ(j)

b. Choose a direction s

c. Move distance α in that direction, θ(j+1) = θ(j) + αs

d. Increase j , and if not at top continue from b

Direction s: Linked to gradient?
Minimum: Gradient 0, second derivative positive definite?
(Maximum: Gradient 0, second derivative negative definite?)
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Optimisation

Ingredients

Ingredients

Inputs are

▶ f , use (negative) average log likelihood, or average
sum-of-squares;

▶ Starting value θ(0);

▶ Possibly g = f ′, analytical first derivatives of f ;

▶ (and possibly H = f ′′, analytical second derivatives of f ).

or

▶ r , use set of equations, if necessary scaled;

▶ Starting value θ(0);

▶ If available J = r ′, analytical Jacobian of r
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Ingredients

Ingredients II (optimize)

f (θ) : ℜp → ℜ Function, scalar

f ′(θ) =

[
∂f (θ)

∂θ1
, . . . ,

∂f (θ)

∂θp

]T
≡ g Derivative, gradient, p × 1

f ′′(θ) =

[
∂2f (θ)

∂θi∂θj

]p
i ,j=1

≡ H Second derivative, Hessian, p × p

If derivatives are continuous (as we assume), then

∂2f (θ)

∂θi∂θj
=

∂2f (θ)

∂θj∂θi
H = HT

Hessian symmetric
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Optimisation

Ingredients

Ingredients III (solve)

r(θ) : ℜp → ℜp Function, p × 1

r ′(θ) =

[
∂r(θ)

∂θ1
, . . . ,

∂r(θ)

∂θp

]
≡ J Derivative, Jacobian, p × p

No reason for Jacobian to be symmetric
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Newton-Raphson and friends

Newton-Raphson for minimisation
▶ Approximate f (θ) locally with quadratic function

f (θ + h) ≈ q(h) = f (θ) + hT f ′(θ) +
1

2
hT f ′′(θ)h

▶ Minimise q(h) (instead of f (θ + h))

q′(h) = f ′(θ) + f ′′(θ)h = 0 ⇔ f ′′(θ)h = −f ′(θ) or Hh = −g

by solving last expression, h = −H−1g

▶ Set θ = θ + h, and repeat as necessary

Problems:

▶ Is H positive definite/invertible, at each step?

▶ Is step h, of length ||h||, too big or small?

▶ Do we converge to true solution?
162/235



PPEctr

Optimisation

Newton-Raphson and friends

Newton-Raphson for solving equations
▶ Approximate r(y ; θ) locally with linear function

r(θ + h) ≈ q′(h) = r(θ) + r ′(θ)h

▶ Solve q′(h) = 0 (instead of r(θ + h) = 0)

q′(h) = r(θ) + r ′(θ)h = 0 ⇔ r ′(θ)h = −r(θ) or Jh = −r

by solving last expression, h = −J−1r

▶ Set θ = θ + h, and repeat as necessary

Problems:

▶ Is J positive definite/invertible, at each step?

▶ Is step h, of length ||h||, too big or small?

▶ Do we converge to true solution?
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Newton-Raphson and friends

Newton-Raphson II

f (θ) = −e−(θ−1)2 − 1.5e−(θ−3)2 − .2
√
θ

▶ How does the algorithm converge?
▶ Where does it converge to?

ipython np newton show2, theta= 5.9/1/0.1/0.4
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Optimisation

Newton-Raphson and friends

Problematic Hessian?

Algorithms based on NR need Hj = f ′′(θ(j)). Problematic:

▶ Taking derivatives is not stable (...)

▶ Needs many function-evaluations

▶ H not guaranteed to be positive definite

Problem is in step

sj = −Hj
−1gj ≈ −Mjgj

Replace Hj
−1 by some Mj , positive definite by definition?
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Newton-Raphson and friends

BFGS
Broyden, Fletcher, Goldfarb and Shanno (BFGS) thought of
following trick:

1. Start with j = 0 and positive definite Mj , e.g. M0 = I
2. Calculate sj = −Mjgj , with gj = f ′(θ(j))
3. Find new θ(j+1) = θ(j) + hj , hj = αsj
4. Calculate, with qj = gj − gj+1

Mj+1 = Mj +

(
1 +

q′jMjqj

h′jqj

)
hjh

′
j

h′jqj

− 1

h′jqj

(
hjq

′
jMj +Mjqjh

′
j

)
Result:
▶ No Hessian needed
▶ Still good convergence
▶ No problems with negative definite Hj

⇒ scipy.optimize.minimize(method="BFGS", ...) in
Python, similar routines in Ox/Matlab/Gauss/other.
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Inputs
Inputs could be

▶ f , use (negative) average log likelihood, or average
sum-of-squares.

▶ Starting value θ0
▶ Possibly f ′, analytical first derivatives of f .

θ̂ = argmin
θ

f (y ; θ), f (y ; θ) : ℜp → ℜ

Or one could need

▶ Set of conditions to be solved,

▶ preferably nicely scaled,

r(y ; θ̂) ≡ 0, r(y ; θ) : ℜp → ℜp
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Likelihood

Model

yi ∼ N (Xiβ, σ
2)

ML maximises (log-)likelihood (other options: Minimise
sum-of-squares, optimise utility etc):

Li (yi ; θ) =
1√
2πσ2

exp

(
−(yi − Xiβ)

2

2σ2

)
L(y ; θ) =

∏
i

Li (yi ; θ)

In this case, e.g. θ = (σ, β)
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Likelihood

Function f

Write towards function f , to minimise:

log Li (yi ; θ) = −1

2

(
log 2π + log σ2 +

1

σ2
(yi − Xiβ)

2

)
f (y ,X ; θ) = −1

n

∑
log Li (yi ; θ)

For testing:

▶ Work with generated data, e.g. n = 100, β =< 1, 1, 1 >′, σ =
1,X = [1,U2,U3], y = Xβ + ϵ, ϵ ∼ N (0, σ2)

▶ Ensure you have the data...
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Optimisation in practice

Likelihood

Function r
Remember solving r(y ; θ) ≡ 0? One could take
r(y ; θ) = g(y ; θ) = f ′(y ; θ),

f (y ,X ; θ) =
1

2

(
log 2π + log σ2 +

1

nσ2

∑
(yi − Xiβ)

2

)
e = y − Xβ

∂f (y ; θ)

∂β
= ...

∂f (y ; θ)

∂σ
= ...

▶ In this case, it matters whether θ = (σ, β), or θ = (β, σ), or
even θ = (β, σ2)!

▶ Find score of NEGATIVE AVERAGE loglikelihood

(and for now, first concentrate of f , afterwards we’ll fill in r)
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Optimisation in practice

Likelihood

Comments of function

Listing 42: estnorm.py
# ##########################################################

### vLL= LnLRegr(vP , vY , mX)

def LnLRegr(vP , vY , mX):

"""

Purpose:

Compute loglikelihood of regression model

Inputs:

vP iK+1 vector of parameters , with sigma and beta

vY iN vector of data

mX iN x iK matrix of regressors

Return value:

vLL iN vector , loglikelihood

"""

Note: Full set of inputs including data. Parameters vP and vY both in 1D vector, mX as 2D matrix.
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Optimisation in practice

Likelihood

Body of function

Listing 43: estnorm.py
def LnLRegr(vP , vY , mX):

(iN , iK)= mX.shape

if (np.size(vP) != iK+1): # Check if vP is as expected

print ("Warning: wrong size vP= ", vP)

(dSigma , vBeta)= (vP[0], vP[1:]) # Extract parameters

...

return vLL

172/235



PPEctr

Optimisation in practice

Likelihood

Body of function II

and fill in the remainder

Listing 44: estnorm.py
def LnLRegr(vP , vY , mX):

...

vE= vY - mX @ vBeta

vLL= -0.5*(np.log(2*np.pi) + 2*np.log(dSigma) + np.square(vE/dSigma ))

print (".", end="") # Give sign of life

return vLL
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Optimisation in practice

Likelihood

Intermezzo: On robustness

WARNING:

▶ Check sizes of arguments to LL LnLRegr function carefully...

▶ Both y and θ should be 1D vectors, not 2D columns

▶ Calculate LL per observation

▶ Possibly, alternative: Return dLL= np.sum(vLL, axis= 0),
explicitly along axis 0, instead.

What could go wrong?

174/235



PPEctr

Optimisation in practice

Likelihood

Intermezzo: On robustness II

What could go wrong?

iN= 10; dSigma= 1;

vBeta= np.array([1, 1, 1]) # 1D array

iK= vBeta.size

vY= np.random.randn(iN, 1) # 2D array , breaking rule!

mX= np.random.rand(iN, iK) # 2D array

vE= vY - mX@vBeta # 2D array , shape (iN , iN)!

vLL= -0.5*(np.log(2*np.pi) + 2*np.log(dSigma) + np.square(vE/dSigma ))

dLL1= np.sum(vLL) # No error , nice scalar , but WRONG

dLL2= np.sum(vLL , axis =0) # No error , but 1D (iN ,) vector , detectable

print ("Shape dLL1: ", dLL1.shape)

print ("Shape dLL2: ", dLL2.shape)

Watch out: The above np.sum(vLL) takes, without error, the sum
over a full matrix...
Instead, force np.sum(vLL, axis=0) to take sum over the first
axis! Watch out with shapes/dimensions
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Likelihood

... And optimize? NO!
Before you continue: Check the loglikelihood

▶ Does it work at all?

▶ Is the total/average LL higher for a ‘good’ set of parameters,
low for ‘bad’ parameters?

▶ Is it reasonably efficient?

▶ How does it react to incorrect shape of parameters/data?

▶ How does it react to incorrect parameters (σ ≤ 0)?

Latter question, several options:

1. Don’t allow it, set dSigma= np.fabs(vP[0])

2. Flag that things go wrong: if (dSigma <= 0): return

-math.inf * np.ones(iN)

3. Use constrained optimisation, e.g. Sequential Least SQuares
Programming (SLSQP)
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Optimisation in practice

Likelihood

... And optimize? NO!
Before you continue: Check the loglikelihood

▶ Does it work at all?

▶ Is the total/average LL higher for a ‘good’ set of parameters,
low for ‘bad’ parameters?

▶ Is it reasonably efficient?

▶ How does it react to incorrect shape of parameters/data?

▶ How does it react to incorrect parameters (σ ≤ 0)?

Latter question, several options:

1. Don’t allow it, set dSigma= np.fabs(vP[0])

2. Flag that things go wrong: if (dSigma <= 0): return

-math.inf * np.ones(iN)

3. Use constrained optimisation, e.g. Sequential Least SQuares
Programming (SLSQP)
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Optimisation in practice

Minimize syntax

Minimize: Syntax

(In Python) Function to minimize should have a format

dF= fnFunc(vP)

dF= fnFunc(vP, a, b, c) # Alternative , not used in this document

where a, b, c are some optional parameters, not used by Python

▶ Choose your own logical function name

▶ vP is a p 1-dimensional array with parameters

▶ dF is the function value, or a missing/∞ if function could not
be evaluated

See the manual of SciPy’s optimize functions
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Optimisation in practice

Minimize syntax

Minimize: Syntax II

No space for data? Negative average LL instead of LL per
observation? Use local Lambda function, providing the function to
minimize as

Listing 45: estnorm.py
# Create lambda function returning NEGATIVE AVERAGE LL , as function of vP only

AvgNLnLRegr= lambda vP: -np.mean(LnLRegr(vP , vY, mX), axis =0)

Advantage:

▶ Simply return the negative average of your previously prepared
function

▶ Value of data vY, mX at moment of call is passed along

▶ No globals needed!

Alternative: Construct function AvgNLnLRegrXY(vP, vY, mX), and call opt.minimize(AvgNLnLRegr, vP0,

args=(vY, mX), method="BFGS")
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Minimize syntax

Minimize: Syntax III

Call scipy.opt.minimize() according to

import scipy.optimize as opt

...

res= opt.minimize(fnFunc , vP0 , method="BFGS")

▶ fnFunc is the name of the function

▶ vP0 is a 1D array of initial parameters

▶ method="BFGS" indicates we want to use this method for
optimisation

The return value res is a structure containing results.
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Minimize syntax

Minimize: Syntax IV

After optimisation:

▶ Always check the outcome:

res= opt.minimize(AvgNLnLRegr , vP0 , method="BFGS")

vP= np.copy(res.x) # For safety , make a fresh copy

sMess= res.message

dLL= -iN*res.fun

print ("\nBFGS results in ", sMess , "\nPars: ", vP , "\nLL= ", dLL)

# print (" Full results: ", res)

▶ Possibly start thinking of using the outcome (standard errors,
predictions, policy evaluation, robustness . . . )
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Optimisation & flow

Optimisation

Approach for general criterion function f (y ; θ): Write

f (θ + h) ≈ q(h) = f (θ) + hTg(θ) +
1

2
hTH(θ)h

g(θ) =
∂

∂θ
f (y ; θ)

H(θ) =
∂2

∂θ∂θ′
f (y ; θ)

Optimise approximate q(h):

g(θ) + H(θ)h = 0 First order conditions

⇔ θnew = θ − H(θ)−1g(θ)

and iterate into oblivion.
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Optimisation & flow

opt.minimize(method=”BFGS”): Program flow

BFGS Gradient Move End
Conv

No conv

fn
fn

fn
fn

fn
fn

fn
fn

Flow:

1. You call opt.minimize(..., method="BFGS")

2. ... which calls Gradient
3. ... which calls your function, multiple times.
4. Afterwards, it makes a move, choosing a step size
5. ... by calling your function multiple times,
6. ... and decides if it converged.
7. If not, repeat from 2.
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Optimisation & flow

BFGS: Program flow II

Check out estnorm plot.py (p = 3, n = 100)
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Average loglikelihood

Minimize: Average
Why use average loglikelihood?

1. Likelihood function L(y ; θ) tends to have tiny values →
possible problem with precision

2. Loglikelihood function log L(y ; θ) depends on number of
observations: Large sample may lead to large |LL|, not stable

3. Average loglikelihood tends to be moderate in numbers,
well-scaled...

Better from a numerical precision point-of-view.
Warning:

Take care with score and standard errors (see later)

Warning 2:
Average is only for numerical reasons — always report full
loglikelihood among outcomes
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Optimisation in practice

Average loglikelihood

Minimize: Average
Why use average loglikelihood?

1. Likelihood function L(y ; θ) tends to have tiny values →
possible problem with precision

2. Loglikelihood function log L(y ; θ) depends on number of
observations: Large sample may lead to large |LL|, not stable

3. Average loglikelihood tends to be moderate in numbers,
well-scaled...

Better from a numerical precision point-of-view.
Warning:

Take care with score and standard errors (see later)

Warning 2:
Average is only for numerical reasons — always report full
loglikelihood among outcomes
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Precision/convergence

Minimize: Precision

Optimisation is said to be successfull if (roughly):

1. ||g (j)(θ(j))|| ≤ gtol, with g (j) the score at θ(j), at iteration j :
Scores are relatively small.

Note: Check 1 also depends on the scale of your function...
Preferably f (θ) ≈ 1, not f (θ) ≈ 1e − 15!

Adapt the precision with
res= opt.minimize(AvgNLnLRegr, vP0, args=(),

method="BFGS", tol= 1e-4),
default is tol=1e-5.
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Score function

Minimize: Scores
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neg.LL x σ

Optimising ≡ ‘going
down’
≡ finding gradient.

Numerical gradient, for small h:

f ′(θ) =
∂f (θ)

∂θ
≈ f (θ + h)− f (θ)

h
≈ f (θ + h)− f (θ − h)

2h

Function evaluations: 2× dim(θ)

Preferred: Analytical score f ′(θ)
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Score function

Minimize: Scores II

# Get a lambda function to return score , for NEGATIVE AVERAGE LL

AvgNLnLRegr_Sc= lambda vP: -np.mean(LnLRegr_Sc(vP, mY , mX))

▶ Provide a score function for loglikelihood vector

▶ Work out vector of scores, of same size as θ.

▶ DEBUG! Check your score against opt.approx fprime()
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Optimisation in practice

Score function

Minimize: Scores IIb

▶ ...

▶ DEBUG! Check your score against opt.approx fprime() or
gradient 2sided

Listing 46: estnorm score3.py
vSc0= AvgNLnLRegr_Sc(vP0 , vY , mX)

vSc1= opt.approx_fprime(vP0 , AvgNLnLRegr , 1e-5*np.fabs(vP0))

vSc2= gradient_2sided(AvgNLnLRegr , vP0)

print ("Scores , analytical and numerical :\n", np.vstack ([vSc0 , vSc1 , vSc2 ]))

Don’t ever forget debugging this
(goes wrong 100% of the time...)
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Score function

Minimize: Scores III
Let’s do it. . .

f (y ; θ) =
1

2

(
log 2π + 2 log σ +

∑
(yi − Xiβ)

2

nσ2

)
e = y − Xβ

∂f (y ; θ)

∂σ
= ...

∂f (y ; θ)

∂β
= ...

▶ It matters whether θ = (β, σ) or θ = (β, σ2) or θ = (σ, β)!
▶ Find score of AVERAGE NEGATIVE loglikelihood, in general

of function f ()
▶ (In estnorm score3.py, for simplicity, score of vLL is taken,

which later is combined into score of AvgNLnLRegr)
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Score function

Minimize: Scores Results

Output of estnorm.py:

BFGS results in Optimization terminated successfully.

Pars: [ 0.09888969 5.01707341 1.9962231 -2.01475073]

LL= 89.48117606217971 , f-eval= 230

Output of estnorm score3.py:

BFGS results in Optimization terminated successfully.

Pars: [ 0.09888969 5.01707342 1.9962231 -2.01475074]

LL= 89.48117606217936 , f-eval= 40

Q: What are the differences?
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Solve

Remember:

r(y ; θ) = 0

Use function scipy.optimize.least squares, with basic syntax

import scipy.optimize as opt

# ###################################################################

### vF= fnFunc0(vP)

def fnFunc0(vP):

vF= ... // k 1D vector , should be 0 at solution

return vF

res= opt.least_squares(fnFunc0 , x0)

print ("Nonlin LS returns ", res.message , "\nParameters ", res.x)
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Solve nonlinear equations

Solve II

import scipy.optimize as opt

res= opt.least_squares(fnFunc0 , x0)

print ("Nonlin LS returns ", res.message , "\nParameters ", res.x)

▶ General idea similar to minimize

▶ Solves nonlinear least squares problems

▶ Again, extra arguments can easily be passed through Lambda
function:
fnFunc1L= lambda vP: fnFunc1(vP, a1, a2),
where fnFunc1L(vP) is the lambda function calling the
original fnFunc1(vP, a1, a2) which depends on multiple
arguments.

▶ Further options available, check manual.
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Example: Solve Macro

Given the parameters θ = (pH , ν1), depending on input
y = (σ1, σ2), a certain system describes the equilibrium in an
economy if

r(y ; θ) =

p
− 1

σ1
H ν1 + p

− 1
σ2

H (1− ν1)− 2

p
σ1−1
σ1

H ν1 + ν1 − pH − 1
2

 = 0.

For the solution to be sensible, it should hold that 0 < ν1 < 1 and
pH ̸= 0.
If y = (2, 2), what are the optimal values of θ = (pH , ν1)?
Solution: θ̂ = (0.25, .5)
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Example: Solve Macro II

Starting point as before: Prepare the restriction function, e.g.

# ##########################################################

### vF= EquilMacro (vP , vS)

def EquilMacro(vP, vS):

"""

Purpose:

Check the equilibrium in some specific problem from TI -Macro I

Inputs:

vP 2 vector with pH and Nu1

vS 2 vector , relative risk aversions

Return value:

vF 2 vector , with distance from equilibrium

"""

It will indeed:

▶ need the parameters θ = (pH , ν1)

▶ need the data y = (σ1, σ2)

▶ return the value of the restriction, r(y ; θ)
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Example: Solve Macro III

Step 2: Read out the parameters, prepare the output:

def EquilMacro(vP, vS):

vF= np.ones_like(vP)

(dpH , dNu1)= vP

(dS1 , dS2)= vS

...

print (".", end="") # Give sign of life

return vF

Q: Why would I initially set vF to a vector of ones, and not a
vector of zeros?
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Example: Solve Macro III

Step 3: Then compute the r(y ; θ) function

r(y ; θ) =

p
− 1

σ1
H ν1 + p

− 1
σ2

H (1− ν1)− 2

p
σ1−1
σ1

H ν1 + ν1 − pH − 1
2


def EquilMacro(vP, vS):

...

vF[0]= (1.0 / dpH )**(1.0 /dS1)*dNu1 + (1.0 / dpH )**(1.0 / dS2 )*(1.0 - dNu1)-2

vF[1]= dpH**( (dS1 -1)/ dS1)*dNu1+dNu1 -dpH -(1/2)

...

return vF
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Example: Solve Macro IV

Step 4: Try things out, and solve!

Listing 47: solvemacro.py
def main ():

# Magic numbers

vS= [2, 2] # Data

vP= [10, .9] # Initial parameters

# Estimation

vF= EquilMacro(vP, vS)

print ("\nInitial distance vF= ", vF, "at vP= ", vP)

EquilMacroL= lambda vP: EquilMacro(vP, vS)

res= opt.least_squares(EquilMacroL , vP)

And check the results
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Example: Solve Macro V

Results:
.

Initial distance vF= [ -1.68377223 -6.75395011] at vP= [10, 0.9]

solvemacro.py:47: RuntimeWarning: invalid value encountered in double_scalars

vF[0]= (1.0 / dpH )**(1.0 /dS1)*dNu1 + (1.0 / dpH )**(1.0 / dS2 )*(1.0 - dNu1)-2

solvemacro.py:48: RuntimeWarning: invalid value encountered in double_scalars

vF[1]= dpH**( (dS1 -1)/ dS1)*dNu1+dNu1 -dpH -(1/2)

.............................

NLS returns ‘gtol ‘ termination condition is satisfied.

Parameters: [0.25 0.5 ]

The distance to equilibrium is [ 6.57252031e-14 -3.88578059e-16]

Success!
Q: What is your opinion of those warnings? Would you
investigate? If yes, how?
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Standard deviations

Standard deviations

Given a model with

L(Y ; θ) Likelihood function

l(Y ; θ) = logL(Y ; θ) Log likelihood function

θ̂ = argmaxθl(Y ; θ) ML estimator

what is the vector of standard deviations, σ(θ̂)?
Assuming correct model specification,

Σ(θ̂) = −H(θ̂)−1

H(θ̂) =
∂2l(Y ; θ)

∂θ∂θ′

⌋
θ=θ̂
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Standard deviations

SD2: Average likelihood
For numerical stability, optimise average negative loglikelihood ln.
For regression model, with the likelihood approach, one can use

l(Y ; θ) = −(y − Xβ)′(y − Xβ)

2σ2
− N log 2πσ2 + c

ln(Y ; θ) =
(y − Xβ)′(y − Xβ)

2Nσ2
+ log 2πσ2 − c ′

Hln
≡ ∂2ln(Y ; θ)

∂θ∂θ′
= − 1

N
Hl Hl ≡ −NHln

Listing 48: estnorm.py
res= opt.minimize(AvgNLnLRegr , vP0 , method="BFGS")

vP= res.x

mHn= hessian_2sided(AvgNLnLRegr , vP)

mH= -iN*mHn

mS2= -np.linalg.inv(mH)

vS= np.sqrt(np.diag(mS2))

print ("\nBFGS results in ", res.message ,

"\nPars: ", vP ,

"\nStdev: ", vS

"\nLL= ", -iN*res.fun , ", f-eval= ", res.nfev) 200/235
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Standard deviations

SD2: Hessian...

Hessian:

▶ is numerically unstable

▶ defines your standard errors

▶ hence is utterly important

▶ should be calculated with care!

But first: Check the gradient (simpler)
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Standard deviations

SD2: Gradient...

Gradient:

g =
∂f (θ)

∂θ
≈ f (θ + h)− f (θ)

h
≈ f (θ + h)− f (θ − h)

2h

▶ Central difference far more precise than forward difference

▶ Step size hi should depend on θi , different per element

▶ Rounding errors can become enormous, when h too small

▶ Python seems to provide scipy.optimize.approx fprime,
forward difference

▶ ... and symbolic differentiation (better, slower, not pursued
here)

⇒ lib/grad.py contains gradient 2sided()
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Standard deviations

SD2: gradient 2sided

⇒ lib/grad.py contains gradient 2sided() (simplified here)

Listing 49: lib/grad.py
def gradient_2sided(fun , vP , *args):

iP = np.size(vP)

vP= vP.reshape(iP) # Ensure vP is 1D-array

vh = 1e-8*(np.fabs(vP)+1e-8) # Find stepsize

mh = np.diag(vh) # Build a diagonal matrix

fp = np.zeros(iP)

fm = np.zeros(iP)

for i in range(iP): # Find f(x+h), f(x-h)

fp[i] = fun(vP+mh[i], *args)

fm[i] = fun(vP-mh[i], *args)

vG= (fp - fm) / (2*vh) # Get central gradient

return vG
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SD2: Gradient II

Listing 50: opt/estnorm score.py
vSc0= AvgNLnLRegr_Jac(vP0 , vY, mX)

vSc1= opt.approx_fprime(vP0 , AvgNLnLRegr , 1e-5*np.fabs(vP0), vY , mX)

vSc2= gradient_2sided(AvgNLnLRegr , vP0 , vY, mX)

print ("\nScores :\n",

pd.DataFrame(np.vstack ([vSc0 , vSc1 , vSc2]), index=["Analytical", "grad_1sided", "grad_2sided"]))

results in
Scores:

0 1 2 3

Analytical -7.965135 -2.863504 -1.502223 -1.341437

grad_1sided -7.965005 -2.863499 -1.502222 -1.341435

grad_2sided -7.965135 -2.863504 -1.502223 -1.341437

Q: What do you prefer?
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Standard deviations

SD2: Hessian II
Back to Hessian:
▶ lib/grad.py contains gradient 2sided() and

hessian 2sided() (source: Python for Econometrics, Kevin
Sheppard, with minor alterations)

▶ DO NOT use scipy.misc.derivative, as it allows only for a
single constant difference h, applied in all directions

▶ DO NOT EVER use the output from res= opt.minimize(),
where res.hess inv seems to be some inverse hessian
estimate. (Indeed, it is some estimate, useful for BFGS
optimisation, not for computing standard errors)

▶ (Same result can be obtained from NumDiffTools. However, here you have to understand what you are

doing...)

Conclusion:

1. For standard errors: Feel free to copy code
2. Possibly better: Use improved covariance matrix, sandwich

form. See Econometrics course 205/235
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Optimization and restrictions

Take model

y = Xβ + ϵ, ϵ ∼ N (0, σ2)

Parameter vector θ = (σ, β′)′ is clearly restricted, as σ ∈ [0,∞) or
σ2 ∈ [0,∞)

▶ Newton-based method (BFGS) doesn’t know about ranges

▶ Alternative optimization (SLSQP) may be(?) slower/worse
convergence, but simpler

Hence: First tricks for SLSQP.

Warning: Don’t use SLSQP (or any optimization...) unless you
know what you’re doing (the function looks attractive, but isn’t
always...)
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SLSQP

Restrictions: SLSQP

minimize(method="SLSQP") is an alternative to
minimize(method="BFGS")

▶ Without restrictions, delivers results similar to BFGS

▶ Allows for sequential quadratic programming solution, for
linear and non-linear restrictions.

General call:
res= opt.minimize(fun , vP0 , method="SLSQP", args=(),

bounds=tBounds , constraints=tCon)
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SLSQP

SLSQP IIa

Restrictions:

1. bounds: Tuple of form tBounds= ((l0, u0), (l1, u1),

...) with lower and upper bounds per parameter (use None if
no restriction)

2. ...

Listing 51: estnorm slsqp.py
# Fix sigma > 0, -inf < beta < inf

tBounds= ((0, None),) + iK*((None , None),) # Concatenate 1 + K tuples

res= opt.minimize(AvgNLnLRegr , vP0 , method="SLSQP", bounds=tBounds)
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SLSQP

SLSQP IIb

Restrictions, alternative:

1. ...

2. constraints: Tuple of dictionaries with entry ‘type’,
indicating whether the function indicates an inequality
(”ineq”) or equality (”eq”), and entry ‘fun’, giving a function
of a single argument which returns the constrained value. E.g.
tCons= ({’type’: ’ineq’, ’fun’: fngt0},
{’type’: ’eq’, ’fun’: fneq0})

Listing 52: estnorm slsqp.py
# Or , alternatively

fnsigmapos= lambda vP: vP[0] # Function which returns sigma only

tCons= ({’type’: ’ineq’, ’fun’: fnsigmapos })

res= opt.minimize(AvgNLnLRegr , vP0 , method="SLSQP", constraints=tCons)

See manual for more details...
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SLSQP

SLSQP III

Advantages:

▶ Simple

▶ Implements restrictions on parameter space (e.g.
σ > 0, 0 < α+ δ < 1)

Disadvantages:

▶ BFGS is meant for global optimisation; SLSQP might work
worse

▶ Often better to incorporate restrictions in parameter
transformation: Estimate θ = log σ,−∞ < θ < ∞

So check out transformations...
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Transforming parameters

Transforming parameters

Variance parameter positive?
Solutions:

1. Use σ2 as parameter, have AvgLnLiklRegr return -math.inf
when negative σ2 is found

2. Use σ ≡ |θ0| as parameter, ie forget the sign altogether
(doesn’t matter for optimisation, interpret negative σ in
outcome as positive value)

3. Transform, optimise θ∗0 = log σ ∈ (−∞,∞), no trouble for
optimisation

Last option most common, most robust, neatest.
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Transforming parameters

Transform: Common transformations

Constraint θ∗ θ

[0,∞) log(θ) exp(θ∗)

[0, 1] log
(

θ
1−θ

)
exp(θ∗)

1+exp(θ∗)

Of course, to get a range of [L,U], use a rescaled [0, 1]
transformation.
Note: See also exercise transpar
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Transforming parameters

Transform: General solution

Distinguish θ = (σ, β′)′ and θ∗ = (log σ, β′)′. Steps:

▶ Get starting values θ

▶ Transform to θ∗

▶ Optimize θ∗, transforming back within LL routine

▶ Transform optimal θ∗ back to θ

Listing 53: opt/estnorm tr.py
# Prepare wrapping function

def AvgNLnLiklRegrTr(vPTr):

vP= np.copy(vPTr) # Remember to COPY vPTr to a NEW variable

vP[0]= np.exp(vPTr [0])

return AvgNLnLiklRegr(vP) # Use old function , of untransformed parameters

...

vP0Tr= np.copy(vP0) # Remember to COPY vP0 to a NEW variable

vP0Tr [0]= np.log(vP0 [0])

res= opt.minimize(AvgNLnLRegrTr , vP0Tr , method="BFGS")

vP= np.copy(res.x) # Remember to COPY x to a NEW variable

vP[0]= np.exp(vP[0]) # Remember to transform back!
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Transforming parameters

Transform: Use functions

Notice code before: Transformations are performed

1. Before minimize

2. After minimize

3. Within AvgNLnLiklRegrTr

4. And probably more often for computing standard errors

Premium source for bugs... (see previous page: Two distinct
implementations for back-transform? Why?!?)

Solution: Define

▶ vPTr= TransPar(vP): θ → θ∗

▶ vP= TransBackPar(vPTr): θ∗ → θ

And test (in a separate program) whether transformation works
right. Necessary when using multiple transformed parameters.
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Transforming parameters

Transform: Use functions II

Listing 54: opt/estnorm tr2.py
# Use lambda function to transform back in place

# AvgNLnLRegrTr = lambda vPTr: AvgNLnLRegr ( TransBackPar (vPTr ))

# Option 1

AvgNLnLRegrTr= lambda vPTr: -np.mean(LnLRegr(TransBackPar(vPTr), vY, mX), axis =0)

# Option 2

vP0Tr= TransPar(vP0)

res= opt.minimize(AvgNLnLRegrTr , vP0Tr , method="BFGS")

vP= TransBackPar(res.x) # Remember to transform back!
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Transforming parameters

Standard deviations

Remember:

Σ(θ̂) = −H(θ̂)−1

H(θ̂) =
δ2l(Y ; θ)

δθδθ′

⌋
θ=−θ̂

= −N
δ2ln(Y ; θ)

δθδθ′

⌋
θ=θ̂

Therefore, we need (average negative) loglikelihood in terms of θ,
not θ∗ for sd’s...
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Transforming parameters

Transforming parameters II: SD
Question: How to construct standard deviations?
Answers:

1. Use transformation in estimation, not in calculation of
standard deviation. Advantage: Simpler. Disadvantage:
Troublesome when parameter close to border.

2. Use transformation throughout, use Delta-method to compute
standard errors. Advantage: Fits with theory. Disadvantage:
Is standard deviation of σ informative, is its likelihood
sufficiently peaked/symmetric?

3. After estimation, compute bootstrap standard errors
4. Who needs standard errors? Compute 95% confidence bounds

on θ∗, translate those to 95% bounds on parameter θ.
Advantage: Theoretically nicer. Disadvantage: Not everybody
understands advantage.

See next slides.
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Transforming: Temporary

▶ Use transformation in estimation,

▶ Use no transformation in calculation of standard deviation.

Listing 55: opt/estnorm tr2.py
...

vP0Tr= TransPar(vP0)

res= opt.minimize(AvgNLnLRegrTr , vP0Tr , method="BFGS")

vP= TransBackPar(res.x) # Remember to transform back!

# Get covariance matrix from function of vP , not vPTr!

mHn= hessian_2sided(AvgNLnLRegr , vP)

mH= -iN*mHn

mS2= -np.linalg.inv(mH)

vS= np.sqrt(np.diag(mS2))
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Transforming: Delta

n1/2(θ̂∗ − θ∗0)
a∼ N

(
0,V∞(θ̂∗)

)
θ̂ = g(θ̂∗)

θ̂ ≈ g(θ∗0) + g ′(θ∗0)(θ̂
∗ − θ∗0)

n1/2(θ̂ − θ0)
a
= g ′

0n
1/2(θ̂∗ − θ∗0)

a∼ N (0, (g ′
0)

2V∞(θ̂∗)) scalar

n1/2(θ̂ − θ0)
a∼ N (0,G0V

∞(θ̂∗)G ′
0) vector

In practice: Use

var(θ̂) = Ĝ var(θ̂∗)Ĝ ′

Ĝ =
δg(θ∗)

δθ∗′
=
(
dg(θ∗)
dθ∗1

dg(θ∗)
dθ∗2

· · · dg(θ∗)
dθ∗k

)
= Jacobian
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Transforming: Delta in Python

Listing 56: opt/estnorm tr2.py
vPTr= res.x

# Get standard errors , using delta method

mHnTr= hessian_2sided(AvgNLnLRegrTr , vPTr)

mHTr= -iN*mHnTr

mS2Tr= -np.linalg.inv(mHTr)

mG= jacobian_2sided(TransBackPar , vPTr) # Evaluate jacobian at vPTr

mS2= mG @ mS2Tr @ mG.T # Cov(vP)

vS= np.sqrt(np.diag(mS2)) # s(vP)
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Transforming: Bootstrap

▶ Estimate model, resulting in θ̂ = g(θ̂∗)

▶ From the model, generate j = 1, ..,B bootstrap samples

y
(j)
s (θ̂)

▶ For each sample, estimate θ̂
(j)
s = g(θ̂∗

(j)
s )

▶ Report var(θ̂) = var(θ̂
(1)
s , . . . , θ̂

(B)
s )

I.e, report variance/standard deviation among those B estimates of
the parameters, assuming your parameter estimates are used in the
DGP.

Simple, somewhat computer-intensive?
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Transforming: Bootstrap in Ox

{

...

for (j= 0; j < iB; ++j)

{

// Simulate data Y from DGP , given estimated parameter vP

GenerateData (&vY, mX , vP);

TransPar (&vPTr , vP);

ir= MaxBFGS(fnAvgLnLiklRegrTr , &vPTr , &dLL , 0, TRUE);

TransBackPar (&vPB , vPTr);

mG[][j]= vPB; // Record re-estimated parameters

}

mS2= variance(mG’);

avS [0]= sqrt(diagonal(mS2)’);

}

For the tutorial: Try it out for the normal model, in Python?
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Speed

Elements to consider

▶ Use matrices, avoid loops

▶ Adapt large matrices in-place (†)
▶ Use built-in functions (†)
▶ Pre-declare matrix, do not concatenate

▶ Use Numba or Cython

▶ Use multi-processing (smartly)
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Loops

Speed: Loops vs matrices

Avoid loops like the plague.
Most of the time there is a matrix alternative, like for constructing
dummies:

Listing 57: speed loop2.py
iN= 10000

iR= 1000

vY= np.random.randn(iN, 1)

vDY= np.zeros_like(vY)

with Timer("Loop"):

for r in range(iR):

for i in range(iN):

if (vY[i] > 0):

vDY[i]= 1

else:

vDY[i]= -1

with Timer("Matrix"):

for r in range(iR):

vDY= np.ones_like(vY)

vDY[vY <= 0]= -1
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Speed: Argument vs return

Listing 58: speed argument.py
def funcret(mX):

(iN , iK)= mX.shape

mY= np.random.randn(iN, iK)

return mY

def funcarg(mX):

(iN , iK)= mX.shape

mX[:,:]= np.random.randn(iN, iK)

def main ():

...

mX= np.zeros((iN, iK))

with Timer("return"):

for r in range(iR):

mX= funcret(mX)

with Timer("argument"):

for r in range(iR):

funcarg(mX)

Note: No true difference to be found, good memory management...
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Functions

Speed: Built-in functions

Listing 59: speed builtin.py
def MyOls(vY, mX):

vB= np.linalg.inv(mX.T@mX)@mX.T@vY

return vB

def main ():

...

with Timer("MyOls"):

for r in range(iR):

vB= MyOls(vY, mX)

with Timer("lstsq"):

for r in range(iR):

vB= np.linalg.lstsq(mX, vY, rcond=None )[0]

Note: This function lstsq is even slower... More stable in awkward situations...
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Concatenation

Speed: Concatenation or predefine

In a simulation with a matrix of outcomes, predefine the matrix to
be of the correct size, then fill in the rows.
The other option, concatenating rows to previous results, takes a
lot longer.

Listing 60: speed concat.py
iN= 1000

iK= 1000

mX= np.empty((0, iK))

with Timer("vstack"):

for j in range(iN):

mX= np.vstack ([mX, np.random.randn(1, iK)])

mX= np.empty((iN, iK))

with Timer("predef"):

for j in range(iN):

mX[j,:]= np.random.randn(1, iK)
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Speed: Using Numba

Numba may help in pre-translating routines using Just-in-Time
translation to machine code. After the translation, code will run
(much...) faster.

def Loop(mX, iR):

(iN , iK)= mX.shape

for r in range(iR):

mXtX= np.zeros((iK, iK))

for i in range(iK):

for j in range(i+1):

for k in range(iN):

mXtX[i,j]+= mX[k,i] * mX[k,j]

mXtX[j, i]= mXtX[i, j]

return mXtX

def main ():

...

# Estimation

with Timer("Loop , Rx"):

mXtX= Loop(mX, iR)
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Using Numba

Speed: Using Numba II

▶ Add a decorator to indicate that a loop should be pre-compiled

▶ Run the loop once, to allow for the compilation

▶ Afterwards, loops are much quicker

@njit()

def Loop_NJit(mX, iR):

(iN , iK)= mX.shape

for r in range(iR):

mXtX= np.zeros((iK, iK))

for i in range(iK):

for j in range(i+1):

for k in range(iN):

mXtX[i,j]+= mX[k,i] * mX[k,j]

mXtX[j, i]= mXtX[i, j]

return mXtX

def main ():

...

# Estimation

with Timer("Loop_NJit 1x, compiling"):

mXtX= Loop_NJit(mX, 1)

with Timer("Loop_NJit Rx"):

mXtX= Loop_NJit(mX, iR)
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Speed: Using Numba III

With @njit(), code is pushed into machine code; hence
vectorisation is no longer needed.
Next step: Allow for parallelisation

@njit(parallel= False) # Do the inner part translated to C, no parallelisation

def Loop_Inner(mX):

(iN , iK)= mX.shape

mXtX= np.zeros((iK, iK))

for i in range(iK):

for j in range(i+1):

for k in range(iN):

mXtX[i,j]+= mX[k,i] * mX[k,j]

mXtX[j, i]= mXtX[i, j]

return mXtX

@njit(parallel= True) # Do the outer loop in parallel

def Loop_parallel(mX, iR):

(iN , iK)= mX.shape

mXtXr= np.zeros ((iK, iK))

for r in prange(iR): # Use prange , indicating a parallel loop

mXtXr+= Loop_Inner(mX) # Reduction , by computing the average

return mXtXr/iR
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Speed: Using Numba IV
Hints:

▶ Don’t reuse variables in a parallel loop (race condition
between threads?)

▶ If inner loop takes lots of memory, don’t do it in parallel either
(as it will take multiple copies of memory)

▶ Combine results smartly

▶ Don’t overdo it, only run explicitly the most outer loop in
parallel

▶ @njit(parallel= True) already may parallelise vector
operations, test where it is most useful

▶ Explicit vectorisation + njit is not really useful, simple looping
code may be just as quick

Conclusion: It takes practice and trials to find best/quickest
combination!

231/235



PPEctr

Speed

Using MultiProcessing

Speed: Using Multiprocessing

Using multiple CPU’s in Python is not simple:

▶ Standard multi-threading does not help (for CPU tasks), as
Python has a Global Interpreter Lock: Only one computation
at a time. Save it for I/O bound tasks

▶ Less standard multi-processing may help for CPU tasks, but is
slightly more difficult to set up.

Basis worker function:
def LoopG(r):

global g_mX

return Loop(g_mX , 1)
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Speed: Using Multiprocessing II

from multiprocessing import Pool

...

def LoopJ(mX, iR):

global g_mX # Prepare a global for passing mX

g_mX= mX # Fill the global with the value of mX

pool= Pool() # Open the pool of processors , as many as possible

lXtX= pool.map(LoopG , range(iR)) # Call LoopG , for each value r= 0, .., iR -1

# Store all results in the list lXtX

# close the pool and wait for the work to finish

pool.close()

pool.join()

return lXtX [0] # Return only a single of those results

Result: Speedup of factor 1.6 for 2-core system, factor 9 for
16-core system...
Background: https://medium.com/@yasufumy/
python-multiprocessing-c6d54107dd55
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Speed: Overview

Conclusions:

▶ If your program takes more than a few seconds, optimise

▶ Track the time spent in functions, optimise what takes longest
(hint: inner loop...)

▶ Don’t concatenate/stack

▶ Use matrix-operations/vectorized code instead of loops

▶ Look into Numba for loop-heavy code

▶ Multiprocessing may help (but matrices help more...)

▶ Use Cython (not covered here), or move to Julia, (not covered
here) for computationally intensive stuff
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Closing thoughts

And so, the course comes to an end...
Please

▶ keep concepts, principles of programming, in mind

▶ structure your programs wisely

On a obligatory (TI/BDS) or voluntary (DHPQRM) basis:

▶ before Friday September 30 2022, 23.59h
▶ hand in your own solution to

1. GARCH-ML problem (similar to OLS exercise, minor
extensions)

2. BinTree problem (relevant to QRM students, nice setting for
others)

(see Canvas for details)
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