Principles of Programming in Econometrics

Introduction, structure, and advanced programming techniques

Charles S. Bos

Vrije Universiteit Amsterdam
c.s.bos@vu.nl

August 2023 - Version Python
Lecture slides
Compilation: July 29, 2023

Target of course

- Learn
- structured
- programming
- and organisation
- (in Python/Julia/Matlab/Ox or other language)

Not only: Learn more syntax... (mostly today) Remarks:

- Structure: Central to this course
- Small steps, simplifying tasks
- Hopefully resulting in: Robustness!
- Efficiency: Not of first interest... (Value of time?)
- Language: Theory is language agnostic

Target of course II

Target of course II

Or move from

(Maybe discuss at end of first day?...)

Syntax

What is 'syntax'?

- Set of rules
- Define how program 'functions'
- Should give clear, non-ambiguous, description of steps taken
- Depends on the language

Today:

- Learn basic Python syntax
- Learn to read manual/web/google for further syntax!

Syntax II

What is not 'syntax'?

- Rule-book on how to program
- Choice between packages
- Complete overview

For clarity:

- We will not cover all of Python
- We make a (conservative) choice of packages (numpy, scipy, pandas, matplotlib)
- We focus on structure, principle, guiding thoughts
- ... and then you should be able to do the hard work

Principles of Programming in Econometrics

D0: Syntax, example 2^{8}
D1: Structure, scope

D2: Numerics, packages
D3: Optimisation, speed

Day 0: Syntax

- Introduction
- Example: 2^{8}
- Elements
- Main concepts
- Closing thoughts
- Revisit E0
- Practical
- Checking variables, types, conversion and functions
- Implementing Backsubstitution

Day 1: Structure

- Introduction
- Programming in theory
- Science, data, hypothesis, model, estimation
- Structure \& Blocks (Droste)
- Further concepts of
- Data/Variables/Types
- Functions
- Scope, globals
- Practical
- Regression: Simulate data
- Regression: Estimate model

Day 2: Numerics and flow

- Numbers and representation
- Steps, flow and structure
- Floating point numbers
- Practical Do's and Don'ts
- Packages
- Graphics
- Practical
- Cleaning OLS program
- Loops
- Bootstrap OLS estimation
- Handling data: Inflation

Day 3: Optimisation

- Optimization (minimize)
- Idea behind optimization
- Gauss-Newton/Newton-Raphson
- Stream/order of function calls
- Standard deviations
- Restrictions
- Speed
- Practical
- Regression: Maximize likelihood
- GARCH-M: Intro and likelihood

Evaluation

- No old-fashioned exam
- Range of exercises, to try out during course
- Short final exercise (see VU Canvas), obligatory for TI/BDS (and voluntary for DHPQRM). Hand it in, I'll mark it (pass/fail), plus you may receive some comments/hints on programming style.
Main message: Work for your own interest, later courses will be simpler if you make good use of this course...

Principles of Programming in Econometrics

D0: Syntax, example 2^{8}
D1: Structure, scope

D2: Numerics, packages
D3: Optimisation, speed

Day 0: Syntax

- Introduction
- Example: 2^{8}
- Elements
- Main concepts
- Closing thoughts
- Revisit E0
- Practical
- Checking variables, types, conversion and functions
- Implementing Backsubstitution

Programming by example

Let's start simple

- Example: What is 2^{8} ?
- Goal: Simple situation, program to solve it
- Broad concepts, details follow

Power: Steps

First steps:

- Get a first program (pow0.py)
- Initialise, provide (incorrect) output (pow1.py)
- for-loop (pow2.py)
- Introduce function (pow3.py)
- Use a while loop (pow4.py)
- Recursion (pow5.py)
- Check output (pow6.py)

Power: First program

```
Listing 1: pow0.py
```

```
" " "
```

" " "
pow0.py
pow0.py
Purpose:
Purpose:
Calculate 2-8
Calculate 2-8
Version:
Version:
O Outline of a program
O Outline of a program
Date:
Date:
2023/7/29
2023/7/29
Author:
Author:
Charles Bos
Charles Bos
" ""
" ""
\#
\#

Imports

Imports

import numpy as np

import numpy as np

\#

main

print ('Hello world')

```
- Explanation of program, in triple quotes """ ((docstring))
- Comments \#
- Possible imports
- Main code at bottom

\section*{Power: Initialise}
```

 Listing 2: pow1.py

Magic numbers

dBase= 2
iC= 8

Initialisation

dRes=1

Estimation

Not done yet...

Output

print (f'The result of {dBase}^{iC}= {dRes}')

```

To note:
- Each line is a command
- Distinction between 'magics', 'initialisation', 'estimation' and 'output'
- Formatted print function print (f'a= \{a\}') is used, printing value of elements in \{\}

\section*{Power: Estimate}
```

Listing 3: pow2.py
\#

main

Magic numbers

Estimation

for i in range(iC):
dRes= dRes * dBase

Output

```

To note:
- For loop, counts in extra variable i
- Function range(iStop), counts from 0, ..., iStop-1
- Executes indented commands after for i in range(iC):
- Mind the : after the for statement

Intermezzo 1: Check output
Intermezzo 2: Check The for and while loops.
Intermezzo 3: Discuss why the range() function (and indexing, later), is upper-bound exclusive.

\section*{Power: Functions}
```

 Listing 4: pow3.py
 def Pow(dBase, iPow):
"""
Purpose:
Calculate dBase^iPow
Inputs:
dBase double, base
iPow integer, power
Return value:
dRes
double,dBase^iPow
" """
dRes=1
for i in range(iPow):
\# print (f'i= {i}')
dRes= dRes * dBase
return dRes

Main

dRes= Pow(dBase, iC)

```

\section*{To note:}
- Function has own docstring
- Function defines two arguments dBase, iPow
- Function indents one tab forward
- Uses local dRes, i
- returns the result
- And dRes= Pow(dBase, iC) catches the result dRes= 256 .
- Allows to re-use functions for multiple purposes
- Could also be called as dRes= Pow \((4,7)\)
- Here, only one output

\section*{Power: While}
```

 Listing 5: pow3.py
 dRes=1
for i in range(iC):
dRes= dRes*dBase

```
```

 Listing 6: pow4.py
 dRes=1
i= 0
while (i < iPow):
dRes= dRes*dBase
i+= 1

```

To note:
- The for i in range(iter) loop corresponds to a while loop
- Look at the order: First init, then check, then action, then increment, and check again.
- The for-loop is slightly simpler, as beforehand the number of iterations is fixed.
- A loop command can be a compound command, multiple commands all indented equally.

\section*{Power: Recursion}

Listing 7: pow5.py
def Pow_Recursion(dBase, iPow): \# print (f'In Pow_Recursion, with iPow=\{iPow\}') if (iPow == 0): return 1
return dBase * Pow_Recursion(dBase, iPow-1)

To note:
- \(2^{8} \equiv 2 \times 2^{7}\)
- \(2^{0} \equiv 1\)
- Use this in a recursion
- New: If statement

Intermezzo: Check Python manual on if statement, or a simpler Wiki on the same topic.
Q: What is wrong, or maybe just non-robust in this code?

\section*{Power: Recursion}
```

To note:
Listing 8: pow5.py
def Pow_Recursion(dBase, iPow):

- $2^{0} \equiv 1$
\# print (f'In Pow_Recursion, with iPow= \{iPow\}') if (iPow == 0): return 1
- $2^{8} \equiv 2 \times 2^{7}$
- Use this in a recursion
- New: If statement

```

Intermezzo: Check Python manual on if statement, or a simpler Wiki on the same topic.
Q: What is wrong, or maybe just non-robust in this code?
A: Rather use if (iPow <= 0), do not continue for non-positive iPow!

\section*{Power: Check outcome}

Always, (always...!) check your outcome
Listing 9: pow6.py
```

import math

Output

print (f'The result of {dBase}`{iC}=')
print (f, - Using Pow(): {Pow(dBase, iC)}')
print (f, - Using Pow_Recursion(): {Pow_Recursion(dBase, iC)}')
print (f, - Using **: {dBase ** iC}')
print (f, - Using math.pow: {math.pow(dBase, iC)}')

```

Listing 10: output
The result of \(2 \wedge 8=\)
- Using Pow(): 256
- Using Pow_Recursion(): 256
- Using **: 256
- Using math.pow: 256.0

\section*{Power: Check outcome II}

To note:
- Yes, indeed, Python has (multiple...) power operators readily available.
- Always check for available functions...
- And carefully check the manual, for difference between \(x^{* *} y\), pow( \(\mathrm{x}, \mathrm{y}\) ), math.pow().
Q: And what is this difference between the powers?

\section*{Power: Check outcome II}

To note:
- Yes, indeed, Python has (multiple...) power operators readily available.
- Always check for available functions. . .
- And carefully check the manual, for difference between \(x^{* *} y\), pow( \(\mathrm{x}, \mathrm{y}\) ), math.pow().
Q: And what is this difference between the powers?
A: According to the manual, math.pow() transforms first to floats, then computes. The others leave integers intact.

\section*{Elements to consider}
- Comments: \# (until end of line)
- Docstring: """ Docstring """
- import statements: At front of each code file
- Spacing: Important for routines/loops/conditional statements
- Variables, types and naming (subset):
boolean
scalar integer
scalar double/float string
list
tuple
vector
matrix
function
bX=True
\[
i N=20
\]
\[
d C=4.5
\]
sName= 'Beta1'
\[
1 X=[1,2,3], 1 Y=[' H e l l o ', 2, \text { True }]
\]
\[
\mathrm{tX}=(1,2,3)
\]
\[
\mathrm{vX}=\operatorname{np} . \operatorname{array}([1,2,3,4])
\]
\[
m X=\operatorname{np} \cdot \operatorname{array}([[1,2.5],[3,4]])
\]
fnFunc = print

\section*{Elements: Comments}

Use: \# (until end of line)
- To explain reasoning behind code
- ... but sparingly: Code should be self-explanatory(?)
- ... while maintaining readability: Will you, or someone else, understand after three yearsmonths?
- ... Hence use for quick additions to code
- and ... for temporarily turning off parts of the code (e.g., checks?)
Important, very...

\section*{Elements: Docstrings}

Use:
- To explain the functions/modules you write
- Either single-line
('"""Return the iPow'th power of dBase."""),
- or multi-line, after function defintion:
def Pow_Recursion(dBase, iPow):
\| \| \|
Purpose:
Calculate dBase^iPow through recursion
Inputs:
dBase double, base
iPow integer, power
Return value:
dRes double, dBase^iPow
- ... and at start of module, explaining name/purpose/version/date/author
Important, indeed...

\section*{Elements: Docstrings II}

IPython 8.12.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: run pow6
The result of 2^8=
- Using Pow(): 256
- Using Pow_Recursion(): 256
- Using **: 256
- Using math.pow: 256.0

In [2]: ?Pow_Recursion
Signature: Pow_Recursion(dBase, iPow)
Docstring:
Purpose:
Calculate dBase^iPow through recursion
Inputs:
dBase double, base
iPow integer, power
Return value:
dRes double, dBase^iPow
File:
Type: function

\section*{Elements: Imagine variables}
\(i X=5\)

5
\[
d X=5.5
\]
sX= 'Beta'

\(I X=[1,2,3] \quad m Y=[[1,2,3],[4,5,6]]\)


Every element has its representation in memory - no magic

\section*{Try out variables}

\section*{Listing 11: variables.py}
```

bX= True
type(bx)
iN=20
type(iN)
dC=4.5
type(dC)
sX='Beta1'
type(sX)
IX=[1, 2, 3]
type(IX)
mY=[[1, 2, 3], [4, 5, 6]]
type(mY)
mZ= np.array(mY)
type(mZ)
fnX= print
type(fnX)
rX= range (4)
type(rX)
print ('Range rX=,',rX)
print ('List of contents of range rX=, , list(rX))

```

\section*{Hungarian notation prefixes}
\begin{tabular}{lll}
\hline prefix & type & example \\
\hline i & integer & iX \\
b & boolean & bX \\
d & double & dX \\
\(m\) & matrix & mX \\
v & vector & vX \\
s & string & sX \\
fn & Function & fnX \\
l & list & 1 X \\
\(\mathrm{g}_{-}\) & variable with global scope & g _mX \\
\hline \hline
\end{tabular}

Use them everywhere, always.
Possible exception: Counters i, j, k etc.

\section*{Hungarian 2}

Python does not force Hungarian notation. Why would you?
- Forces you to think: What should each object be?
- Improves readability of code
- Helps (tremendously) in debugging

Drawbacks:
- Python recognizes many different types; in 'EOR/QRM/PhD', not all are useful to track
- Hungarian notation best used for 'intention': vector vX for 1-dimensional list or array or a \(n \times 1\) or \(1 \times n\) matrix, matrix mX for 2-dimensional list/array

\section*{Hungarian 3}

Correct but very ugly is
Listing 12: nohun.py
```

def main():
iX= 'Hello'
sX=5

```

Instead, always use
Listing 13: hun.py
```

def main():
sX= 'Hello'
iX=5

```

\section*{Recap}

But let us recap the first lessons, and extend the knowledge...

\section*{All work in functions}

All work is done in functions (or at least, that's what we'll do!)
Listing 14: recap1.py
```

def main():
dX=5.5
dX2= dX ** 2
print ("The square of "", dX, " is ", dX2)
\#

start main

if ___name__ main()}==|__main__":

```

Note:
- This function main() takes no arguments
- ... but Python only executes the first line outside a function
- ... which is an if statement, calling main()
- ... only if we call this routine as a separate program (allows us to import files later)

\section*{Quiz-time: Main}
```

 Listing 15: recap_quiz.py
 def main():
print ('Hello world')
\#

start main

print ('This is an orphan statement')
if __name__ == "__main__":
main()

```

Q1 What is the output of this program?
Q2 Would anything change if the line starting with if is skipped?
Q3 And why does one use the conditional statement?

\section*{Quiz-time: Main}
```

 Listing 16: recap_quiz.py
 def main():
print ('Hello world')
\#

start main

print ('This is an orphan statement')
if __name__ == "__main__":
main()

```

Q1 What is the output of this program?
Q2 Would anything change if the line starting with if is skipped?
Q3 And why does one use the conditional statement?
Answer: Deep Python philosophy. But follow the custom...

\section*{Squaring and printing}

Use other functions to do your work for you
Listing 17: recap2.py
```

import math
def printsquare(dIn):
dOut= math.pow(dIn, 2)
print (f'The square of {dIn} is {dOut}')
def main():
dX= 5.5
printsquare(dX)
printsquare(6.3)

```

Here, printsquare does not give a return value, only screen output. printsquare takes in one argument, with a value locally called dIn. Can either be a true variable (dX), a constant (6.3), or even the outcome of a calculation ( \(\mathrm{dX}-5\) ).
Note the usage of import math for the math. pow() function.

\section*{Return}

Use return a to give one value back to the calling function (as e.g. the math. pow () function also gives a value back).
```

 Listing 18: recap_return.py
 def createones(iR, iC):
mX= np.ones((iR, iC)) \#Use numpy, handing over Tuple (iR, iC)
return mX
def main():
iR=2 \# Magic numbers
iC= 5
mX= createones(iR, iC) \# Estimation, catch output of createones
print ("Matrix mX=\n", mX) \# Output

```

Alternative: See below, altering pre-defined mutable (= matrix) argument

\section*{Return: A tuple}

Alternatively, return a tuple if multiple values should be handed back to the calling routine:

Listing 19: recap_return_tuple.py
```

def createones_size(iR, iC):
mX= np.ones((iR, iC)) \# Use numpy, handing over Tuple (iR, iC)
iSize= iR*iC
return (mX, iR*iC)
def main():
iR=2 \# Magic numbers
iC= 5
(mX, iSize)= createones_size(iR, iC) \# Estimation
print (f'Matrix mX=\n{mX}\nof size {iSize}') \# Output

```

Alternative: See below, altering pre-defined mutable (= matrix) argument Q: Why is this example rather stupid/non-robust?

\section*{Return: A tuple}

Alternatively, return a tuple if multiple values should be handed back to the calling routine:

Listing 20: recap_return_tuple.py
```

def createones_size(iR, iC):
mX= np.ones((iR, iC)) \# Use numpy, handing over Tuple (iR, iC)
iSize= iR*iC
return (mX, iR*iC)
def main():
iR=2 \# Magic numbers
iC= 5
(mX, iSize)= createones_size(iR, iC) \# Estimation
print (f'Matrix mX=\n{mX}\nof size {iSize}') \# Output

```

Alternative: See below, altering pre-defined mutable (= matrix) argument
Q: Why is this example rather stupid/non-robust?
A: Rather use mX.size, no space for errors

\section*{Indexing}

A matrix is a NumPy array of multiple doubles, a string consists of multiple characters, a list of multiple elements. Get to those elements by using indices (starting at 0 ):

Listing 21: recap3.py
```

def index(mA, sB, lC):
print ('Element [0,1] of \n', mA, f'\nis {mA[0,1]}')
print (f'Elements [0:5] of {sB} are {sB[0:5]}')
print (f'Element [4] of {sB} is letter {sB[4]},)
print (f'Element [1] of\n{lC}\nis {IC[1]}')
\#

main

def main():
mX= np.random.randn(2, 3) \# Some random numbers
sY= 'Hello world' \# A string
lZ= [mX, sY, 6.3] \#A list of items

```
    index (mX, sY, lZ)

Warnings:
- Indexing starts at [0] (as in C, Java, Julia, Ox etc, fine)
- Selecting a range indicates [start:end+1]... Extremely dangerous, if you use other languages... And ugly, according to Prof E.W. Dijkstra

\section*{Indexing matrices}

Python indexes 'logically'... , but sometimes counterintuitively.
- A matrix is effectively an array of an array
- A one-dimensional array can (often) be used as both row/column vector, vX1d= np.array ([1,2,3]).
- Though sometimes an explicitly two-dimensional array is more useful, vX2d= np.array ([1, 2, 3]).reshape (-1, 1) (depends on the situation, be careful)
- But then check the difference between vX1d[0], vX2d[0], vX2d[0,0], vX2d[0:1] and vX2d[0:1,0]

See recap4.py...

LRecap of main concepts
—Indexing and matrices

\section*{Indexing matrices II}

\section*{Listing 22: recap4.py}
```

import numpy as np
\#

main

def main():
vX= np.array([1, 2, 3]).reshape(-1, 1) \# A column vector
print ('vX=\n', vX)
print ('Note how vX is a lists-of-lists, cast to a two-dimensional array\n')
print ('vX[0]= ', vX[0], '(a one-dimensional array)')
print ('vX[0,0]= ', vX[0,0], '(a scalar)')
print ('vX[0:1]= ', vX[0:1], '(a 1 x 1 matrix)')
\#

start main

if __name__ == "__main__":
main()

```

\section*{Stepwise Indexing}

An index may also take a step:
```

 Listing 23: recap4b.py
 import numpy as np
\#

main

def main():
vX= np.random.randn (10)
print ('Full vX:\n', vX)
print ('Every second element:\n', vX[::2])
print ('Every second element, starting at second:\n', vX[1::2])
Convenient for selecting subsets!

```

\section*{Boolean Indexing}

One can also index using (a vector of) booleans, to select only the rows/columns/elements where the boolean is True:

Listing 24: recap4c.py
```

import numpy as np
\#

main

def main():
vX= np.random.randn(10)
vI= vX >= 0
print ('vX:', vX)
print ('vI:', vI)
vXP= vX[vI]
print ('Non-negative elements:\n', vXP)
print ('(Careful with resulting type/size!)')

```

Convenient for selecting subsets!

\section*{Matrices}

A matrix:
- ... is the work-horse of most econometric work (data, linear algebra, likelihoods and derivatives etc)
- ... is not natively included in Python
- ... hence we'll take the numpy array instead
- (Note: We'll choose nòt to use the numpy matrix)
- Matrices tend to be two-dimensional
- ... hence we'll often force our matrices/vectors into such shape:
```

vX=[1, 2, 3]

```
\(\mathrm{vX}=\mathrm{np}\).array (vX) \# ... transformed into a one-dimensional array
\(\mathrm{vX}=\mathrm{vX} . r \operatorname{shape}(3,1) \quad \# \ldots\) and made into a two-dimensional matrix
\(\mathrm{vX}=\mathrm{vX}\). reshape \((-1,1) \quad \# \ldots\) same thing (or more robust), Python checks
- Important: Check your matrices, make sure you distinguish matrix/one-dimensional array/scalar!

\section*{Matrices II}

Matrices can be used, after starting with e.g. \(m \mathrm{X}=\) np.random.randn(3, 4),
- as arguments of functions: dSum= np.sum (mX)
- or applying a function on a matrix directly, dSum= mX.sum(); vSum= mX.sum(axis=0); vX= mX.reshape (1, -1 )
- looking at its characteristics, (iR, iC) \(=m X\).shape
- changing its characteristics even: mX.shape= (1, iR*iC)
(see recap4d.py)
Q: What is difference between dSum and vSum?

\section*{Matrices II}

Matrices can be used, after starting with e.g. \(m \mathrm{X}=\) np.random.randn(3, 4),
- as arguments of functions: dSum= np.sum (mX)
- or applying a function on a matrix directly, dSum= mX.sum(); vSum= mX.sum(axis=0); vX= mX.reshape (1, -1 )
- looking at its characteristics, (iR, iC)= mX.shape
- changing its characteristics even: mX.shape= (1, iR*iC)
(see recap4d.py)
Q: What is difference between dSum and vSum?
Hint: Always, always keep track of what your matrix is, and check yourself...

\section*{Indexing and non-matrices}

There is more than matrices...
- Strings, lists, ...

\section*{Listing 25: recap5.py}
```

def showelement(sElem, aElem):
print (sElem, '= ', aElem, ' with type ', type(aElem),
' with shape', np.shape(aElem), ', size ', np.size(aElem),
, and len',
def main():
IX=[[1, 2, 'hello'],
['there', 'A', 4.5]]
print ('Show the full list:')
showelement('1X', lX) \# a two-dimensional list
print ('Reference first list:')
showelement('1X[0]', IX[0]) \# a one-dimensional list
print ('Reference the third element [2] of the first list lX [0]:')
showelement('1X[0][2]', 1X[0][2]) \# a string
print ('It would be incorrect to reference IX [0,2]')
\# showelement('lX[0,2]', lX[0,2]) \# an error...

```

Q1: How do I get 'here' by referencing a part of 1 X ?
Q2: What is difference in np.shape(), np.size(), len()?

\section*{Scope}

Each variable has a scope, a part of the program where it is known. The scope is either
- local: The variable is known within the present function only
- global: ...

Listing 26: recap6.py
```

def localfunc(aX):
sX= 'local var'
print ('In localfunc: Local arg aX: ', aX)
print ('In localfunc: Local var sX: ', sX)
\# Next line gives an error
\# print ('Double dY: ', dY)
def main():
dY= 5.5
localfunc('a variable from main')
print ('In main: Double dY= ,', dY)
\# Next line gives an error
\# print ('In main: sX= ', sX)

```

Q: What variable is known where exactly?

\section*{Scope II}

Each function (including main)
- can create/use at will new local variables
- can receive through arguments variables from other functions

Additionally, each function can
- share a global variable
- where the global variable shall be prefixed by \(g_{-}\), as in \(g \_m X\)
- ... where the variable is declared global within a function, before its use, see recap7.py

LRecap of main concepts
Scope

\section*{Scope III}

\section*{Listing 27: recap7.py}
```

\#

localfunc(iX)

def localfunc(iX):
global g_lX
print ('In localfunc: argument iX: ', iX)
print ('In localfunc: g_IX: ', g_IX)
g_lX[1]= iX \# Change a single element in global
print ('In localfunc: g_lX after changing an element: ', g_lX)
g_lX= list(range(iX, 2*iX)) \# Change the full variable
print ('In localfunc: g_lX, after changing all: ', g_lX)
\#

main

def main():
global g_lX
iY= 5
g_lX= [1, 2, 3]
localfunc(iY)
print ('In main: Global var= ', g_lX)

```

\section*{Scope IV}

Each function (including main)
- can create/use at will new local variables
- can receive through arguments variables from other functions
- can use global variables (but please forget them...)

Additionally, each function can
- change part of the mutable variable (list/array/matrix) ... Then the variable does not change, only part of the contents
[Example: See recap8.py below]

\section*{Function arguments}

In Python, functions can alter contents of variables, but not the full variable itself:
```

 Listing 28: recap8.py
 def func_nochange(mX):
mX= np.random.randn(3, 4)
print ('In func_nochange, changing mX locally to mX=\n', mX)
def func_change(mX):
iR, iC= mX.shape
mX[:,:]= np.random.randn(iR, iC)
print ('In func_change, changing mX locally to mX=\n',}mX
def main():
mX= np.array ([[1.0, 2, 3],[4,5,6]])
func_nochange(mX)
print ('In main, after func_nochange: mX=\n', mX)
func_change(mX)
print ('In main, after func_change: mX=\n', mX)

```

\section*{Function arguments II}

Limitations: Changing function arguments
- works with mutable variables (i.e. lists, arrays, NumPy matrices, Pandas dataframes),
- does not work with immutable variables (i.e. strings, tuples, doubles, integers)
- allows for changes in value, (generally (...)) not in size of argument
- which implies that arguments have to be pre-assigned at the correct size
Example:
```

 Listing 29: e0_elim.py
 def ElimElement(mC, i, j):
mC[i,j:]= mC[i,j:] - dF*mC[j,j:]
return True

```

\section*{Function arguments III}

\section*{Notes (IMPORTANT):}
- If you are going to change an input argument to a function MENTION IT IN THE DOCSTRING, listing the variable under the Outputs
- General rule of thumb: A function argument can be changed when you assign to a part of the argument, as in \(\mathrm{mC}[1,2]=\) 5. The moment you do a full \(\mathrm{mC}=\mathrm{np}\).random.rand \((3,4)\) the full variable is overwritten, and the result is not available to the outside routine.
- Exception to size changing argument: In Pandas, you are allowed to extend an existing dataframe with additional columns.

\section*{Closing thoughts}

Almost enough for today...
Missing are:
- Operators for ndarrays
- Precise definition of compound statements
- if-elif-else
- while
- for
- Corresponding concepts in Matlab
- Many, many details...

During this course,

\section*{Open the Python/NumPy documentation}
and learn to find your way

\section*{Installation of Python}

Many ways. . . Here:
- AnaConda (https://www.anaconda.com/download/): This installs the base Python 3.X+packages+Spyder, with minimal fuss.
- At Conda command prompt (= terminal on OSX/Linux), install missing packages (hardly ever needed, most was included already)
conda install numpy
- Once in a while, update it all from Conda command prompt, using
\[
\begin{aligned}
& \text { conda update --all } \\
& \text { conda clean --all }
\end{aligned}
\]

\section*{Editor/IDE}

For editing/running programs, several options again:
- Whatever editor of choice, run from command line (go ahead)
- Spyder: Install (if needed) through conda install spyder
- Atom: Install from https://atom.io with packages Hydrogen, Autocomple-python (Deprecated), and add conda install jupyter
- VSCode: Install from https://code.visualstudio.com/, with Python extension
- PyCharm: Install from https://www.jetbrains.com/pycharm/
- IPython: Install (if needed) through conda install ipython

L Installation

\section*{Spyder}


Spyder environment
\(\left\llcorner_{\text {Installation }}\right.\)

\section*{VSCode}


L Installation

\section*{IPython}
```

图
IPython: vu/ppectr17
\square回@
File Edit View Search Terminal Help
cbs310@arhus:~/vu/ppectr17\$ ipython
Python 3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:09:58)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -. An enhanced Interactive Python. Type '?' for help.
In [1]: lX= [[1,2,3], [4,5,6]]
In [2]: import numpy as np
In [3]: mX= np.asarray(lX)
In [4]: mX
Out[4]:
array([[1, 2, 3],
[4, 5, 6]])
In [5]:

```

IPython environment

\section*{Principles of Programming in Econometrics}

D0: Syntax, example \(2^{8}\)

D2: Numerics, packages

D1: Structure, scope

D3: Optimisation, speed

\section*{Day 1: Structure}
- Introduction
- Programming in theory
- Science, data, hypothesis, model, estimation
- Structure \& Blocks (Droste)
- Further concepts of
- Data/Variables/Types
- Functions
- Scope, globals
- Practical
- Regression: Simulate data
- Regression: Estimate model

\section*{Target of course}
- Learn
- structured
- programming
- and organisation
- (in Python/Julia/Matlab/Ox or other language)

Not: Just learn more syntax...
Remarks:
- Structure: Central to this course
- Small steps, simplifying tasks
- Hopefully resulting in: Robustness!
- Efficiency: Not of first interest... (Value of time?)
- Language: Theory is language agnostic

\section*{What? Why?}

Wrong answer:
For the fun of it
A correct answer
To get to the results we need, in a fashion that is controllable, where we are free to implement the newest and greatest, and where we can be 'reasonably' sure of the answers


\section*{Aims and objectives}
- Use computer power to enhance productivity
- Productive Econometric Research: combination of interactive modules and programming tools
- Data Analysis, Modelling, Reporting
- Accessible Scientific Documentation (no black box)
- Adaptable, Extendable and Maintainable (object oriented)
- Econometrics, statistics and numerical mathematics procedures
- Fast and reliable computation and simulation

\section*{Options for programming}
\begin{tabular}{|c|c|c|}
\hline &  & Comment \\
\hline EViews & + - \(\quad\) + & Black box, TS \\
\hline Stata & \(\pm+\) - - & Less programming \\
\hline Matlab & + + + + + & Expensive, other audience \\
\hline Gauss & \(\pm \pm+ \pm+\) & 'Ugly' code, unstable \\
\hline S+/R & \(\pm++\) - & Very common, many packages \\
\hline Ox & + \(\pm++\) + & Quick, links to C, ectrics \\
\hline Python & \(++++ \pm\) & Neat syntax, common \\
\hline Julia & + + + ++ + & General/flexible/difficult, quick \\
\hline C( ++ )/Fortran & - + ++ & Very quick, difficult \\
\hline
\end{tabular}

Here: Use Ox Matlab Python as environment, apply theory elsewhere

\section*{History}

There was once...
Apple II, CPU 6502, 1Mhz, 48kB of memory...
Now: More possibilities, also computationally:
Timings for OLS (30 observations, 4 regressors):
\begin{tabular}{|c|c|c|c|c|}
\hline 2020 & R5 2500U 2.0Ghz & 64b & \(1.318 .000^{\dagger} / \mathrm{sec}\) & \\
\hline 2017 & 15-7Y54 1.2Ghz & 64b & \(1.047 .000^{\dagger} / \mathrm{sec}\) & \\
\hline 2014 & 15-4460S 2.9Ghz & 64b & \(1.100 .000^{\dagger} / \mathrm{sec}\) & \\
\hline 2012 & Xeon E5-2690 2.9Ghz & 64b & \(950.000^{\dagger} / \mathrm{sec}\) & \\
\hline 2009 & Xeon X5550 2.67Ghz & 64b & \(670.000^{\dagger} / \mathrm{sec}\) & increase: \\
\hline 2008 & Xeon 2.8 Ghz & OSX & \(392.000^{\dagger} / \mathrm{sec}\) & \(\approx \times 1000\) in 15 years \\
\hline 2006 & AMD3500+ & 64b & \(320.000^{\dagger} / \mathrm{sec}\) & \(\approx \times 1000\) in 15 years \\
\hline 2004 & PM-1200 & & \(147.000^{\dagger} / \mathrm{sec}\) & \(\approx \times 10000\) in 25 years \\
\hline 2001 & PIII-1000 & & \(104.000^{\dagger} / \mathrm{sec}\) & \\
\hline 1996 & PPro200 & & \(30.000 / \mathrm{sec}\) & \\
\hline 1993 & P5-90 & & \(6.000 / \mathrm{sec}\) & \\
\hline 1989 & 386/387 & & 300/sec & \\
\hline 1981 & 86/87 (est.) & & 30/sec & \\
\hline
\end{tabular}

Note: For further speed increase, use multi-cpu.

\section*{Speed increase - but keep thinking}
\[
\begin{aligned}
& x \sim \operatorname{NIG}(\alpha, \beta, \delta, \mu) \quad P(X<x)=\int_{0}^{x} f(z) d z=F(x) \quad x_{q}=F^{-1}(q) \\
& \mathcal{S}(q)=\frac{x_{1-q}+x_{q}-2 x_{\frac{1}{2}}}{x_{1-q}-x_{q}} \quad \mathcal{K}^{L}(q)=\frac{x_{\frac{1-q}{2}}+x_{\frac{q}{2}}-2 x_{\frac{1}{4}}}{x_{\frac{1-q}{2}}-x_{\frac{q}{2}}} \quad \mathcal{K}^{R}(q)=\ldots
\end{aligned}
\]




Direct calculation of graph: \(>40 \mathrm{~min}\)

\section*{Speed increase - but keep thinking}
\[
\begin{aligned}
& x \sim \operatorname{NIG}(\alpha, \beta, \delta, \mu) \quad P(X<x)=\int_{0}^{x} f(z) d z=F(x) \quad x_{q}=F^{-1}(q) \\
& \mathcal{S}(q)=\frac{x_{1-q}+x_{q}-2 x_{\frac{1}{2}}}{x_{1-q}-x_{q}} \quad \mathcal{K}^{L}(q)=\frac{x_{\frac{1-q}{2}}+x_{\frac{q}{2}}-2 x_{\frac{1}{4}}}{x_{\frac{1-q}{2}}-x_{\frac{q}{2}}} \quad \mathcal{K}^{R}(q)=\ldots
\end{aligned}
\]




Direct calculation of graph: \(>40 \mathrm{~min}\)
Pre-calc quantiles (=memoization): 5 sec

\section*{Programming in Theory}

\section*{Plan ahead}
- Research question: What do I want to know?
- Data: What inputs do I have?
- Output: What kind of output do I expect/need?
- Modelling:
- What is the structure of the problem?
- Can I write it down in equations?
- Estimation: What procedure for estimation is needed (OLS, ML, simulated ML, GMM, nonlinear optimisation, Bayesian simulation, etc)?

\section*{Closer to practice}

Blocks:
- Is the project separable into blocks, independent, or possibly dependent?
- What separate routines could I write?
- Are there any routines available, in my own old code, or from other sources?
- Can I check intermediate answers?
- How does the program flow from routine to routine?
... names:
- How can I give functions and variables names that I am sure to recognise later (i.e., also after 3 months)? Use (always) sensible Hungarian notation

\section*{Even closer to practice}

Define, on paper, for each routine/step/function:
- What inputs it has (shape, size, type, meaning), exactly
- What the outputs are (shape, size, type, meaning), also exactly...
- What the purpose is...

Also for your main program:
- Inputs can be magic numbers, (name of) data file, but also specification of model
- Outputs could be screen output, file with cleansed data, estimation results etc. etc.

\section*{Elements to consider}
- Explanation: Be generous (enough)
- Initialise from main
- Then do the estimation
- ... and give results
```

 Listing 30: stack/stackols.py
 def main():
\# Magic numbers
sData= 'data/stackloss.csv'
sY= 'Air Flow'
asX= ['Water Temperature', 'Acid Concentration', 'Stack Loss']
\# Initialisation
\# Estimation
\# Output

```

NB: These steps are usually split into separate functions

\section*{The 'Droste effect'}
- The program performs a certain function
- The main function is split in three (here)
- Each subtask is again a certain function that has to be performed

\section*{Apply the Droste effect:}
- Think in terms of functions
- Analyse each function to split it
- Write in smallest building blocks


\section*{Preparation of program}

What do you do for preparation of a program?
1. Turn off computer
2. On paper, analyse your inputs
3. Transformations/cleaning needed? Do it in a separate program...
4. With input clear, think about output: What do you want the program to do?
5. Getting there: What steps do you recognise?
6. Algorithms
7. Available software/routines
8. Debugging options/checks

Work it all out, before starting to type...

Keep it simple, stupid
Implications:
- Simple functions, doing one thing only
- Short functions (one-two screenfuls)
- With commenting on top
- Clear variable names (but not too long either; Hungarian)
- Consistency everywhere
- Catch bugs before they catch you

See also:
- https://www.kernel.org/doc/Documentation/process/ coding-style.rst (General Kernel)
- https://www.python.org/dev/peps/pep-0008/ (PEP 8: Python coding guide)
\(\left\llcorner_{\text {Concepts: }}\right.\) Data, variables, functions, actions

\section*{What is programming about?}

Managing DATA, in the form of VARIABLES, usually through a set of predefined FUNCTIONS or ACTIONS

Of central importance: Understand variables, functions at all times...
So let's exagerate

\section*{Variable}
- A variable is an item which can have a certain value.
- Each variable has one value at each point in time.
- The value is of a specific type.
- A program works by managing variables, changing the values until reaching a final outcome
[ Example: Paper integer 5]

Integer
\[
i X=5
\]

- An integer is a number without fractional part, in between \(-2^{31}\) and \(2^{31}-1\) (C/Ox/Matlab) or limitless (Python 3.X)
- Distinguish between the name and value of a variable.
- A variable can usually change value, but never change its name

\section*{Double}
\[
d X=5.5
\]
\[
5.5
\]
- A double (aka float) is a number with possibly a fractional part.
- Note that 5.0 is a double, while 5 is an integer.
- A computer is not 'exact', careful when comparing integers and doubles
- If you add a double to an integer, the result is double (in Python 3/Ox at least, language dependent)
[Example: dAdd= \(1 / 3\); iD= 0; dD= iD + dAdd; type (dD) ]

\section*{String}
\[
s X=\text { 'A' }
\]

\[
s Y=\text { 'Hello world' }
\]

- A character is a string of length one.
- A string is a collection of characters.
- The ' are not part of the string, they are the string delimiters.
- One or multiple characters of a string are a string as well, sY[0:4], sY[1], sY[1:2] are strings.
[ Example: sY= 'Hello world']
Q: Trick question: What is difference between \(\mathrm{sY}[1]\) and \(\mathrm{SY}[1: 2]\) ?

\section*{String}
\[
s X=\text { 'A' }
\]

\[
\mathrm{sY}=\text { 'Hello world' }
\]

- A character is a string of length one.
- A string is a collection of characters.
- The ' are not part of the string, they are the string delimiters.
- One or multiple characters of a string are a string as well, sY[0:4], sY[1], sY[1:2] are strings.
[ Example: sY= 'Hello world']
Q: Trick question: What is difference between \(\mathrm{sY}[1]\) and \(\mathrm{SY}[1: 2]\) ?
A: Check sY[1] == sY[1:2]

\section*{'Simple' types}
- Boolean
- Integer
- Double/float
- String

Check type using
\(\mathrm{bX}=\mathrm{True}\)
type(bX)

\section*{‘Difficult' types}
- List
- Tuple
- Matrix
- Function
- Lambda function
- DataFrame
IX= ['Beta', 5, [5.5]]

- A list is a collection of other objects.
- A list itself has one dimension, but can contain lists.
- An element of a list can be of any type (integer, double, function, matrix, list etc)
- A list of a list of a list has three dimensions etc.
- One may replace elements of a list (a list is mutable)
[Example: 1X= ['Beta', 5, [5.5]]; 1X[0]= 'Alpha']

\section*{Tuple}
\[
\mathrm{tX}=(\text { 'Beta', 5, [5.5] })
\]

- A tuple is a collection of other objects.
- A tuple itself has one dimension, but can contain lists.
- An element of a tuple can be of any type (integer, double, function, matrix, list, tuple etc)
- A tuple of a tuple of a tuple has three dimensions etc.
- One may NOT replace elements of a tuple (a tuple is immutable)
[ Example:
tX= ('Beta', 5, [5.5]); \# Error: tX[0]= 'Alpha']

\section*{Matrix}
\[
m X=\operatorname{np.array}([[1.0,2,3],[4,5,6]])
\]
\begin{tabular}{|ccc|}
\hline \begin{tabular}{|c|}
\hline 1.0 \\
\hline 4.0 \\
\hline 5.0 \\
\hline
\end{tabular} & \begin{tabular}{|c|}
\hline 2.0 \\
\hline
\end{tabular} \\
\hline
\end{tabular}
- A matrix (to an Econometrician at least) is a collection of doubles; in Python a matrix may also contain other types.
- A matrix has (generally) two dimensions.
- A matrix of size \(k \times 1\) or \(1 \times k\) we tend to call a vector, vX
- Watch out: NumPy allows single-dimensional \(k\) vectors, different from \(k \times 1\) matrices.
- Later on we'll see how matrix operations can simplify/speed up calculations.

\section*{Matrix II}
\[
m X=\operatorname{np} \cdot \operatorname{array}([[1.0,2,3],[4,5,6]])
\]
\begin{tabular}{|cc|}
\hline 1.0 & \begin{tabular}{|c|}
\hline 2.0 \\
\hline .0 \\
\hline 4.0 \\
\end{tabular} \\
\hline & \begin{tabular}{|c|}
\hline 5.0 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

In Python:
- we'll use a list-of-lists as input into a NumPy array
- ensure we have doubles by making at least one of the entries a double (here: 1.0), type (mX[1,2]), or use \(m X=\) np.array([[1, 2,3], [4, 5, 6]]).astype(float)
- if needed force it into a 2-dimensional shape, \(m X\). shape \(=(6,1)\)
[Example: mX= np. \(\operatorname{array([[1.0,~2,~3],~[4,~5,~6]])]~}\)

\section*{Function}
print ("Hello world")
```

print()

```
- A function performs a certain task, usually on a (number of) variables
- Hopefully the name of the function helps you to understand its task
- You can assign a function to a variable, fnMyPrintFunction= print
[ Example: fnMyPrintFunction('Hello world')]

\section*{Function II}

\section*{Listing 31: pow6.py}
```

def Pow(dBase, iPow):
dRes= 1
i= 0
while (i < iPow):
\# print ('i= ', i)
dRes= dRes * dBase
i+= 1
return dRes

```
- You can define your own routines/functions
- You decide the output
- You tend to return the output
- (later: You may alter mutable arguments)
[Example: dPow= Pow \((2.0,8)\) ]

\section*{Lambda Function}

> Pow(2.0, 8)

Pow \(=\operatorname{lambda} d B, i: d B * P o w(d B, i-1)\) if \((i>0)\) else 1.0
- A lambda function is a single line locally declared function
- It can access the present value of variables in the scope
- Hence it can hide passing of variables
- More details in the last lecture, when useful for optimising
- Syntax:
name= lambda arguments: expression(arguments)
Listing 32: pow_lambda.py
```

Pow= lambda dB,i: dB*Pow(dB,i-1) if (i > 0) else 1.0

```
dPow \(=\) Pow \((2.0,8)\)

\section*{List comprehension}

Alternative to a Lambda function can be a list comprehension, in certain cases. A list comprehension
- applies a function successively on all items in a list
- and returns the list of results

Structure:
```

List = [func(i) for i in somelist]

```

Examples:
```

[i for i in range (10)]
[i for i in range (10) if i%2 == 0]
[i**2 for i in range(10)]
[np.sqrt(mS2[i,i]) for i in range(iK)]

```

Q: Can you predict the outcome of each of these statements?

\section*{DataFrame}
- A Pandas dataframe is an object made for input/output of data
- It can be used to read/store/show your data
- And has plenty more options
- Very useful for data handling!
[ Example: import pandas as pd; lc= list('ABC');
df= pd.DataFrame(np.random.randn (4,3), columns=lc); df ]

Concepts: Data, variables, functions, actions

\section*{DataFrame II}

\section*{Listing 33: stackols.py}
```

sData= 'data/stackloss.csv'
sY= 'Air Flow'
asX= ['Water Temperature',',Acid Concentration',','Stack Loss']

Initialisation

df= pd.read_csv(sData) \# Read csv into dataframe
vY= df[sY].values \# Extract y-variable
mX= df[asX].values \# Extract x-variables
iN= vY.size \# Check number of observations
mX= np.hstack([np.ones((iN, 1)), mX]) \# Append a vector of 1s
asX=['constant']}]+\mathrm{ asX

Estimation

vBeta= np.linalg.lstsq(mX, vY)[0] \# Run OLS y= X beta+e

Output

print ('Ols estimates')
print (pd.DataFrame(vBeta, index=asX, columns=['beta']))

```

\section*{View or copy}

What does assignment do in Python? Check out this code:
```

 view_copy.py
 mX= np.arange(6)+1.0 \# Get vector of numbers 1.0, 2.0, .., 6.0
print ('Shape :', mX.shape)
mX.shape=(2, 3) \#Assign TO shape characteristic
print ('Shape :', mX.shape)
print ('What is mX now?\n', mX)
mY=mX \# New view of mX
mY[0, 0]=0 \# Change element of Y
print ('What is mX now, after changing element of Y?\n', mX)
mY= np.copy(mX) \# New copy of mX
mY[0, 0]= -1
print ('What is mX now, after re-copying y, putting a -1 in first location?\n', mX)
print ('What is mY now?\n', mY)

```

What happens here?

\section*{View or copy II}


Step 1: Creating mX

\section*{View or copy II}


Step 2: Creating mY= mX, new view of same matrix

\section*{View or copy II}


Step 3: Alter mY \([0,0]=0\) changes \(m X\) as well...

\section*{View or copy II}


Step 4: Now explicitly copy over \(m Y=n p . c o p y(m X)\)

\section*{View or copy II}


Step 5: Change mY[0,0]=-1 leaves mX unaltered

\section*{View or copy III}

How can I know whether I get a view or a copy?
```

print ('Is mX the same as mY? ,, id(mX) == id(mY))
print ('id(mX)=%i, id(mY)=%i', % (id(mX), id(mY)))

```

Check the id...

\section*{View or copy III}

How can I know whether I get a view or a copy?
```

print ('Is mX the same as mY? ', id(mX) == id(mY))

```

Check the id...
What is the advantage of the 'view' of an object, not copying?
- Save memory, not having multiple copies of same (large) object
- Pass a (view to) a mutable object (ndarray/matrix/vector/dataframe) to a function, change part of it

\section*{View or copy IV}

Change part of a matrix, output value through argument: view_copy2.py
```

def FillRes(mRes):
"""
Purpose:
Perform (fake) calculating, filling mRes column by column
Inputs:
mRes iR x iC matrix, to be overwritten
Outputs:
mRes iR x iC matrix, filled by column
Return value:
dR double, sum of all results
"""
(iR, iC)= mRes.shape
dR=0.0
for c in range(iC):
vC= np.random.randn(iR) \# Do computations. Here: Get R random outcomes
mRes[:,c]= vC
dR+= vC.sum()
return dR

```

Passing a 'basket' to function, allow change of contents of basket...

\section*{Basket: Mutable vs immutable}

Python hands over a new 'view' of a list to a function. This implies:
- The function can access the same list/matrix/array/dataframe
- As long as it is careful not to replace the list, it can alter elements
- Replaced elements will be handed back to the main program, as such
Examples:
- 1X[1]= 'hello': Replace second list item by a new string
- mX[0,4]= 3.14: Replace element in row 1, column 5, by 3.14
- mX[:,:]= mX * mX: Replace all elements of existing matrix \(m X\) by their squares, keeping same 'basket'
Q: What is difference of last example, \(\mathrm{mX}[:,:]=\mathrm{mX} * \mathrm{mX}\), with \(m X=m X * m X\) ?

\section*{Python and other languages}

Concepts are similar
- Python (and e.g. Ox/Gauss/Matlab) have automatic typing. Use it, but carefully...
- \(C / C++/\) Fortran need to have types and sizes specified at the start. More difficult, but still same concept of variables.
- Precise manner for specifying a matrix differs from language to language. Python needs some getting used to, but is (very...) flexible in the end
- Remember: An element has a value and a name
- A program moves the elements around, hopefully in a smart manner

\author{
Keep track of your variables, know what is their type, size, and scope
}

\section*{Python and other languages II}

Concepts similar, implementation different:
- Python (and e.g. R, Julia) have object-like variables: Each variable has characteristics
- Python uses views of the data, often without copying, dangerous
- Powerful but sometimes confusing (see before)

Warning: Too much to discuss here, but dangerous implications... See e.g. https://medium.com/@larmalade/
python-everything-is-an-object-and-some-objects-are-mutable-4f55eb2b468b

\section*{All languages}

Programming is exact science
- Keep track of your variables
- Know what is their scope
- Program in small bits
- Program extremely structured
- Document your program wisely
- Think about algorithms, data storage, outcomes etc.

\section*{Further topics: Scope}

Any variable is available only within the block in which it is declared.
In practice:
1. Arguments to a function, e.g. \(m X\) in fnPrint ( \(m X\) ), are available within this function
2. A local variable \(m Y\) is only known below its first use, within the present function
3. A global variable, indicated with global g_mZ at the start of a function, and retains its value between functions.

\section*{Further topics: Scope}

Any variable is available only within the block in which it is declared.
In practice:
1. Arguments to a function, e.g. \(m X\) in fnPrint ( \(m X\) ), are available within this function
2. A local variable my is only known below its first use, within the present function
3. A global variable, indicated with global g_mZ at the start of a function, and retains its value between functions.
(but forget about globals... or use them the absolute minimum? )

\section*{Further topics: Scope II}
```

 Listing 34: scope_global.py
 def localfunc():
global g_sX
print ("In localfunc: g_sX= ", g_sX)
g_sX= "and goodbye" \# Change the full global variable
\#

main

def main():
global g_sX
g_sX= "Hello"
localfunc()
print ("In main, after localfunc: g_sX= ", g_sX)

```

Rules for globals:
- Only use them when absolutely necessary (dangerous!)
- Annotate them, g_
- Fill them at last possible moment
- Do not change them afterwards (unless absolutely necessary)

\section*{Principles of Programming in Econometrics}

D0: Syntax, example \(2^{8}\)

D2: Numerics, packages

D1: Structure, scope

D3: Optimisation, speed

\section*{Day 2: Numerics and flow}
- Numbers and representation
- Steps, flow and structure
- Floating point numbers
- Practical Do's and Don'ts
- Packages
- Graphics
- Practical
- Cleaning OLS program
- Loops
- Bootstrap OLS estimation
- Handling data: Inflation

\section*{Reprise: What? Why?}

Wrong answer:
For the fun of it
A correct answer
To get to the results we need, in a fashion that is controllable, where we are free to implement the newest and greatest, and where we can be 'reasonably' sure of the answers


\section*{Step P1: Analyse the data}
- Read the original data file
- Make a first set of plots, look at it
- Transform as necessary (aggregate, logs, first differences, combine with other data sets)
- Calculate statistics
- Save a file in a convenient format for later analysis

```

mData= np.hstack([vDate, mFX])
df= pd.DataFrame(mData, columns=["Date", "UKUS", "EUUS", "JPUS"])
df.to_csv("data/fx9709.csv")
df.to_csv("data/fx9709.csv.gz", compression="gzip")
df.to_excel("data/fx9709.xlsx")

```

\section*{Step P2: Analyse the model}
- Can you simulate data from the model?
- Does it look 'similar' to empirical data?
- Is it 'the same' type of input?


\section*{Step P3: Estimate the model}
- Take input (either simulated or empirical data)
- Implement model estimation
- Prepare useful outcome


\section*{Step P4: Extract results}
- Use estimated model parameters
- Calculate policy outcome etc.


\section*{Step P5: Output}
- Create tables/graphs
- Provide relevant output

Often this is the hardest part: What exactly did you want to know? How can you look at the results? How can you go back to original question, is this really the (correct) answer?
```

Result of steps
def main():
\# Magic numbers
sData= "data/fx0017.csv" \# Or use "data/sim0017.csv"
asFX= ["EUR/USD","GBP/USD","JPY/USD"]
vYY= [2000, 2015] \# Years to analyse
\# Initialise
(vDate, mRet)= ReadFX(asFX, vYY, sData)
\# Estimate
(vP, vS, dLnPdf)= Estimate(mRet, asFX)
mFilt= ExtractResults(vP, mRet)
\#Output
Output(vP, vS, dLnPdf, mFilt, asFX)

```
- Short main
- Starts off with setting items that might be changed: Only up front in main (magic numbers)
- Debug one part at a time (t.py)!
- Easy for later re-use, if you write clean small blocks of code
- Input for estimation is prepared data file, not raw data (...).

\section*{Program flow}

Programming is (should be) no magic:
- Read your program. There is only one route the program will take. You can follow it as well.
- Statements are executed in order, starting at main()
- A statement can call a function: The statements within the function are executed in order, until encountering a return statement or the end of the function
- A statement can be a looping or conditional statement, repeating or skipping some statements. See below.
- (The order can also be broken by break or continue statements. Don't use, ugly.)
And that is all, any program follows these lines.
(Sidenote: Objects/parallel programming etc)

\section*{Flow 2: Reading easily}

As a general hint:
- Main .py file:
- import packages
- import your routines (see next page)
- Contains only main()
- Preferably only contains calls to routines (Initialise, Estimate, Output)
- Each routine: Maximum 30 lines / one page. If longer, split!

\section*{Flow 3: Using modules}

A module is a file containing a set of functions
All content from module incstack.py in directory lib can be imported by
from lib.incstack import *
Result: Nice short stackols3.py
```

\#

main

def main():
\# Magic numbers
\# Initialisation
(vY, mX)= ReadStack(sData, sY, asX, True)

```

Q: What would be the difference between from lib.incstack import * and import lib.incstack? In Spyder:
- check current directory (pwd), make sure that you are in your working directory (use cd if need be)
- add general directory with modules to the PYTHONPATH, using Tools-PYTHONPATH manager

\section*{Flow 4: Cleaning out directory structure}

Use structure for programming, and for storing results:
```

stack/stackols3.py
stack/lib/incstack.py
stack/data/stackloss.csv
stack/output/
stack/graphs/

```
```


Main routine

Included functions

Data

Space for numerical output

Space for graphs

```

Ensure you program cleanly, make sure you can find routines/results/graphs/etc...

\section*{Precision}

Not all numbers are made equal... Example: What is \(1 / 3+1 / 3+1 / 3+\ldots\) ?

Listing 35: precision/onethird.py
```

def main():
\# Magic numbers
dD= 1/3
\# Estimation
print ("i j sum diff");
dSum= 0.0
for i in range(10):
for j in range(3):
print (i, j, dSum, (dSum-i))
dSum+= dD \# Successively add a third

```

See outcome: It starts going wrong after 16 digits...

\section*{Decimal or Binary}


1-to-10 (Source: XKCD, http://xkcd.com/953/)

\section*{Representation: Int}

In many languages...
- Integers are represented exactly using 4 bytes/32 bits (or more, depending on system)
- 1 bit is for sign, usually 31 for number
- Hence range is [-2147483648, 2147483647]= [-2^31, 2^31-1]
Q: Afterwards, when \(i=2 \wedge 31-1+1\), what happens?

\section*{Representation: Int}

In many languages...
- Integers are represented exactly using 4 bytes/32 bits (or more, depending on system)
- 1 bit is for sign, usually 31 for number
- Hence range is [-2147483648, 2147483647]= [-2^31, 2^31-1]
Q: Afterwards, when \(i=2 \wedge 31-1+1\), what happens? Answer:
- Ox: Circles around to a negative integer, without warning...
- Matlab: Gets stuck at 2^31-1...
- Python2: Uses 8 bytes, 64 bits. After \(2^{63}-1\), moves to long type, without limit
- Python3: long is the standard integer type, without any limit!

See precision/intmax.py, or http://xkcd.com/571/

\section*{Representation: Double}
- Doubles are represented in 64 bits. This gives a total of \(2^{64} \approx 1.84467 \times 10^{19}\) different numbers that can be represented.
How?


Double floating point format (Graph source: Wikipedia)
Split double in
- Sign (one bit)
- Exponent (11 bits)
- Fraction or mantissa (52 bits)

\section*{Representation: Double II}
\[
x= \begin{cases}(-1)^{\text {sign }} \times 2^{\text {exponent }-1023} \times\left(1+\sum_{i=1}^{52} b_{52-i} 2^{-i}\right) \quad \text { Generally } \\ (-1)^{\text {sign }} \times 2^{1-1023} \times 0 . \text { mantissa } & \text { if exp }=0 \times .000 \\ (-1)^{\text {sign }} \times \infty & \text { if } \exp =0 \times .7 \mathrm{ff}, \text { mant }=0 \\ \mathrm{NaN} & \text { if } \exp =0 \times .7 \mathrm{ff}, \text { mant } \neq 0\end{cases}
\]

Note: Base-2 arithmetic
\begin{tabular}{llll} 
Sign & Expon & Mantissa & Result \\
\hline 0 & \(0 \times .3\) ff & \(000000000000_{16}\) & \(-1^{0} \times 2^{(1023-1023)} \times 0.0\) \\
& & \(=0\) & \\
0 & \(0 \times .3 f f\) & \(000000000001_{16}\) & \(-1^{0} \times 2^{(1023-1023)} \times 1.000000000000000222\) \\
& \(=1.000000000000000222\) \\
0 & \(0 \times .400000000000000_{16}\) & \(-1^{0} \times 2^{(1024-1023)} \times 1.0\) \\
0 & \(0 \times .400\) & \(000000000001_{16}\) & \(=2\) \\
& \(=1^{0} \times 2^{(1024-1023)} \times 1.000000000000000222\) \\
& \(=2.000000000000000444\)
\end{tabular}

\section*{Consequence: Addition}

Let's work in Base-10 arithmetic, assuming 4 significant digits:
\begin{tabular}{lcrrr} 
Sign & Exponent & Mantissa & Result & \(x\) \\
\hline+ & 4 & 0.1234 & \(0.1234 \times 10^{4}\) & 1234 \\
+ & 3 & 0.5670 & \(0.5670 \times 10^{3}\) & 567 \\
\hline \hline
\end{tabular}

What is the sum?

\section*{Consequence: Addition}

Let's work in Base-10 arithmetic, assuming 4 significant digits:
\begin{tabular}{lcrrr} 
Sign & Exponent & Mantissa & Result & \(x\) \\
\hline+ & 4 & 0.1234 & \(0.1234 \times 10^{4}\) & 1234 \\
+ & 3 & 0.5670 & \(0.5670 \times 10^{3}\) & 567 \\
\hline \hline
\end{tabular}

What is the sum?
\begin{tabular}{lcrrr} 
Sign & Exponent & Mantissa & Result & \(x\) \\
\hline+ & 4 & 0.1234 & \(0.1234 \times 10^{4}\) & 1234 \\
+ & 4 & 0.0567 & \(0.0567 \times 10^{4}\) & 567 \\
\hline+ & 4 & 0.1801 & \(0.1801 \times 10^{4}\) & 1801 \\
\hline
\end{tabular}

Shift to same exponent, add mantissas, perfect

\section*{Consequence: Addition II}

Let's use dissimilar numbers:
\begin{tabular}{lrrrr} 
Sign & Exponent & Mantissa & Result & \(x\) \\
\hline+ & 4 & 0.1234 & \(0.1234 \times 10^{4}\) & 1234 \\
+ & 1 & 0.5670 & \(0.5670 \times 10^{1}\) & 5.67 \\
\hline \hline
\end{tabular}

What is the sum?

\section*{Consequence: Addition II}

Let's use dissimilar numbers:
\begin{tabular}{lrrrr} 
Sign & Exponent & Mantissa & Result & \(x\) \\
\hline+ & 4 & 0.1234 & \(0.1234 \times 10^{4}\) & 1234 \\
+ & 1 & 0.5670 & \(0.5670 \times 10^{1}\) & 5.67 \\
\hline \hline
\end{tabular}

What is the sum?
\begin{tabular}{lccrr} 
Sign & Exponent & Mantissa & Result & \(x\) \\
\hline+ & 4 & 0.1234 & \(0.1234 \times 10^{4}\) & 1234 \\
+ & 4 & \(0.0005670 .0005 \times 10^{4}\) & 5 \\
\hline+ & 4 & 0.1239 & \(0.1239 \times 10^{4}\) & 1239 \\
\hline \hline
\end{tabular}

Shift to same exponent, add mantissas, lose precision...
Further consequence:
Add numbers of similar size together, preferably!
In Python/Ox/C/Java/Matlab/Octave/Gauss: 16 digits ( \(\approx 52\) bits) available instead of 4 here

\section*{Consequence: Addition III}

Check what happens in practice:
```

 Listing 36: precision/accuracy.py
 def main():
dA= 0.123456 * 10**0
dB=0.471132 * 10**15
dC= -dB
print ("a: ", dA, ", b: ", dB, ", c: ", dC)
print ("a + b + c: ", dA+dB+dC)
print ("a + (b + c): "', dA+(dB+dC))
print ("(a+b) + c: "', (dA+dB)+dC)

```

\section*{Consequence: Addition III}

\section*{Check what happens in practice:}
```

 Listing 37: precision/accuracy.py
 def main():
dA= 0.123456 * 10**0
dB=0.471132 * 10**15
dC= -dB
print ("a: ", dA, ", b: ", dB, ", c: ", dC)
print ("a + b + c: ", dA+dB+dC)
print ("a + (b + c): ", dA+(dB+dC))
print ("(a + b) + c: "', (dA+dB)+dC)

```
results in
```

a: 0.123456 , b: 471132000000000.0 , c: -471132000000000.0
a + b + c: 0.125
a + (b + c): 0.123456
(a + b) + c: 0.125

```

\section*{Other hints}
- Adding/subtracting tends to be better than multiplying
- Hence, \(\log\)-likelihood \(\sum \log \mathcal{L}_{i}\) is better than likelihood \(\prod \mathcal{L}_{i}\)
- Use true integers when possible
- Simplify your equations, minimize number of operations
- Don't do \(x=\exp (\log (z))\) if you can escape it

\section*{Other hints}
- Adding/subtracting tends to be better than multiplying
- Hence, \(\log\)-likelihood \(\sum \log \mathcal{L}_{i}\) is better than likelihood \(\prod \mathcal{L}_{i}\)
- Use true integers when possible
- Simplify your equations, minimize number of operations
- Don't do \(x=\exp (\log (z))\) if you can escape it
(Now forget this list... use your brains, just remember that a computer is not exact...)

\section*{Do's and Don'ts}

The do's:
+ Use commenting through DocString for each routine, consistent style, and inline comments elsewhere if necessary
+ Use consistent indenting
+ Use Hungarian notation throughout (exception: counters \(i, j, k, l\) etc)
+ Define clearly what the purpose of a function is: One action per function for clarity
+ Pass only necessary arguments to function
+ Analyse on paper before programming
+ Define debug possibilities, and use them
+ Order: Header - DocString - Code
+ Debug each bit (line...) of code after writing

\section*{Do's and Don'ts}

The don'ts:
- Multipage functions
- Magic numbers in middle of program
- Use globals g_vY when not necessary
- Unstructured, spaghetti-code
- Program using 'write - write - write - debug'...
- Replicate code for similar tasks

\section*{import}

Enlarging the capabilities of Python beyond basic capabilities: import Use through:
- import package: You'll have to use package.func() to access function func () from the package
- import package as p: You may use p.func() as shorthand
- from package import func: You can use func() directly, but no other functions from the package
- from package import *: You can use all functions from the package directly
Custom use:
```

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

```
from lib.incmyfunc import * \# Get all my own functions directly

\section*{Python packages}
\begin{tabular}{ll} 
Package & Purpose \\
\hline numpy & Central, linear algebra and statistical operations \\
scipy & Additional scientific python routines \\
matplotlib.pyplot & Graphical capabilities \\
pandas & Input/output, data analysis \\
\(\ldots\) & Many others... \\
\hline
\end{tabular}

Warning: Use packages, but with care. How can you ascertain that the package computes exactly what you expect? Do you understand?

\section*{Private modules}
- Convenient to package routines into modules, for use from multiple (related) programs
- Stored in local project/lib directory, if only related to current project
- ... or stored at central python/lib directory: Use environment variable PYTHONPATH to tell Python where modules may be found; see Spyder - Tools - PYTHONPATH Manager

\section*{A module: matplotlib.pyplot}

Several options available, here we focus on pyplot.
Listing 38: matplotlib/plot1.py
```

import matplotlib.pyplot as plt
import numpy as np

Initialisation

mY= np.random.randn(100, 3)

Output

plt.figure(figsize=(8,4)) \# Choose alternate size (def= (6.4,4.8))
plt.subplot(2, 1, 1) \# Work with 2x1 grid, first plot
plt.plot(mY) \# Simply plot the white noise
plt.legend(["a", "b", "c"]) \# Add a legend
plt.title("White noise") \# ... and a title
plt.subplot(2, 1, 2) \# Start with second plot
plt.plot(mY[:,0], mY[:,1:], ".") \# Plot here some cross-plots
plt.ylabel("b,c")
plt.xlabel("a")
plt.title("Unrelated data") \# ... and name the graph
plt.savefig("graphs/plot1.png"); \# Save the result
plt.show() \# Done, show it

```

Details: matplotlib documentation, or e.g. Kevin Sheppard's Python Introduction

\section*{A module: matplotlib.pyplot II}

Basic plot:
- Initialise the plot with plt.figure()
- (Optionally) also set the size with plt.figure (figsize= \((8,4)\) ) (I prefer a wider shape)
- Graphing appears in subplots, choose \(i\) 'th plot out of \(R \times C\) using plt.subplot(iR, iC, i) (counting starts at 1 , following matlab customs)
- Plot either \(y\) values against \(x\)-axis (plt.plot(mY))
- ... or plot \(x\) against \(y\), plt.plot(mY[:,0], mY[:,1:])

\section*{A module: matplotlib.pyplot III}

Embellish plot:
- Place a legend for multiple lines using plt.legend(['a', 'b', 'c'])
- Alternatively, specify the label with the plot, plt.plot(vy, label='y'); plt.legend(). In the latter case, don't forget to turn on the legend.
- Plot takes extra arguments specifying line types, colours etc: plt.plot(vX, vY, 'r+') for red crosses
- After drawing the graph, and before showing it, possibly save the figure, as .eps, .png, .pdf, .jpg, .svg or others, plt.savefig('graphs/plot1.png')

A module: matplotlib.pyplot IV


Figure: The resulting plot1.png

\section*{A module: matplotlib.pyplot V}

All plotting is done against the last figure and/or axes. This one can make explicit as well:

Listing 39: matplotlib/plot1b.py
```

fig= plt.figure(figsize=(8, 6)) \# Choose alternate size
ax=fig.add_subplot(2, 1, 1)
ax.plot(mY)
ax.legend(["a", "b", "c"])
ax.set_title("White noise")
ax2=fig.add_subplot(2, 1, 2)
ax2.plot(mY[:,0], mY[:,1:], ".")
ax2.set_ylabel("b,c")
ax2.set_xlabel("a")
ax2.set_title("Unrelated data")
fig.savefig("graphs/plot1b.png")
fig.show()

```
```


Work with 2x1 grid, first plot

```
# Work with 2x1 grid, first plot
# Simply plot the white noise
# Simply plot the white noise
# Add a legend
# Add a legend
# ... and a title
# ... and a title
# Start with second plot
# Start with second plot
# Plot here some cross-plots
# Plot here some cross-plots
# ... and name the graph
# ... and name the graph
# Save the result
# Save the result
# Done, show figure
```


Done, show figure

```

\section*{A module: matplotlib.pyplot + ATEX}

For inclusion in \(A T_{E} X\), true formulas might be nice.
Example:
Listing 40: plot_latex.py
```

plt.rc('text', usetex=True) \# Start using latex text
plt.figure()
plt.plot(mY, '.') \# Simply plot the white noise, with dots
plt.legend([r'$E=m C^2$', r'$s=\sum_{i=1}^n y_j$']) \# Add a legend
plt.title(r'Use **(most)** \LaTeX\ commands {\em at will}')
plt.savefig('graphs/plot_latex1.png')
plt.show()

```

Note: Without the usetex=True, you can still use simple \({ }^{A} T_{E X}\) commands, but get different fonts.

\section*{A module: matplotlib.pyplot + LATEX II}


Figure: The resulting plot_latex1.png

A module: matplotlib.pyplot + ???

Other options:
- Zillions...
- Check the examples
- Use google, get some practice!

\section*{A module: Pandas}

Extensive set of data analytics and data handling routines, Pandas. Goal:
- Loading/saving
- Indexing/selecting
- Manipulating

\section*{A module: Pandas}

Extensive set of data analytics and data handling routines, Pandas. Goal:
- Loading/saving
- Indexing/selecting
- Manipulating
- \(\ldots\)
- Printing nicely
- Plotting
- and other?

Initialisation:
```

import pandas as pd

```

\section*{Pandas Types}

From Pandas we'll use two types:
- DataFrame: matrix-like format, with row index and columns names
- Series: vector-like format, with row index and name
```

import pandas as pd
sData= 'shoesize_bk2020'

Initialisation

df= pd.read_csv('data/%s.csv' % sData) \# DataFrame
sf= df['Gender'] \# Series
print ('Type df: %s\nType sf: %s' % (type(df), type(sf)))

```

NB: Normally, work with the DataFrame itself... Not much use to extract the separate series

\section*{Pandas Types II}

Instead of reading data into a DataFrame, we can also create one based on data:
```

dfR= pd.DataFrame(np.random.randn(10,4), columns=['a', 'b', 'c', 'd'])
print (dfR)
print (dfR.to_latex(float_format=,%.4f'))

```

Why?
- To store a set of results, in a convenient dataframe
- Also, to print them in a clean format (even as \(\operatorname{LT} T_{E X}\) )

\section*{Pandas Input files}

Reading files: Use df= pd.read_... with
- csv: Clean input, easy to check in editor or excel, but large in size
- excel: Convenient, but a bit dangerous as each version of excel behaves differently
- csv.gz: Gzipped csv, smaller
- hdf, pickle, .... Many formats available

Extra options (and many others):
- CSV: skiprows=8, sep=' ; ', for choosing to skip some input, or indicate the separator
- Excel: sheet_name='Sheet 2', usecols=[0, 3, 4], for choosing specific sheet, or only some columns
- with both: index_col=['Year', 'Period'], to indicate what column(s) will be the index

\section*{Pandas elements}

Check the contents of the DataFrame and Series, either printing all, or only the .head() or .tail():
```

print ('Head of df: \n', df.head(), sep=,')

```
resulting in
\begin{tabular}{lclcll}
\multicolumn{2}{c}{ Head of df: } & & & \multicolumn{2}{l}{ Tail of sf: } \\
& Shoesize & Length & Gender & 114 & Male \\
0 & 45.0 & 187.0 & Male & 115 & Male \\
1 & 40.0 & 180.0 & Female & 116 & Male \\
2 & 45.0 & 185.0 & Male & 117 & Male \\
3 & 43.0 & 185.0 & Male & 118 & Male \\
4 & 43.0 & 174.0 & Male & Name: Gender, dtype: object
\end{tabular}

Notice: index 0, .., 118, columns Shoesize, Length,
Gender, Name: Gender

\section*{Pandas: Information}

Check out the contents of the data with e.g.
- df.head(), df.tail(), df: Either show a part, or the full data frame (or a limited number of rows and columns, that is)
- df.mean(), df.var(), df.min(), df.max(): Find the mean/var/min/max over the columns
- df.info(), df.describe(): More detailed information on the contents
- df.shape, df.size: What shape (rows \(\times\) columns) or size (number of elements) is it?
- df.index, df.columns: What are the row/column indices?
and especially:
- df.values: Extract the values from the dataframe, as a numpy matrix...!

\section*{Pandas: Indexing}

Different methods:
```

asC= ['Shoesize', 'Length']; asR= range(4, 8)
df [asC]
vI= df['Gender'] == 'Male'; df[vI]
df.loc[asR,:]
df.loc[asR, asC]
df.iloc[8, 2]
df.iloc[vR, vC]
Select columns by name
Select rows by boolean masking
Select rows by index, all columns
Subset of rows and columns
Read out single element, indexec
column location
Subset of rows and columns,
ranges

```

Remarks:
- Needs practice...
- I regularly move to a NumPy matrix/array, leaving DataFrames only for input/output

\section*{Pandas: Advanced indexing I}

What if I want to find the average length of the males?
a. Index, find only the males: \(v I=d f[' G e n d e r ']==\) 'Male'; \(\mathrm{dfM}=\mathrm{df}[\mathrm{vI}]\); \(\mathrm{dfM}[\) 'Length'].mean()
b. Move to wide instead of long table...

Definition:
- Long format: All subjects are placed one below the other, with observations on the necessary variables in a single row
- Wide format: Observations on several types of subjects may be placed next to eachother, for the same index

\section*{Pandas: Long vs wide}



\section*{Long vs. wide table}
```

df1= df.pivot(columns='Gender', values=['Shoesize', 'Length'])
df1[asC].mean() \# Give means of both values, per Gender

```

Here: Not too useful. But what about data with observations for each month/quarter/half year?

\section*{Pandas: Advanced indexing II}

With pivoted table, one gets to Multilndex tables:
```

In[74]: df1.columns
Out[74]: MultiIndex([('Shoesize',},\frac{,Female')}{\prime,Male')
('Shoesize',},\frac{'Male'),}{('Length',
((\frac{'Length',}{(}\frac{\mathrm{ 'Male')})],}{\mathrm{ names=[None, 'Gender''])}}\mathbf{},

```

Or: Index contains both variable name and pivot value, in a tuple. Hence: Select a single column with a tuple etc:
```

df1[('Shoesize', 'Male')].mean() \# Single mean
df1[',Shoesize'].mean() \# Both Female and Male means

```

Warning: Do try this at home... Options, way to work with Multilndex, takes lots of practice...

\section*{Pandas: Saving}

With data, you also want to save... Options: Many...
Personal preference (with e.g. sData='shoesize_bk2020'):
1. df.to_csv('data/\%s_out.csv' \% sData): Clean csv file, easy to read in editor or excel, robust
2. df.to_csv('data/\%s_out.csv.gz' \% sData): Clean csv file, but gzipped: Smaller, quite easy to read in editor or excel
3. df.to_excel('data/\%s_out.xlsx' \% sData): Pure excel file (but with limits on number of columns/rows!)
4. df.to_excel('data/\%s_out.ods' \% sData): Pure OpenDocument format file (but with limits on number of columns/rows!)

\section*{Pandas: Saving II}

Extra options for saving:
- df.to_...(sOut, index=False): Do not write the index column along (sometimes not informative)
df.to_excel(sOut, sheet_name='BK2O20 shoe sizes vs leng
(and many others... Do check the excellent reference guide at as well!)

\section*{Pandas: Plotting}

Plotting is a separate chapter, with too many details to cover here. Hence an example:
```

df.plot.area(figsize=(8,4))
df.plot.area(subplots=True)
df.plot.density(subplots=True)
plt.figure(figsize=(8,4))
df.plot.box()
plt.savefig('graphs/shoesize_box')
plt.show()

```


Figure: Shoesize and length of 2020 class of BK Statistics

\section*{Pandas: Printing}

And at last, the printing: Often, I write results as a DataFrame, as in

\section*{Listing 41: pandas_print.py}
```

vP0= np.array([0.5, 1, 4])
vP= np.array([0.745, .986, 3.74])
vS= np.array([.045, .062, . 254])
asR= ['B0',',B1',',s2']
asC= ['p0',',pHat',',sHat']
mRes= np.vstack([vP0, vP, vS]).T \# Stack underneath, transpose
df= pd.DataFrame(mRes, index=asR, columns=asC)
print ("Simply printing the dataframe:")
print (df)
print ("\nPrinting the dataframe towards LaTeX:")
print (df.to_latex(float_format=,%6.3f'))

```

\section*{Pandas: Other}

And further?
- Unimaginable, what Pandas may do for you
- Do check the manuals, great
- Prediction: Your usage of Pandas may explode, once you get hooked...

\section*{Principles of Programming in Econometrics}

D0: Syntax, example \(2^{8}\)
D1: Structure, scope

D2: Numerics, packages

\author{
D3: Optimisation, speed
}

\section*{Day 3: Optimisation}
- Optimization (minimize)
- Idea behind optimization
- Gauss-Newton/Newton-Raphson
- Stream/order of function calls
- Standard deviations
- Restrictions
- Speed
- Practical
- Regression: Maximize likelihood
- GARCH-M: Intro and likelihood

\section*{Optimisation}

Doing Econometrics \(\equiv\) estimating models, e.g.:
1. Optimise likelihood
2. Minimise sum of squared residuals
3. Minimise difference in moments
4. Solving utility problems (macro/micro)
5. Do Bayesian simulation, MCMC

Options 1-3 evolve around
\[
\hat{\theta}=\underset{\theta}{\operatorname{argmin}} f(y ; \theta), \quad \quad f(y ; \theta): \Re^{p} \rightarrow \Re
\]

Option 4 evolves around
\[
r(y ; \hat{\theta}) \equiv \mathbf{0}
\]
\[
r(y ; \theta): \Re^{p} \rightarrow \Re^{p}
\]

\section*{Example}

For simplicity: Econometrics example, ...
\[
\bar{I}(y ; \theta)=-\frac{1}{2 n} \sum_{i=1}^{n}\left(\log 2 \pi+\log \sigma^{2}+\frac{\left(y_{i}-\mu\right)^{2}}{\sigma^{2}}\right)
\]


Relatively simple function to optimize, but how?

\section*{Example II}
... translated to Macro/Micro solving equations
\[
r(y ; \theta) \equiv \frac{\partial \bar{l}(y ; \theta)}{\partial \theta}=\binom{\frac{1}{n \sigma^{2}} \sum\left(y_{i}-\mu\right)}{-\frac{1}{\sigma}+\frac{\sum\left(y_{i}-\mu\right)^{2}}{n \sigma^{3}}}
\]



Score \(=\) derivative of (avg) loglikelihood \(\bar{I}(y ; \theta), \Re^{2} \rightarrow \Re^{2}\)

\section*{Crawling up a hill}

Step back and concentrate:
- Searching for
\[
\hat{\theta}=\operatorname{argmin}_{\theta} f(y ; \theta)=\operatorname{argmax}_{\theta}-f(y ; \theta)
\]
- How would you do that?

\section*{Crawling up a hill}

Step back and concentrate:
- Searching for
\[
\hat{\theta}=\operatorname{argmin}_{\theta} f(y ; \theta)=\operatorname{argmax}_{\theta}-f(y ; \theta)
\]
- How would you do that?
- Imagine Alps:
a. Step outside hotel
b. What way goes up?
c. Start Crawling up a hill
d. Continue for a while
e. If not at top, go to b.

\section*{Use function characteristics}

Translate to mathematics:
a. Set \(j=0\), start in some point \(\theta^{(j)}\)
b. Choose a direction \(s\)
c. Move distance \(\alpha\) in that direction, \(\theta^{(j+1)}=\theta^{(j)}+\alpha s\)
d. Increase \(j\), and if not at top continue from b

Direction s: Linked to gradient?
Minimum: Gradient 0, second derivative positive definite?
(Maximum: Gradient 0, second derivative negative definite?)

\section*{Ingredients}

Inputs are
- \(f\), use (negative) average log likelihood, or average sum-of-squares;
- Starting value \(\theta^{(0)}\);
- Possibly \(g=f^{\prime}\), analytical first derivatives of \(f\);
- (and possibly \(H=f^{\prime \prime}\), analytical second derivatives of \(f\) ).

\section*{Ingredients}

Inputs are
- \(f\), use (negative) average log likelihood, or average sum-of-squares;
- Starting value \(\theta^{(0)}\);
- Possibly \(g=f^{\prime}\), analytical first derivatives of \(f\);
- (and possibly \(H=f^{\prime \prime}\), analytical second derivatives of \(f\) ).
or
- \(r\), use set of equations, if necessary scaled;
- Starting value \(\theta^{(0)}\);
- If available \(J=r^{\prime}\), analytical Jacobian of \(r\)

\section*{Ingredients II (optimize)}
\[
\begin{array}{rll}
f(\theta) & : \Re^{p} \rightarrow \Re & \text { Function, scalar } \\
f^{\prime}(\theta) & =\left[\frac{\partial f(\theta)}{\partial \theta_{1}}, \ldots, \frac{\partial f(\theta)}{\partial \theta_{p}}\right]^{T} \equiv g & \text { Derivative, gradient, } p \times 1 \\
f^{\prime \prime}(\theta) & =\left[\frac{\partial^{2} f(\theta)}{\partial \theta_{i} \partial \theta_{j}}\right]_{i, j=1}^{p} \equiv H & \text { Second derivative, Hessian, } p \times p
\end{array}
\]

If derivatives are continuous (as we assume), then
\[
\frac{\partial^{2} f(\theta)}{\partial \theta_{i} \partial \theta_{j}}=\frac{\partial^{2} f(\theta)}{\partial \theta_{j} \partial \theta_{i}} \quad H=H^{T}
\]

Hessian symmetric

\section*{Ingredients III (solve)}
\[
\begin{array}{ll}
r(\theta): \Re^{p} \rightarrow \Re^{p} & \text { Function, } p \times 1 \\
r^{\prime}(\theta)=\left[\frac{\partial r(\theta)}{\partial \theta_{1}}, \ldots, \frac{\partial r(\theta)}{\partial \theta_{p}}\right] \equiv J & \text { Derivative, Jacobian, } p \times p
\end{array}
\]

No reason for Jacobian to be symmetric

\section*{Newton-Raphson for minimisation}
- Approximate \(f(\theta)\) locally with quadratic function
\[
f(\theta+h) \approx q(h)=f(\theta)+h^{T} f^{\prime}(\theta)+\frac{1}{2} h^{T} f^{\prime \prime}(\theta) h
\]
- Minimise \(q(h)\) (instead of \(f(\theta+h)\) )
\[
q^{\prime}(h)=f^{\prime}(\theta)+f^{\prime \prime}(\theta) h=0 \Leftrightarrow f^{\prime \prime}(\theta) h=-f^{\prime}(\theta) \text { or } H h=-g
\]
by solving last expression, \(h=-H^{-1} g\)
- Set \(\theta=\theta+h\), and repeat as necessary

Problems:
- Is \(H\) positive definite/invertible, at each step?
- Is step \(h\), of length \(\|h\|\), too big or small?
- Do we converge to true solution?

\section*{Newton-Raphson for solving equations}
- Approximate \(r(y ; \theta)\) locally with linear function
\[
r(\theta+h) \approx q^{\prime}(h)=r(\theta)+r^{\prime}(\theta) h
\]
- Solve \(q^{\prime}(h)=\mathbf{0}\) (instead of \(\left.r(\theta+h)=\mathbf{0}\right)\)
\[
q^{\prime}(h)=r(\theta)+r^{\prime}(\theta) h=\mathbf{0} \Leftrightarrow r^{\prime}(\theta) h=-r(\theta) \text { or } J h=-r
\]
by solving last expression, \(h=-J^{-1} r\)
- Set \(\theta=\theta+h\), and repeat as necessary

Problems:
- Is J positive definite/invertible, at each step?
- Is step \(h\), of length \(\|h\|\), too big or small?
- Do we converge to true solution?

\section*{Newton-Raphson II}

- How does the algorithm converge?
- Where does it converge to?
```

ipython np_newton_show2, theta= 5.9/1/0.1/0.4

```

\section*{Problematic Hessian?}

Algorithms based on NR need \(H_{j}=f^{\prime \prime}\left(\theta^{(j)}\right)\). Problematic:
- Taking derivatives is not stable (...)
- Needs many function-evaluations
- \(H\) not guaranteed to be positive definite

Problem is in step
\[
s_{j}=-H_{j}^{-1} g_{j} \approx-M_{j} g_{j}
\]

Replace \(H_{j}^{-1}\) by some \(M_{j}\), positive definite by definition?

\section*{BFGS}

Broyden, Fletcher, Goldfarb and Shanno (BFGS) thought of following trick:
1. Start with \(j=0\) and positive definite \(M_{j}\), e.g. \(M_{0}=I\)
2. Calculate \(s_{j}=-M_{j} g_{j}\), with \(g_{j}=f^{\prime}\left(\theta^{(j)}\right)\)
3. Find new \(\theta^{(j+1)}=\theta^{(j)}+h_{j}, h_{j}=\alpha s_{j}\)
4. Calculate, with \(q_{j}=g_{j}-g_{j+1}\)
\[
M_{j+1}=M_{j}+\left(1+\frac{q_{j}^{\prime} M_{j} q_{j}}{h_{j}^{\prime} q_{j}}\right) \frac{h_{j} h_{j}^{\prime}}{h_{j}^{\prime} q_{j}}
\]

Result:
- No Hessian needed
\[
-\frac{1}{h_{j}^{\prime} q_{j}}\left(h_{j} q_{j}^{\prime} M_{j}+M_{j} q_{j} h_{j}^{\prime}\right)
\]
- Still good convergence
- No problems with negative definite \(H_{j}\)
\(\Rightarrow\) scipy.optimize.minimize(method="BFGS", ...) in Python, similar routines in \(\mathrm{Ox} / \mathrm{Matlab} / \mathrm{Gauss} /\) other.

\section*{Inputs}

Inputs could be
- \(f\), use (negative) average log likelihood, or average sum-of-squares.
- Starting value \(\theta_{0}\)
- Possibly \(f^{\prime}\), analytical first derivatives of \(f\).
\[
\hat{\theta}=\underset{\theta}{\operatorname{argmin}} f(y ; \theta), \quad \quad f(y ; \theta): \Re^{p} \rightarrow \Re
\]

Or one could need
- Set of conditions to be solved,
- preferably nicely scaled,
\[
r(y ; \hat{\theta}) \equiv \mathbf{0}, \quad r(y ; \theta): \Re^{p} \rightarrow \Re^{p}
\]

\section*{Model}
\[
y_{i} \sim \mathcal{N}\left(X_{i} \beta, \sigma^{2}\right)
\]

ML maximises (log-)likelihood (other options: Minimise sum-of-squares, optimise utility etc):
\[
\begin{aligned}
L_{i}\left(y_{i} ; \theta\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{i}-X_{i} \beta\right)^{2}}{2 \sigma^{2}}\right) \\
L(y ; \theta) & =\prod_{i} L_{i}\left(y_{i} ; \theta\right)
\end{aligned}
\]

In this case, e.g. \(\theta=(\sigma, \beta)\)

\section*{Function \(f\)}

Write towards function \(f\), to minimise:
\[
\begin{aligned}
\log L_{i}\left(y_{i} ; \theta\right) & =-\frac{1}{2}\left(\log 2 \pi+\log \sigma^{2}+\frac{1}{\sigma^{2}}\left(y_{i}-X_{i} \beta\right)^{2}\right) \\
f(y, X ; \theta) & =-\frac{1}{n} \sum \log L_{i}\left(y_{i} ; \theta\right)
\end{aligned}
\]

For testing:
- Work with generated data, e.g. \(n=100, \beta=<1,1,1>^{\prime}, \sigma=\) \(1, X=\left[1, U_{2}, U_{3}\right], y=X \beta+\epsilon, \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)\)
- Ensure you have the data...

\section*{Function r}

Remember solving \(r(y ; \theta) \equiv \mathbf{0}\) ? One could take \(r(y ; \theta)=g(y ; \theta)=f^{\prime}(y ; \theta)\),
\[
\begin{aligned}
f(y, X ; \theta) & =\frac{1}{2}\left(\log 2 \pi+\log \sigma^{2}+\frac{1}{n \sigma^{2}} \sum\left(y_{i}-X_{i} \beta\right)^{2}\right) \\
e & =y-X \beta \\
\frac{\partial f(y ; \theta)}{\partial \beta} & =\ldots \\
\frac{\partial f(y ; \theta)}{\partial \sigma} & =\ldots
\end{aligned}
\]
- In this case, it matters whether \(\theta=(\sigma, \beta)\), or \(\theta=(\beta, \sigma)\), or even \(\theta=\left(\beta, \sigma^{2}\right)\) !
- Find score of NEGATIVE AVERAGE loglikelihood
(and for now, first concentrate of \(f\), afterwards we'll fill in \(r\) )

\section*{PPEctr}

LOptimisation in practice
Likelihood

\section*{Comments of function}
```

Listing 42: estnorm.py
\#

vLL=LnLRegr(vP, vY, mX)

def LnLRegr(vP, vY, mX):
" " "
Purpose:
Compute loglikelihood of regression model
Inputs:
vP iK+1 vector of parameters, with sigma and beta
vY iN vector of data
mX iN x iK matrix of regressors
Return value:
vLL iN vector, loglikelihood
" " "

```

Note: Full set of inputs including data. Parameters vP and vY both in \(1 D\) vector, mX as \(2 D\) matrix.

\section*{Body of function}
```

Listing 43: estnorm.py
def LnLRegr(vP, vY, mX):
(iN, iK)= mX.shape
if (np.size(vP) != iK+1): \# Check if vP is as expected
print ("Warning: wrong size vP= ", vP)
(dSigma, vBeta)= (vP[0], vP[1:]) \# Extract parameters
return vLL

```

\section*{Body of function II}
and fill in the remainder
```

 Listing 44: estnorm.py
 def LnLRegr(vP, vY, mX):
vE= vY - mX @ vBeta
vLL= -0.5*(np.log(2*np.pi) + 2*np.log(dSigma) + np.square(vE/dSigma))
print (|.", end=|"|) \# Give sign of life
return vLL

```

Intermezzo: On robustness

WARNING:
- Check sizes of arguments to LL LnLRegr function carefully...
- Both y and \(\theta\) should be \(1 D\) vectors, not \(2 D\) columns
- Calculate LL per observation
- Possibly, alternative: Return dLL= np.sum(vLL, axis= 0), explicitly along axis 0 , instead.

What could go wrong?

\section*{Intermezzo: On robustness II}

What could go wrong?
```

iN= 10; dSigma= 1;
vBeta= np.array([1, 1, 1]) \# 1D array
iK= vBeta.size
vY= np.random.randn(iN, 1) \# 2D array, breaking rule!
mX= np.random.rand(iN, iK) \# 2D array
vE= vY - mX@vBeta \# 2D array, shape (iN, iN)!
vLL= -0.5*(np.log(2*np.pi) + 2*np.log(dSigma) + np.square(vE/dSigma))
dLL1= np.sum(vLL) \# No error, nice scalar, but WRONG
dLL2= np.sum(vLL, axis=0) \# No error, but 1D (iN,) vector, detectable
print ("Shape dLL1: ", dLL1.shape)
print ("Shape dLL2: ", dLL2.shape)

```

Watch out: The above np.sum(vLL) takes, without error, the sum over a full matrix...
Instead, force np.sum(vLL, axis=0) to take sum over the first axis! Watch out with shapes/dimensions
... And optimize? NO!
Before you continue: Check the loglikelihood
- Does it work at all?
- Is the total/average LL higher for a 'good' set of parameters, low for 'bad' parameters?
- Is it reasonably efficient?
- How does it react to incorrect shape of parameters/data?
- How does it react to incorrect parameters \((\sigma \leq 0)\) ?
... And optimize? NO!
Before you continue: Check the loglikelihood
- Does it work at all?
- Is the total/average LL higher for a 'good' set of parameters, low for 'bad' parameters?
- Is it reasonably efficient?
- How does it react to incorrect shape of parameters/data?
- How does it react to incorrect parameters \((\sigma \leq 0)\) ?

Latter question, several options:
1. Don't allow it, set dSigma= np.fabs(vP[0])
2. Flag that things go wrong: if (dSigma <= 0) : return -math.inf * np.ones(iN)
3. Use constrained optimisation, e.g. Sequential Least SQuares Programming (SLSQP)

\section*{Minimize: Syntax}
(In Python) Function to minimize should have a format
```

 dF= fnFunc(vP)
    ```
    \(\mathrm{dF}=\mathrm{fnFunc}(\mathrm{vP}, \mathrm{a}, \mathrm{b}, \mathrm{c}) \quad\) \# Alternative, not used in this document
where a, b, c are some optional parameters, not used by Python
- Choose your own logical function name
- vP is a \(p\) 1-dimensional array with parameters
- dF is the function value, or a missing/ \(\infty\) if function could not be evaluated

See the manual of SciPy's optimize functions

\section*{Minimize: Syntax II}

No space for data? Negative average LL instead of LL per observation? Use local Lambda function, providing the function to minimize as
```

Listing 45: estnorm.py

Create lambda function returning NEGATIVE AVERAGE LL, as function of vP only

AvgNLnLRegr= lambda vP: -np.mean(LnLRegr(vP, vY, mX), axis=0)

```

Advantage:
- Simply return the negative average of your previously prepared function
- Value of data vY, mX at moment of call is passed along
- No globals needed!

Alternative: Construct function AvgNLnLRegrXY(vP, vY, mX), and call opt.minimize(AvgNLnLRegr, vPO,
```

args=(vY, mX), method="BFGS")

```

\section*{Minimize: Syntax III}

Call scipy.opt.minimize() according to
import scipy.optimize as opt
res \(=\) opt.minimize(fnFunc, vPO, method="BFGS")
- fnFunc is the name of the function
- vP0 is a 1D array of initial parameters
- method="BFGS" indicates we want to use this method for optimisation
The return value res is a structure containing results.

\section*{Minimize: Syntax IV}

After optimisation:
- Always check the outcome:
```

res= opt.minimize(AvgNLnLRegr, vPO, method="BFGS")
vP= np.copy(res.x) \# For safety, make a fresh copy
sMess= res.message
dLL= -iN*res.fun
print ("\nBFGS results in ", sMess, "\nPars: ", vP, "\nLL= ", dLL)

print ("Full results: ", res)

```
- Possibly start thinking of using the outcome (standard errors, predictions, policy evaluation, robustness ...)

\section*{Optimisation}

Approach for general criterion function \(f(y ; \theta)\) : Write
\[
\begin{aligned}
f(\theta+h) & \approx q(h)=f(\theta)+h^{T} g(\theta)+\frac{1}{2} h^{T} H(\theta) h \\
g(\theta) & =\frac{\partial}{\partial \theta} f(y ; \theta) \\
H(\theta) & =\frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} f(y ; \theta)
\end{aligned}
\]

Optimise approximate \(q(h)\) :
\[
\begin{aligned}
g(\theta)+H(\theta) h & =0 \\
\Leftrightarrow \theta^{\text {new }} & =\theta-H(\theta)^{-1} g(\theta)
\end{aligned}
\]

First order conditions
and iterate into oblivion.

\section*{opt.minimize(method="BFGS"): Program flow}


Flow:
1. You call opt.minimize(..., method="BFGS")
2. ... which calls Gradient
3. ... which calls your function, multiple times.
4. Afterwards, it makes a move, choosing a step size
5. ... by calling your function multiple times,
6. ... and decides if it converged.
7. If not, repeat from 2.

\section*{BFGS: Program flow II}


Check out estnorm_plot.py ( \(p=3, n=100\) )

\section*{Minimize: Average}

Why use average loglikelihood?
1. Likelihood function \(L(y ; \theta)\) tends to have tiny values \(\rightarrow\) possible problem with precision
2. Loglikelihood function \(\log L(y ; \theta)\) depends on number of observations: Large sample may lead to large |LL|, not stable
3. Average loglikelihood tends to be moderate in numbers, well-scaled...
Better from a numerical precision point-of-view.
Warning:
Take care with score and standard errors (see later)

\section*{Minimize: Average}

Why use average loglikelihood?
1. Likelihood function \(L(y ; \theta)\) tends to have tiny values \(\rightarrow\) possible problem with precision
2. Loglikelihood function \(\log L(y ; \theta)\) depends on number of observations: Large sample may lead to large |LL|, not stable
3. Average loglikelihood tends to be moderate in numbers, well-scaled...

Better from a numerical precision point-of-view.
Warning:
Take care with score and standard errors (see later)
Warning 2:
Average is only for numerical reasons - always report full loglikelihood among outcomes

\section*{Minimize: Precision}

Optimisation is said to be successfull if (roughly):
1. \(\left\|g^{(j)}\left(\theta^{(j)}\right)\right\| \leq g_{\text {tol }}\), with \(g^{(j)}\) the score at \(\theta^{(j)}\), at iteration \(j\) : Scores are relatively small.
Note: Check 1 also depends on the scale of your function...
Preferably \(f(\theta) \approx 1\), not \(f(\theta) \approx 1 e-15\) !
Adapt the precision with
res= opt.minimize(AvgNLnLRegr, vPO, args=(),
method="BFGS", tol= 1e-4),
default is tol=1e-5.

\section*{Minimize: Scores}

\[
f^{\prime}(\theta)=\frac{\partial f(\theta)}{\partial \theta} \approx \frac{f(\theta+h)-f(\theta)}{h} \approx \frac{f(\theta+h)-f(\theta-h)}{2 h}
\]

Function evaluations: \(2 \times \operatorname{dim}(\theta)\)
Preferred: Analytical score \(f^{\prime}(\theta)\)

\section*{Minimize: Scores II}
```


Get a lambda function to return score, for NEGATIVE AVERAGE LL

AvgNLnLRegr_Sc= lambda vP: -np.mean(LnLRegr_Sc(vP, mY, mX))

```
- Provide a score function for loglikelihood vector
- Work out vector of scores, of same size as \(\theta\).
- DEBUG! Check your score against opt.approx_fprime()

\section*{Minimize: Scores IIb}
- DEBUG! Check your score against opt.approx_fprime() or gradient_2sided

Listing 46: estnorm_score3.py
\(\mathrm{vSc} 0=\mathrm{AvgNLnLRegr} \mathrm{S}_{\mathrm{S}} \mathrm{c}(\mathrm{vPO}, \mathrm{vY}, \mathrm{mX})\)
vSc1 = opt.approx_fprime (vP0, AvgNLnLRegr, 1e-5*np.fabs(vP0))
vSc2 \(=\) gradient_2sided (AvgNLnLRegr, vPO)
print ("Scores, analytical and numerical: \n", np.vstack([vSc0, vSc1, vSc2]))

Don't ever forget debugging this (goes wrong 100\% of the time...)

\section*{Minimize: Scores III}

Let's do it. . .
\[
\begin{aligned}
f(y ; \theta) & =\frac{1}{2}\left(\log 2 \pi+2 \log \sigma+\frac{\sum\left(y_{i}-X_{i} \beta\right)^{2}}{n \sigma^{2}}\right) \\
e & =y-X \beta \\
\frac{\partial f(y ; \theta)}{\partial \sigma} & =\ldots \\
\frac{\partial f(y ; \theta)}{\partial \beta} & =\ldots
\end{aligned}
\]
- It matters whether \(\theta=(\beta, \sigma)\) or \(\theta=\left(\beta, \sigma^{2}\right)\) or \(\theta=(\sigma, \beta)\) !
- Find score of AVERAGE NEGATIVE loglikelihood, in general of function \(f()\)
- (In estnorm_score3.py, for simplicity, score of vLL is taken, which later is combined into score of AvgNLnLRegr)

\section*{Minimize: Scores Results}

Output of estnorm.py:
```

BFGS results in Optimization terminated successfully.
Pars: [0.09888969 5.01707341 1.9962231 -2.01475073]
LL= 89.48117606217971 , f-eval= 230

```

Output of estnorm_score3.py:
```

BFGS results in Optimization terminated successfully.
Pars: [0.09888969 5.01707342 1.9962231 -2.01475074]
LL= 89.48117606217936 , f-eval= 40

```

\section*{Q: What are the differences?}

\section*{Solve}

\section*{Remember:}
\[
r(y ; \theta)=\mathbf{0}
\]

Use function scipy.optimize.least_squares, with basic syntax
```

import scipy.optimize as opt
\#

vF= fnFuncO(vP)

def fnFunc0(vP):
vF= ... // k 1D vector, should be 0 at solution
return vF
res= opt.least_squares(fnFunc0, x0)
print ("Nonlin LS returns ", res.message, "\nParameters ", res.x)

```

\section*{Solve II}
```

import scipy.optimize as opt
res= opt.least_squares(fnFunc0, x0)
print ("Nonlin LS returns ", res.message, "\nParameters ", res.x)

```
- General idea similar to minimize
- Solves nonlinear least squares problems
- Again, extra arguments can easily be passed through Lambda function:
fnFunc1L= lambda vP: fnFunc1(vP, a1, a2), where fnFunc1L(vP) is the lambda function calling the original fnFunc1(vP, a1, a2) which depends on multiple arguments.
- Further options available, check manual.

\section*{Example: Solve Macro}

Given the parameters \(\theta=\left(p_{H}, \nu_{1}\right)\), depending on input \(y=\left(\sigma_{1}, \sigma_{2}\right)\), a certain system describes the equilibrium in an economy if
\[
r(y ; \theta)=\binom{p_{H}^{-\frac{1}{\sigma_{1}}} \nu_{1}+p_{H}^{-\frac{1}{\sigma_{2}}}\left(1-\nu_{1}\right)-2}{p_{H}^{\frac{\sigma_{1}-1}{\sigma_{1}}} \nu_{1}+\nu_{1}-p_{H}-\frac{1}{2}}=\mathbf{0}
\]

For the solution to be sensible, it should hold that \(0<\nu_{1}<1\) and \(p_{H} \neq 0\).
If \(y=(2,2)\), what are the optimal values of \(\theta=\left(p_{H}, \nu_{1}\right)\) ?
Solution: \(\hat{\theta}=(0.25, .5)\)

\section*{Example: Solve Macro II}

Starting point as before: Prepare the restriction function, e.g.
```

\#

vF= EquilMacro(vP, vS)

def EquilMacro(vP, vS):
"""
Purpose:
Check the equilibrium in some specific problem from TI-Macro I
Inputs:
vP 2 vector with pH and Nu1
vS 2 vector, relative risk aversions
Return value:
vF 2 vector, with distance from equilibrium
"""

```

It will indeed:
- need the parameters \(\theta=\left(p_{H}, \nu_{1}\right)\)
- need the data \(y=\left(\sigma_{1}, \sigma_{2}\right)\)
- return the value of the restriction, \(r(y ; \theta)\)

\section*{Example: Solve Macro III}

Step 2: Read out the parameters, prepare the output:
```

def EquilMacro(vP, vS):
vF= np.ones_like(vP)
(dpH, dNu1)= vP
(dS1, dS2)= vS
print (".", end=|") \# Give sign of life

```

Q: Why would I initially set vF to a vector of ones, and not a vector of zeros?

\section*{Example: Solve Macro III}

Step 3: Then compute the \(r(y ; \theta)\) function
\[
r(y ; \theta)=\binom{p_{H}^{-\frac{1}{\sigma_{1}}} \nu_{1}+p_{H}^{-\frac{1}{\sigma_{2}}}\left(1-\nu_{1}\right)-2}{p_{H}^{\frac{\nu_{1}-1}{\sigma_{1}}} \nu_{1}+\nu_{1}-p_{H}-\frac{1}{2}}
\]
```

def EquilMacro(vP, vS):
vF[0]=(1.0 / dpH)**(1.0 / dS1)*dNu1 + (1.0 / dpH)**(1.0 / dS2)*(1.0-dNu1) -2
vF[1]= dpH**((dS1-1)/dS1)*dNu1+dNu1-dpH-(1/2)
return vF

```

\section*{Example: Solve Macro IV}

Step 4: Try things out, and solve!
Listing 47: solvemacro.py
```

def main():
\# Magic numbers
vS=[2, 2] \# Data
vP}=[10,.9] \# Initial parameter
\# Estimation
vF= EquilMacro(vP, vS)
print ("\nInitial distance vF= ", vF, "at vP= ", vP)
EquilMacroL= lambda vP: EquilMacro(vP, vS)
res= opt.least_squares(EquilMacroL, vP)

```

And check the results

\section*{Example: Solve Macro V}

\section*{Results:}
```

Initial distance vF= [-1.68377223 -6.75395011] at vP= [10, 0.9]
solvemacro.py:47: RuntimeWarning: invalid value encountered in double_scalars
vF[0]=(1.0 / dpH)**(1.0 /dS1)*dNu1 + (1.0 / dpH)**(1.0 / dS2)*(1.0-dNu1)-2
solvemacro.py:48: RuntimeWarning: invalid value encountered in double_scalars
vF[1]= dpH**((dS1-1)/dS1)*dNu1+dNu1-dpH-(1/2)
NLS returns 'gtol' termination condition is satisfied.
Parameters: [0.25 0.5]
The distance to equilibrium is [6.57252031e-14 -3.88578059e-16]

```

Success!
Q: What is your opinion of those warnings? Would you investigate? If yes, how?

\section*{Standard deviations}

Given a model with
\[
\begin{array}{rlrl}
\mathcal{L}(Y ; \theta) & & \text { Likelihood function } \\
I(Y ; \theta) & =\log \mathcal{L}(Y ; \theta) & & \text { Log likelihood function } \\
\hat{\theta} & =\operatorname{argmax}_{\theta} I(Y ; \theta) & & \text { ML estimator }
\end{array}
\]
what is the vector of standard deviations, \(\sigma(\hat{\theta})\) ?
Assuming correct model specification,
\[
\begin{aligned}
& \Sigma(\hat{\theta})=-H(\hat{\theta})^{-1} \\
& H(\hat{\theta})=\left.\frac{\partial^{2} l(Y ; \theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\theta=\hat{\theta}}
\end{aligned}
\]

\section*{SD2: Average likelihood}

For numerical stability, optimise average negative \(\log\) likelihood \(\bar{I}_{n}\). For regression model, with the likelihood approach, one can use
\[
\begin{aligned}
I(Y ; \theta) & =-\frac{(y-X \beta)^{\prime}(y-X \beta)}{2 \sigma^{2}}-N \log 2 \pi \sigma^{2}+c \\
I_{n}(Y ; \theta) & =\frac{(y-X \beta)^{\prime}(y-X \beta)}{2 N \sigma^{2}}+\log 2 \pi \sigma^{2}-c^{\prime} \\
H_{I_{n}} & \equiv \frac{\partial^{2} I_{n}(Y ; \theta)}{\partial \theta \partial \theta^{\prime}}=-\frac{1}{N} H_{l} \quad H_{l} \equiv-N H_{I_{n}}
\end{aligned}
\]

Listing 48: estnorm.py
```

res= opt.minimize(AvgNLnLRegr, vPO, method="BFGS")
vP= res.x
mHn= hessian_2sided(AvgNLnLRegr, vP)
mH= -iN*mHn
mS2= -np.linalg.inv(mH)
vS= np.sqrt(np.diag(mS2))
print ("\nBFGS results in ", res.message,
"\nPars: ", vP,
"\nStdev: ", vS
"\nLL= ", -iN*res.fun, ", f-eval= ", res.nfev)

SD2: Hessian...

Hessian:

- is numerically unstable
- defines your standard errors
- hence is utterly important
- should be calculated with care!

But first: Check the gradient (simpler)

SD2: Gradient...

Gradient:

$$
g=\frac{\partial f(\theta)}{\partial \theta} \approx \frac{f(\theta+h)-f(\theta)}{h} \approx \frac{f(\theta+h)-f(\theta-h)}{2 h}
$$

- Central difference far more precise than forward difference
- Step size h_{i} should depend on θ_{i}, different per element
- Rounding errors can become enormous, when h too small
- Python seems to provide scipy.optimize.approx_fprime, forward difference
- ... and symbolic differentiation (better, slower, not pursued here)
\Rightarrow lib/grad.py contains gradient_2sided()

SD2: gradient_2sided

\Rightarrow lib/grad.py contains gradient_2sided() (simplified here)

```
            Listing 49: lib/grad.py
def gradient_2sided(fun, vP, *args):
    iP = np.size(vP)
    vP= vP.reshape(iP) # Ensure vP is 1D-array
    vh = 1e-8*(np.fabs(vP)+1e-8) # Find stepsize
    mh = np.diag(vh) # Build a diagonal matrix
    fp = np.zeros(iP)
    fm = np.zeros(iP)
    for i in range(iP): # Find f(x+h), f(x-h)
        fp[i] = fun(vP+mh[i], *args)
        fm[i] = fun(vP-mh[i], *args)
    vG=(fp-fm)/(2*vh) # Get central gradient
    return vG
```


SD2: Gradient II

Listing 50: opt/estnorm_score.py

```
vSc0= AvgNLnLRegr_Jac(vPO, vY, mX)
vSc1= opt.approx_fprime(vPO, AvgNLnLRegr, 1e-5*np.fabs(vP0), vY, mX)
vSc2= gradient_2sided(AvgNLnLRegr, vPO, vY, mX)
print ("\nScores:\n",
    pd.DataFrame(np.vstack([vSc0, vSc1, vSc2]), index=["Analytical", "grad_1sided",
```

results in
Scores:

| | 0 | | | 1^{1} |
| :--- | :--- | :--- | :--- | :--- |
| Analytical | -7.965135 | -2.863504 | -1.502223^{3} | -1.341437 |
| grad_1sided | -7.965005 | -2.863499 | -1.502222 | -1.341435 |
| grad_2sided | -7.965135 | -2.863504 | -1.502223 | -1.341437 |

Q: What do you prefer?

SD2: Hessian II

Back to Hessian:

- lib/grad.py contains gradient_2sided() and hessian_2sided() (source: Python for Econometrics, Kevin Sheppard, with minor alterations)
- DO NOT use scipy.misc.derivative, as it allows only for a single constant difference h, applied in all directions
- DO NOT EVER use the output from res= opt.minimize(), where res.hess_inv seems to be some inverse hessian estimate. (Indeed, it is some estimate, useful for BFGS optimisation, not for computing standard errors)
(Same result can be obtained from NumDiffTools. However, here you have to understand what you are doing...)
Conclusion:

1. For standard errors: Feel free to copy code
2. Possibly better: Use improved covariance matrix, sandwich form. See Econometrics course

Optimization and restrictions

Take model

$$
y=X \beta+\epsilon, \quad \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Parameter vector $\theta=\left(\sigma, \beta^{\prime}\right)^{\prime}$ is clearly restricted, as $\sigma \in[0, \infty)$ or $\sigma^{2} \in[0, \infty)$

- Newton-based method (BFGS) doesn't know about ranges
- Alternative optimization (SLSQP) may be(?) slower/worse convergence, but simpler
Hence: First tricks for SLSQP.
Warning: Don't use SLSQP (or any optimization...) unless you know what you're doing (the function looks attractive, but isn't always...)

Restrictions: SLSQP

minimize(method="SLSQP") is an alternative to
minimize (method="BFGS")

- Without restrictions, delivers results similar to BFGS
- Allows for sequential quadratic programming solution, for linear and non-linear restrictions.

General call:

```
res= opt.minimize(fun, vPO, method="SLSQP", args=(),
    bounds=tBounds, constraints=tCon)
```


SLSQP Ila

Restrictions:

1. bounds: Tuple of form tBounds= ($(10, \mathrm{u} 0)$, ($11, \mathrm{u} 1$), ...) with lower and upper bounds per parameter (use None if no restriction)
2. ...

Listing 51: estnorm_slsqp.py

```
# Fix sigma > 0, -inf < beta< inf
tBounds= ((0, None),) + iK*((None, None),) # Concatenate 1 + K tuples
res= opt.minimize(AvgNLnLRegr, vPO, method="SLSQP", bounds=tBounds)
```


SLSQP IIb

Restrictions, alternative:

1. ...
2. constraints: Tuple of dictionaries with entry 'type', indicating whether the function indicates an inequality ("ineq") or equality ("eq"), and entry 'fun', giving a function of a single argument which returns the constrained value. E.g. tCons= (\{'type': 'ineq', 'fun': fngt0\}, \{'type': 'eq', 'fun': fneq0\})

Listing 52: estnorm_slsqp.py

```
# Or, alternatively
fnsigmapos= lambda vP: vP[0] # Function which returns sigma only
tCons= ({'type': 'ineq', 'fun': fnsigmapos})
res= opt.minimize(AvgNLnLRegr, vPO, method="SLSQP", constraints=tCons)
```

See manual for more details...

SLSQP III

Advantages:

- Simple
- Implements restrictions on parameter space (e.g. $\sigma>0,0<\alpha+\delta<1)$
Disadvantages:
- BFGS is meant for global optimisation; SLSQP might work worse
- Often better to incorporate restrictions in parameter transformation: Estimate $\theta=\log \sigma,-\infty<\theta<\infty$
So check out transformations...

Transforming parameters

Variance parameter positive?
Solutions:

1. Use σ^{2} as parameter, have AvgLnLiklRegr return -math.inf when negative σ^{2} is found
2. Use $\sigma \equiv\left|\theta_{0}\right|$ as parameter, ie forget the sign altogether (doesn't matter for optimisation, interpret negative σ in outcome as positive value)
3. Transform, optimise $\theta_{0}^{*}=\log \sigma \in(-\infty, \infty)$, no trouble for optimisation
Last option most common, most robust, neatest.

Transform: Common transformations

| Constraint | θ^{*} | θ |
| :--- | :---: | :---: |
| $[0, \infty)$ | $\log (\theta)$ | $\exp \left(\theta^{*}\right)$ |
| $[0,1]$ | $\log \left(\frac{\theta}{1-\theta}\right)$ | $\frac{\exp \left(\theta^{*}\right)}{1+\exp \left(\theta^{*}\right)}$ |

Of course, to get a range of $[L, U]$, use a rescaled $[0,1]$ transformation.

Note: See also exercise transpar

Transform: General solution

Distinguish $\theta=\left(\sigma, \beta^{\prime}\right)^{\prime}$ and $\theta^{*}=\left(\log \sigma, \beta^{\prime}\right)^{\prime}$. Steps:

- Get starting values θ
- Transform to θ^{*}
- Optimize θ^{*}, transforming back within LL routine
- Transform optimal θ^{*} back to θ

Listing 53: opt/estnorm_tr.py

```
# Prepare wrapping function
def AvgNLnLiklRegrTr(vPTr):
    vP= np.copy(vPTr) # Remember to COPY vPTr to a NEW variable
    vP[0]= np.exp(vPTr [0])
    return AvgNLnLiklRegr(vP) # Use old function, of untransformed parameters
vPOTr= np.copy(vPO) # Remember to COPY vPO to a NEW variable
vPOTr [0]= np.log(vPO[0])
res= opt.minimize(AvgNLnLRegrTr, vPOTr, method=|BFGS")
vP= np.copy(res.x) # Remember to COPY x to a NEW variable
vP[0]= np.exp(vP[0]) # Remember to transform back!
```


Transform: Use functions

Notice code before: Transformations are performed

1. Before minimize
2. After minimize
3. Within AvgNLnLiklRegrTr
4. And probably more often for computing standard errors

Premium source for bugs... (see previous page: Two distinct implementations for back-transform? Why?!?)

Solution: Define

- $\mathrm{vPTr}=\operatorname{TransPar}(\mathrm{vP}): \theta \rightarrow \theta^{*}$
- vP= TransBackPar(vPTr): $\theta^{*} \rightarrow \theta$

And test (in a separate program) whether transformation works right. Necessary when using multiple transformed parameters.

Transform: Use functions II

Listing 54: opt/estnorm_tr2.py

```
# Use lambda function to transform back in place
# AvgNLnLRegrTr= lambda vPTr: AvgNLnLRegr(TransBackPar(vPTr))
# Option 1
AvgNLnLRegrTr= lambda vPTr: -np.mean(LnLRegr(TransBackPar(vPTr), vY, mX), axis=0)
# Option 2
vPOTr= TransPar(vP0)
res= opt.minimize(AvgNLnLRegrTr, vPOTr, method="BFGS")
vP= TransBackPar(res.x) # Remember to transform back!
```


Standard deviations

Remember:

$$
\begin{aligned}
& \Sigma(\hat{\theta})=-H(\hat{\theta})^{-1} \\
& \left.H(\hat{\theta})=\frac{\delta^{2} I(Y ; \theta)}{\delta \theta \delta \theta^{\prime}} \int_{\theta=-\hat{\theta}}=-N \frac{\delta^{2} \bar{I}_{n}(Y ; \theta)}{\delta \theta \delta \theta^{\prime}}\right\rfloor_{\theta=\hat{\theta}}
\end{aligned}
$$

Therefore, we need (average negative) loglikelihood in terms of θ, not θ^{*} for sd's...

Transforming parameters II: SD

Question: How to construct standard deviations?
Answers:

1. Use transformation in estimation, not in calculation of standard deviation. Advantage: Simpler. Disadvantage:
Troublesome when parameter close to border.
2. Use transformation throughout, use Delta-method to compute standard errors. Advantage: Fits with theory. Disadvantage: Is standard deviation of σ informative, is its likelihood sufficiently peaked/symmetric?
3. After estimation, compute bootstrap standard errors
4. Who needs standard errors? Compute 95% confidence bounds on θ^{*}, translate those to 95% bounds on parameter θ. Advantage: Theoretically nicer. Disadvantage: Not everybody understands advantage.
See next slides.

Transforming: Temporary

- Use transformation in estimation,
- Use no transformation in calculation of standard deviation.

Listing 55: opt/estnorm_tr2.py

```
vPOTr= TransPar(vP0)
res= opt.minimize(AvgNLnLRegrTr, vPOTr, method="BFGS")
vP= TransBackPar(res.x) # Remember to transform back!
# Get covariance matrix from function of vP, not vPTr!
mHn= hessian_2sided(AvgNLnLRegr, vP)
mH= -iN*mHn
mS2= -np.linalg.inv(mH)
vS= np.sqrt(np.diag(mS2))
```


Transforming: Delta

$$
\begin{aligned}
n^{1 / 2}\left(\hat{\theta}^{*}-\theta_{0}^{*}\right) & \stackrel{a}{\sim} \mathcal{N}\left(0, V^{\infty}\left(\hat{\theta}^{*}\right)\right) \\
\hat{\theta} & =g\left(\hat{\theta}^{*}\right) \\
\hat{\theta} & \approx g\left(\theta_{0}^{*}\right)+g^{\prime}\left(\theta_{0}^{*}\right)\left(\hat{\theta}^{*}-\theta_{0}^{*}\right) \\
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) & \stackrel{a}{=} g_{0}^{\prime} n^{1 / 2}\left(\hat{\theta}^{*}-\theta_{0}^{*}\right) \stackrel{a}{\sim} \mathcal{N}\left(0,\left(g_{0}^{\prime}\right)^{2} V^{\infty}\left(\hat{\theta}^{*}\right)\right) \quad \text { scalar } \\
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) & \stackrel{a}{\sim} \mathcal{N}\left(0, G_{0} V^{\infty}\left(\hat{\theta}^{*}\right) G_{0}^{\prime}\right)
\end{aligned}
$$

In practice: Use

$$
\begin{aligned}
\operatorname{var}(\hat{\theta}) & =\hat{G} \operatorname{var}\left(\hat{\theta}^{*}\right) \hat{G}^{\prime} \\
\hat{G} & =\frac{\delta g\left(\theta^{*}\right)}{\delta \theta^{* \prime}}=\left(\begin{array}{llll}
\frac{d g\left(\theta^{*}\right)}{d \theta_{1}^{*}} & \frac{d g\left(\theta^{*}\right)}{d \theta_{2}^{*}} & \ldots & \frac{d g\left(\theta^{*}\right)}{d \theta_{k}^{*}}
\end{array}\right)=\text { Jacobian }
\end{aligned}
$$

Transforming: Delta in Python

Listing 56: opt/estnorm_tr2.py

```
vPTr= res.x
# Get standard errors, using delta method
mHnTr= hessian_2sided(AvgNLnLRegrTr, vPTr)
mHTr= -iN*mHnTr
mS2Tr= -np.linalg.inv(mHTr)
mG= jacobian_2sided(TransBackPar, vPTr) # Evaluate jacobian at vPTr
mS2= mG @ mS2Tr @ mG.T # Cov(vP)
vS= np.sqrt(np.diag(mS2)) # s(vP)
```


Transforming: Bootstrap

- Estimate model, resulting in $\hat{\theta}=g\left(\hat{\theta}^{*}\right)$
- From the model, generate $j=1, . ., B$ bootstrap samples $y_{s}^{(j)}(\hat{\theta})$
- For each sample, estimate $\hat{\theta}_{s}^{(j)}=g\left(\hat{\theta}^{*}{ }_{s}^{(j)}\right)$
- Report $\operatorname{var}(\hat{\theta})=\operatorname{var}\left(\hat{\theta}_{s}^{(1)}, \ldots, \hat{\theta}_{s}^{(B)}\right)$
I.e, report variance/standard deviation among those B estimates of the parameters, assuming your parameter estimates are used in the DGP.

Simple, somewhat computer-intensive?

Transforming: Bootstrap in Ox

```
{
    for (j= 0; j< iB; ++j)
        // Simulate data Y from DGP, given estimated parameter vP
        GenerateData(&vY, mX, vP);
        TransPar(&vPTr, vP);
        ir= MaxBFGS(fnAvgLnLiklRegrTr, &vPTr, &dLL, 0, TRUE);
        TransBackPar(&vPB, vPTr);
        mG[][j]= vPB; // Record re-estimated parameters
        }
    mS2= variance(mG');
    avS[0]= sqrt(diagonal(mS2)');
}
```

For the tutorial: Try it out for the normal model, in Python?

Speed

Elements to consider

- Use matrices, avoid loops
- Adapt large matrices in-place (\dagger)
- Use built-in functions (\dagger)
- Pre-declare matrix, do not concatenate
- Use Numba or Cython
- Use multi-processing (smartly)

Speed: Loops vs matrices

Avoid loops like the plague.
Most of the time there is a matrix alternative, like for constructing dummies:

Listing 57: speed_loop2.py

```
iN= 10000
iR= 1000
vY= np.random.randn(iN, 1)
vDY= np.zeros_like(vY)
with Timer("Loop"):
    for r in range(iR):
        for i in range(iN):
                if (vY[i] > 0):
            vDY[i]= 1
        else:
            vDY[i]= -1
with Timer("Matrix"):
    for r in range(iR):
        vDY= np.ones_like(vY)
        vDY[vY <= 0]= -1
```


Speed: Argument vs return

Listing 58: speed_argument.py

```
def funcret(mX):
    (iN, iK)= mX.shape
    mY= np.random.randn(iN, iK)
    return mY
def funcarg(mX):
    (iN, iK)= mX.shape
    mX[:,:]= np.random.randn(iN, iK)
def main():
    mX= np.zeros((iN, iK))
    with Timer("return"):
        for r in range(iR):
            mX= funcret(mX)
    with Timer("argument"):
        for r in range(iR):
            funcarg(mX)
```

Note: No true difference to be found, good memory management...

Speed: Built-in functions

```
Listing 59: speed_builtin.py
def MyOls(vY, mX):
    vB= np.linalg.inv(mX.T@mX)@mX.T@vY
    return vB
def main():
    with Timer("MyOls"):
        for r in range(iR):
        vB= MyOls(vY, mX)
    with Timer("lstsq"):
        for r in range(iR):
        vB= np.linalg.lstsq(mX, vY, rcond=None)[0]
```

Note: This function Istsq is even slower... More stable in awkward situations...

Speed: Concatenation or predefine

In a simulation with a matrix of outcomes, predefine the matrix to be of the correct size, then fill in the rows.
The other option, concatenating rows to previous results, takes a lot longer.

Listing 60: speed_concat.py

```
iN=1000
iK= 1000
mX= np.empty((0, iK))
with Timer("vstack"):
    for j in range(iN):
        mX= np.vstack([mX, np.random.randn(1, iK)])
mX= np.empty((iN, iK))
with Timer("predef"):
    for j in range(iN):
        mX[j,:]= np.random.randn(1, iK)
```


Speed: Using Numba

Numba may help in pre-translating routines using Just-in-Time translation to machine code. After the translation, code will run (much...) faster.

```
def Loop(mX, iR):
    (iN, iK)= mX.shape
    for r in range(iR):
        mXtX= np.zeros((iK, iK))
        for i in range(iK):
            for j in range(i+1):
                for k in range(iN):
                        mXtX[i,j]+= mX[k,i] * mX[k,j]
                mXtX[j, i]= mXtX[i, j]
    return mXtX
def main():
    # Estimation
    with Timer("Loop, Rx"):
        mXtX= Loop(mX, iR)
```


Speed: Using Numba II

- Add a decorator to indicate that a loop should be pre-compiled
- Run the loop once, to allow for the compilation
- Afterwards, loops are much quicker

```
@njit()
def Loop_NJit(mX, iR):
    (iN, iK)= mX.shape
    for r in range(iR):
        mXtX= np.zeros((iK, iK))
        for i in range(iK):
            for j in range(i+1):
                for k in range(iN):
                    mXtX[i,j]+= mX[k,i] * mX[k,j]
            mXtX[j, i]= mXtX[i, j]
    return mXtX
def main():
    # Estimation
    with Timer("Loop_NJit 1x, compiling"):
        mXtX= Loop_NJit(mX, 1)
    with Timer("Loop_NJit Rx"):
        mXtX= Loop_NJit(mX, iR)
```


Speed: Using Numba III

With @njit(), code is pushed into machine code; hence vectorisation is no longer needed.
Next step: Allow for parallelisation

```
@njit(parallel= False) # Do the inner part translated to C, no parallelisation
def Loop_Inner(mX):
    (iN, iK)= mX.shape
    mXtX= np.zeros((iK, iK))
    for i in range(iK):
        for j in range(i+1):
            for k in range(iN):
                mXtX[i,j]+= mX[k,i] * mX[k,j]
            mXtX[j, i] = mXtX[i, j]
    return mXtX
@njit(parallel= True) # Do the outer loop in parallel
def Loop_parallel(mX, iR):
    (iN, iK)= mX.shape
    mXtXr= np.zeros((iK, iK))
    for r in prange(iR): # Use prange, indicating a parallel loop
        mXtXr+= Loop_Inner(mX) # Reduction, by computing the average
```

 return mXtXr/iR

Speed: Using Numba IV

Hints:

- Don't reuse variables in a parallel loop (race condition between threads?)
- If inner loop takes lots of memory, don't do it in parallel either (as it will take multiple copies of memory)
- Combine results smartly
- Don't overdo it, only run explicitly the most outer loop in parallel
- @njit(parallel= True) already may parallelise vector operations, test where it is most useful
- Explicit vectorisation + njit is not really useful, simple looping code may be just as quick
Conclusion: It takes practice and trials to find best/quickest combination!

Speed: Using Multiprocessing

Using multiple CPU's in Python is not simple:

- Standard multi-threading does not help (for CPU tasks), as Python has a Global Interpreter Lock: Only one computation at a time. Save it for I/O bound tasks
- Less standard multi-processing may help for CPU tasks, but is slightly more difficult to set up.
Basis worker function:

```
def LoopG(r):
    global g_mX
    return Loop(g_mX, 1)
```


Speed: Using Multiprocessing II

```
from multiprocessing import Pool
def LoopJ(mX, iR):
    global g_mX # Prepare a global for passing mX
    g_mX=mX # Fill the global with the value of mX
    pool= Pool() # Open the pool of processors, as many as possible
    IXtX= pool.map(LoopG, range(iR)) # Call LoopG, for each value r= 0, .., iR-1
                                    # Store all results in the list lXtX
    # close the pool and wait for the work to finish
    pool.close()
    pool.join()
    return lXtX[0] # Return only a single of those results
```

Result: Speedup of factor 1.6 for 2 -core system, factor 9 for 16-core system...
Background: https://medium.com/@yasufumy/ python-multiprocessing-c6d54107dd55

Speed: Overview

Conclusions:

- If your program takes more than a few seconds, optimise
- Track the time spent in functions, optimise what takes longest (hint: inner loop...)
- Don't concatenate/stack
- Use matrix-operations/vectorized code instead of loops
- Look into Numba for loop-heavy code
- Multiprocessing may help (but matrices help more...)
- Use Cython (not covered here), or move to Julia, (not covered here) for computationally intensive stuff

Closing thoughts

And so, the course comes to an end...
Please

- keep concepts, principles of programming, in mind
- structure your programs wisely

On a obligatory (TI/BDS) or voluntary (DHPQRM) basis:

- before Friday September 30 2022, 23.59h
- hand in your own solution to

1. GARCH-ML problem (similar to OLS exercise, minor extensions)
2. BinTree problem (relevant to QRM students, nice setting for others)
(see Canvas for details)
