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Abstract

Given any observed demand behavior by means of a demand function, we quantify by

how much it departs from rationality. Using a recent elaboration of the “almost implies near”

principle, the measure of the gap is the smallest norm of the correcting matrix function that

would yield a Slutsky matrix with its standard rationality properties (symmetry, singularity,

and negative semidefiniteness). A useful classification of departures from rationality is

suggested as a result. Variants, examples, and applications are discussed, and illustrations

are provided using several bounded rationality models.
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1 Introduction

The rational consumer model has been at the heart of most theoretical and applied work in

economics. In the standard theory of the consumer, this model has a unique prediction in the

form of a symmetric, singular, and negative semidefinite Slutsky matrix. In fact, any demand

system that has a Slutsky matrix with these properties can be viewed as being generated as the

result of a process of maximization of some rational preference relation. Nevertheless, empirical

evidence often derives demand systems that conflict with the rationality paradigm. In such

cases, those hypotheses (e.g., symmetry of the Slutsky matrix) are rejected. These important

findings have given rise to a growing literature of behavioral models that attempt to better fit

the data.

At this juncture three related questions can be posed in this setting:

• (i) How can one measure the distance of an observed demand behavior –demand function–

from rationality?

• (ii) How can one compare and classify two behavioral models as departures from a closest

rational approximation?

• (iii) Given an observed demand function, what is the best rational approximation model?
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nach, and the participants at the Brown Theory Lunch for helpful comments and encouragement.
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The aim of this paper is to provide a tool to answer these three questions in the form of a Slutsky

matrix function norm, which allows to measure departures from rationality in either observed

Slutsky matrices or demand functions. The answer, provided for the class of demand functions

that are continuously differentiable, sheds light on the size and type of bounded rationality that

each observed behavior exhibits.

Our primitive is an observed demand function. To measure the gap between that demand

function and the set of rational behaviors, one can use the “least” distance and try to identify

the closest rational demand function. This approach presents serious difficulties, though. Leav-

ing aside compactness issues, which can be addressed under some regularity assumptions, the

solution would require solving a challenging system of partial differential equations. Lacking

symmetry of this system, an exact solution may not exist, and one needs to resort to approxi-

mation or computational techniques, but those are still quite demanding.

We take an alternative approach, based on the calculation of the Slutsky matrix function of

the observed demand. We pose a matrix nearness problem in a convex optimization framework,

which permits both a better computational implementability and the derivation of extremum

solutions. Indeed, we attempt to find the smallest correcting additive perturbation to the ob-

served Slutsky matrix function that will yield a matrix function with all the rational properties

(symmetry, singularity with the price vector on its null space, and negative semidefiniteness).

We use the Frobenius norm to measure the size of such additive factor. Using Anderson (1986)

“almost implies near” (AN) principle and its recent elaboration, developed by Boualem and

Brouzet (2012), we establish that for every approximation of rational behavior (i.e., the ob-

served demand function being “almost” rational), there exists a rational demand function such

that the two Slutsky matrix functions are also close (“near” symmetry, singularity, and NSD).

This result allows us to use the Frobenius norm of the correcting factor added to the Slutsky

matrix function as the “size” of the observed departure from rationality.

We provide a closed-form solution to the matrix nearness problem just described. Interest-

ingly, the solution can be decomposed into three separate terms, whose intuition we provide

next. Given an observed Slutsky matrix function,

• (a) the norm of its anti-symmetric or skew symmetric part measures the “size” of the

violation of symmetry;

• (b) the norm of the smallest additive matrix that will make the symmetric part of the

Slutsky matrix singular measures the “size” of the violation of singularity; and

• (c) the norm of the positive semidefinite part of the resulting corrected matrix measures

the “size” of the violation of negative semidefiniteness.

Our main result shows that the “size” of bounded rationality, measured by the Slutsky matrix

norm, is simply the sum of these three effects. In particular, following any observed behavior,

we can classify the instances of bounded rationality as violations of the Ville axiom of revealed

preference –VARP– if only symmetry fails, violations of homogeneity of degree zero or other

money illusion phenomena if only singularity fails, violations of the weak axiom of revealed pref-

erence –WARP– by a symmetric consumer if only negative semidefiniteness fails, or combinations

thereof in more complex failures, by adding up the nonzero components of the norm.

The size of bounded rationality provided by the Slutsky norm depends on the units in which

the consumption goods are expressed. It is therefore desirable to provide unit-independent
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measures, and we do so following two approaches. The first is a normalization method, through

dividing the norm of the additive correcting matrix function by the norm of the Slutsky matrix

function of the observed demand. The second translates the first norm into dollars, providing a

monetary measure.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3 goes

over the “almost implies near” principle and applies it to our problem. Section 4 deals with the

matrix nearness problem, and finds its solution, emphasizing its additive decomposition. Section

5 provides interpretations of the matrix nearness problem in terms of the axioms behind revealed

preference and in terms of wealth compensations, and presents unit-independent measures. Sec-

tion 6 presents several examples and applications of the result, including hyperbolic discounting,

the sparse consumer model, and an econometric application to estimation of the Slutsky matrix

with noisy data. Section 7 is a brief review of the literature, and Section 8 concludes. Some of

the proofs of the more technical results are collected in an appendix.

2 The Model

Let τ ∈ T be an element of the set of theories or models of behavior. Examples of τ include

behavior derived by a certain utility function, and more generally, the class of rational consumer

models, as well as the class of models satisfying the weak axiom of revealed preference. Consider

a demand function xτ : Z 7→ X, where Z ≡ P ×W is the compact space of price-wealth pairs

(p, w), P ⊆ RL++, W ⊆ R++, and X ≡ RL is the consumption set. This demand system is a

generic function that maps price and wealth to consumption bundles under a particular τ .

Moreover, assume that xτ (p, w) is continuously differentiable and satisfies Walras’ law. That

is for p� 0 and w > 0 p′xτ (p, w) = w. Let the set of functions that satisfy these characteristics

be X ⊂ C1. Hence, define also X (Z) ⊂ C1(Z), with C1(Z) denoting the complete metric space

of vector valued functions f : Z 7→ RL, continuously differentiable, uniformly bounded with

compact domain Z ⊂ RL+1
++ , equipped with the norm ||f ||C1 = max({||fl||C1,1}l=1,...,L), with

||fl||C1,1 = max(||fl||∞,1, ||∇fl||∞,L+1) where f(z) = {fl(z)}l=1,...,L.1

Let R(Z) ⊂ X (Z) be the set of rational demand functions R(Z) = {xr ⊂ X (Z)|xr(z) =

xr(p, w) � x subject to p′x ≤ w} for some complete and transitive relation �: X ×X 7→
X.

Definition 1. Define for any τ ∈ T , the distance from xτ ∈ X to the set of rational demands

R = {xr(p, w)|r ∈ R} ⊂ X by the “least” distance from an element to a set: d(xτ ,R) =

inf{dX (xτ , xr)|xr ∈ R}.

We shall refer to this problem of trying to find the closest rational demand to a given demand

as the “behavioral nearness” problem. Observe that the behavioral nearness problem at this level

of generality presents several difficulties. First, the constraint set R(Z), i.e., the set of rational

demand functions, is not convex. In addition, the Lagrangian depends not only upon xr but also

on its partial derivatives. The typical curse of dimensionality of calculus of variations applies

here with full force, in the case of a large number of commodities. Indeed, the Euler-Lagrange

equations in this case do not offer much information about the problem and give rise to a large

1In fact, any norm that makes X (Z) complete works. We use also the related normed space of real-valued
functions with the norm || · ||∞,m = supz∈Z |g(z)| for g : Z 7→ Rm, for finite m ≥ 1 and | · | the absolute value.
This norm will come in handy when dealing with some technical proofs in the sequel.
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partial differential equations system. To calculate analytically the solution to this program is

computationally challenging.

Having noted these difficulties with the “behavioral nearness” problem, our next goal is to

talk about Slutsky norms. Let M(Z) be the complete metric space of matrix-valued functions,

F : Z 7→ RL × RL, equipped with the inner product 〈F,G〉 =
´
z∈Z Tr(F (z)′G(z))dz. This

vector space has a Frobenius norm ||F ||2 =
´
z∈Z Tr(F (z)′F (z))dz. Let us define the Slutsky

substitution matrix function.

Definition 2. Let Z ⊂ P ×W be given, and denote by z = (p, w) an arbitrary price-wealth pair

in Z.2 Consider the price change dp and a compensated wealth change dw = dp′xτ (p, w).

Then the Slutsky matrix function Sτ ∈ M(Z) is defined pointwise: Sτ (z) = Dpx
τ (z) +

Dwx
τ (z)xτ (z)′ ∈ RL×L, with entry sτl,k(p, w) =

∂xτl (p,w)
∂pk

+
∂xτl (p,w)

∂w xτk(p, w).

The Slutsky matrix function is well defined for all f ∈ C1(Z). Restricted to the set of rational

behaviors, the Slutsky matrix satisfies a number of regularity conditions. Specifically, when a

matrix function Sτ ∈ M(Z) is symmetric, negative semidefinite (NSD), and singular with p in

its null space for all z ∈ Z, we shall say that the matrix satisfies property R, for short. The one-

to-one relation between matrices satisfying R and rational theories of behavior will be exploited

to define a metric that represents d(xτ ,R(Z)) for every z ∈ Z.

Definition 3. For any Slutsky matrix function Sτ ∈ M(Z), let its Slutsky norm be defined as

follows: d(Sτ ) = min{||E|| : Sτ + E ∈M(Z) having property R}.

The use of the minimum operator is justified. Indeed, it will be proved that the set of Slutsky

matrix functions satisfying R is a compact and convex set. Then, under the metric induced by

the Frobenius norm, the minimum will be attained inM(Z). We shall refer to the minimization

problem implied in the Slutsky norm as the “matrix nearness” problem.

3 The “Almost Implies Near” Principle

Intuitively, there should be a close relationship between the “least” distance to the set of rational

demand functions (the behavioral nearness problem) and the Slutsky matrix nearness problem

just defined. In order to make this relationship explicit, we will make extensive use of Anderson

(1986) “almost implies near” (AN) principle and its recent elaboration, developed by Boualem

and Brouzet (2012).

We begin by establishing a technical claim, whose proof can be found in the appendix.

Claim 1. The set X (Z) is a compact subset of C1(Z).

The “almost implies near” (AN) principle allows us to assert that for all ε > 0 there exists

δ > 0 such that for all xτ ∈ X (Z) with R being δ− (almost) satisfied by Sτ , one can find

xr ∈ X (Z) with associated Sr ∈ M(Z) having property R such that dX (Z)(x
τ , xr) < ε. In the

name of the principle, the “almost” part refers toδ > 0 (matrix nearness), and the “near” part

to ε > 0 (behavioral nearness).3

2Since Z is closed, we use the definition of differential of Graves (1956) that is defined non only in the interior
but also on the accumulation points of Z.

3Instead of relying on nonstandard analysis, Boualem & Brouzet (2012) use functions between metric spaces
to represent a property in Anderson’s language, and a metric to represent his formulas. This treatment is also
useful because it allows us to adapt our results in order to derive an explicit expression for ε(δ) for an arbitrary
Z ⊂ P ×W .
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The matrix nearness problem allows us to represent property R by a function a with the AN

property, as defined next.

Definition 4. [ [Boualem and Brouzet (2012)] ] A function a : X (Z) 7→ M(Z) (with X (Z) and

M(Z) metric spaces) satisfies the “almost implies near” (AN) property at C ∈M(Z), if for all

ε > 0, there exists a δ > 0 such that for every xτ ∈ X (Z), the inequality dM(Z)(a(xτ ), C) < δ

implies the existence of an element xr0 ∈ X (Z) satisfying a(xr0) = C and dX (Z)(x
r
0, x

τ ) < ε.

The mapping a : X (Z) 7→ M(Z), with X (Z) andM(Z) as defined above, represents property

R when for every xτ ∈ R(Z):

a(xτ ) = E = 0,

where 0 represents the zero matrix function of L × L dimension in the metric space M(Z),

and E = Sr − Sτ denotes a solution of the program in the definition of the Slutsky norm. The

analytical expression of the (unique) solution to such a problem, as well as its properties, will

be derived in the sequel (Theorem 1).

We state a result that applies the “almost implies near” principle to our problem.

Proposition 1. 4 For all ε > 0, there exists a δ > 0 such that for all xτ ∈ X (Z), the inequality

dM(Z)(a(xτ ), 0) = ||E|| < δ implies the existence of an element xr0 ∈ R(Z) satisfying a(xr0) = 0

and dX (Z)(x
r
0, x

τ ) = ||e||C1 < ε. Moreover if d(Sτ ) ≤ δ, then we have the bound

ε(δ) = minxro:Sro=Sr ||x
τ − xro||C1

Proof. The proof uses that the solution to the matrix nearness problem is E = Sτ−Sr, as shown

in Theorem 1. We want to show that a(xτ ) = Sτ − Sr is AN at 0 ∈ M(Z). By Claim 7, found

in the Appendix, a : X (Z) 7→ M(Z) is continuous. Additionally, the set X (Z) is compact under

the differentiability assumption, by Claim 1.

Then we conclude (applying Proposition 3.1 in Boualem & Brouzet (2012)) that a is (AN)

everywhere, i.e., a(xτ ) = Sτ − Sr = C has the AN property for all C ∈ M(Z). In particular, a

is AN at 0 ∈M(Z).

Moreover, it follows that limδ→0ε(δ) = 0 (applying Proposition 2.6 in Boualem & Brouzet

(2012)), which implies the bound ε(δ) = minxro:Sro=Sr ||x
τ − xro||C1.

We underscore the fact that the AN property is stated for everyε > 0, not necessarily ar-

bitrarily small, and therefore, we are able to account for violations of rationality of any “size”,

where the size of the violation is made precise using the ε(δ) function.5

A somewhat surprising, but direct consequence of Proposition 1 is presented below. That is,

by focusing on a compact subset Z ⊂ P ×W , one makes the definition of behavioral nearness

4As suggested by Jerison & Jerison (1993), the proof is a special case of Anderson (1986), itself reworked in
Boualem & Brouzet (2012), as already discussed.

5We can be now more specific on the importance of compactness of X (Z). Note that one can avoid requiring
compactness and replace it with the condition that a is onto. More precisely, we need to solve the partial
differential equation system Sr(z) = Dpxr(z) + Dwxr(z)xr(z)′. The condition that the map a is surjective
amounts then to guaranteeing existence of a solution of the PDE system. If a is onto, then it follows that
limδ→0ε(δ) = 0. In fact, if δ → 0 and a is onto, then Sr(z) → Sτ (z), and it follows that xτ (z) = xro(z), the
minimizer of ε(δ) in the feasible set {xro : d(a(xro), 0) ≤ δ, δ → 0}. That is xτ (z) ∈ R(Z) and Sτ (z) has property
R, leading to the desired limδ→0 ε(δ) = 0. Then, applying Proposition 2.6 in Boualem & Brouzet (2012), we
conclude thata is (AN) at 0.
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operational. Then the function dX (Z)(x
τ , xr) is a distance between any two demand functions,

induced by the norm of the complete metric space C1(Z). Observe that for any arbitrary compact

subset Z ⊂ P ×W , C1(Z) and M(Z) are compact-valued sets, as they are the images through

continuous mappings of a compact set. By the next result, Proposition 2, we are able to guarantee

that the minimum is attained in X (Z) assuming only that the elements of X (Z) and their first-

order derivatives are continuous. Therefore, we have a local metric for xτ ∈ X (Z) defined

for each z ∈ Z and R(Z) as ||e||C1 = d(xτ ,R(Z)) = min{dX (Z)(x
τ , xr)|xr ∈ R(Z)}, where

xr(z) = xτ (z) + e(z) with p′e(z) = 0 by Walras’ law.

Formally, we have:

Proposition 2. The infimum is attained in the distance from a behavioral demand xτ ∈ X (Z)

to the set of rational demands R(Z). Equivalently, the “least” distance can be defined as

d(xτ ,R(Z)) = min{dX (Z)(x
τ , xr)|xr ∈ R(Z)}.

Proof. Note that X (Z) ⊂ C1(Z), and that C1(Z) is a metric space with norm || · ||C1,L = || · ||C1.

Note also thatM(Z) is a metric space with Frobenius norm || · ||. Furthermore, X (Z) is compact,

by Claim 1, and property R can be expressed with a continuous function a : X (Z) 7→ M(Z) by

Proposition 1. This allows us to apply Anderson’s almost-near principle.

Consider the two programs:

Program (I), the behavior nearness problem:

||e||C1,L = minxr ||xτ − xr||C1,L

subject to

xr ∈ R(Z).

Program (II), the matrix nearness problem:

||E||2 = minSr∈MR(Z)

´
z∈Z Tr([S

τ (z)− Sr(z)]′[Sτ (z)− Sr(z)])dz
subject to

Sr having property R.

Here, as already noted, property R stands for:

Sr(z) ≤ 0

Sr(z) = Sr(z)′

Sr(z)p = 0.

Recall that Sr ∈M(Z) has property R if and only if xr ∈ R(Z).

Applying Proposition 1, we can conclude that the behavioral nearness problem has at least

one solution such that ||e||C1,L < ε(δ) and ||E|| < δ.

4 The Matrix Nearness Problem: Measuring the Size of

Violations of the Slutsky Conditions

Having established the formal link between the solutions to the behavioral nearness and matrix

nearness problems, we turn to the latter. In this section we provide in our main result the

exact solution of the matrix nearness problem, which allows us to quantify the distance from

rationality by measuring the size of the violations of the Slutsky matrix conditions.

We begin by reviewing some definitions.

6



It will be useful to denote the three regularity conditions of any Slutsky matrix function with

shorthands. We shall use σ for symmetry, π for singularity with p in its null space (p−singularity)

and ν for negative semidefiniteness.

Given any square matrix-valued function S ∈M(Z), let Ssym = 1
2 [S + S′] be its symmetric

part, if S = Sτ (i.e., a Slutsky matrix function), then Sσ = Ssym. Equivalently, Sσ is the

projection of the function Sτ on the closed subspace of symmetric matrix-valued functions,

using the inner product defined for M(Z).

Every square matrix function S ∈ M(Z) can be written as S(z) = Ssym(z) + Sskew(z) for

z ∈ Z, also written as S = Sσ +Eσ, where Sσ = Ssym is its symmetric part and Eσ = Sskew =
1
2 [S − S′] is its anti-symmetric or skew-symmetric part.

Any symmetric matrix-valued function Ssym ∈M(Z) can be pointwise decomposed into the

sum of its positive semidefinite and negative semidefinite parts. Indeed, we can always write

Sσ(z) = Sσ(z)+ + Sσ(z)− , with Sσ(z)+S
σ(z)− = 0 for z ∈ Z, Eν = Sσ(z)+ being positive

semidefinite (PSD) and Sσ,ν = Sσ− negative semidefinite (NSD) for all z ∈ Z. Thus, one can

write Sσ(z) = Sσ+(z) + Sσ−(z) = Eν(z) + Sσ,ν(z) for all z ∈ Z. Moreover, for any square matrix-

valued function S ∈M(Z), its projection on the cone of NSD matrix-valued functions under the

Frobenius norm is Sσ,ν = Sσ−.

In general, a square matrix function may not admit diagonalization. However, we know

thanks to Kadison (1984) that every symmetric matrix-valued function in the set M(Z) is

diagonalizable.6 In particular, Sσ can be diagonalized: Sσ(z) = Q(z)Λ(z)Q(z)′.7 Here, Λ(z) =

Diag[{λl(z)}l=1,...,L], where Λ(z) ∈ M(Z), with λl : Z 7→ R a real-valued function with norm

|| · ||s (a norm in C1(R)), and λ1 ≤ λ2 ≤ . . . ≤ λL with the order derived from the metric induced

by the || · ||s norm.8 Let Q(z) = [q1(z) . . . qL(z)], where Q ∈ M(Z) and its columns ql ∈ C1(Z)

are the eigenvector functions such that for l = 1, . . . , L: Sσ(z)ql(z) = λl(z)ql(z) for z ∈ Z.

Any real-valued function can be written as λ(z) = λ(z)++λ(z)−, with λ(z)+ = max{λ(z), 0}
and λ(z)− = min{λ(z), 0}. This decomposition allows us to write Sσ,ν(z) = Sσ(z)− = Q(z)Λ(z)−Q(z)′

for Λ(z)− = Diag[{λl(z)−}l=1,···L] with λl(z)− the negative part function for the λl(z) function.

We can write also Eν = Sσ(z)+ = Sσ(z)−Sσ(z)− for z ∈ Z, or Eν = Sσ(z)+ = Q(z)Λ(z)+Q(z)′

with Λ(z)+ defined analogously to Λ(z)−. Finally, any matrix function that is singular with p

in its null space will be denoted Sπ, that is, Sπ(z)p = 0.

We are ready to state our main result:

Theorem 1. Given a Slutsky matrix Sτ (z) for z ∈ Z, the solution to the matrix nearness

problem is Sr(z) = Sσ,π,ν(z), the negative semidefinite part of Sσ,π(z) defined by:

Sσ,π(z) = Sσ(z) + Eπ(z),

where Sσ(z) = 1
2 [Sτ (z) + Sτ (z)′] and Eπ(z) = − 1

p′p [Sσ(z)pp′ + pp′Sσ(z)− [Sσ(z)p]′p
p′p pp′].

6In fact, Kadison (1984) has shown that any matrix function ML(U) with U a von Neumann algebra is
diagonalizable. Let U be L∞(Z), and notice that Z is a separable Hilbert space. Let Z be σ−finite measurable, a

subset of a Borel algebra generated by closed rectangles in RL+1
++ , then L∞(Z) is a von Neumann algebra and all

F ∈ M(C1(Z)) ⊂ ML(L∞(Z)) are diagonalizable. Observe that there is an injection fromι : C1(Z) 7→ L∞(Z),
such that we can identify any element in C1 with the von-Neumann algebra with the supremum norm.

7As is standard, Λ represents the diagonal matrix of eigenvalues, and Q is an orthogonal matrix that lists each
eigenvector as a column.

8The order of the eigen-values is inessential to the results but it is convenient for the proofs. Observe that we
can have many diagonal decompositions all of which will work for our purposes.
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We elaborate at length on the different components of this solution right after the proof of

the theorem.

Proof. We first establish that the matrix nearness problem has a solution, and that it is unique.

This is done in Claim 2. Its proof is in the appendix.

Claim 2. A solution to the matrix nearness problem exists, and it is unique.

The rest of the proof of the theorem is done in two parts. Lemma 1 gives the solution imposing

only the singularity with p in its null space and symmetry restrictions. After that, Lemma 2

rewrites the problem slightly, and the solution is provided by adding the NSD restriction.

Lemma 1. The solution to minA||Sτ −A|| subject to A(z)p = 0, A(z) = A(z)′ for all z ∈ Z is

Sσ,π.

Proof. The Lagrangian for the subproblem with symmetry and singularity restrictions is:

L =
´
z∈Z Tr([S

τ (z) − A(z)]′[Sτ (z) − A(z)])dz +
´
z∈Z λ

′A(z)pdz +
´
z∈Z vec(U)′vec[A(z) −

A(z)′],

with λ ∈ RL and U ∈ RL × RL. Using that the singularity restriction term is scalar

(λ′Sσ,π(z)p ∈ R), as well as the identity Tr(A′B) = vec(A)′vec(B) for all A,B ∈M(Z),9

one can rewrite the Lagrangian as:

L =
´
z∈Z [Tr([Sτ (z)−A(z)]′[Sτ (z)−A(z)]) + Tr(A(z)pλ′) + Tr(U ′[A(z)−A(z)′])]dz

Using the linearity of the trace, and the fact that this calculus of variations problem does

not depend on z or on the derivatives of the solution Sσ,π, the pointwise first-order necessary

and sufficient conditions in this convex problem (Euler Lagrange Equation) is:

Sσ,π(z) = 1
2 [Sτ (z) + Sτ (z)′ + λp′ − U + U ′];

Sσ,π(z)p = 0;

Sσ,π(z) = Sσ,π(z)′.

With some manipulation, one gets:

Sσ,π(z)p = Sσ(z)p+ 1
2λp

′p− 1
2Up+ 1

2U
′p.

Using the restriction Sσ,π(z)p = 0 we have:

Sσ(z)p+ 1
2λp

′p− 1
2Up+ 1

2U
′p = 0.

Then:
1
2λ = 1

p′p [−Sσ(z)p+ 1
2Up−

1
2U
′p].

This result reduces the system of first order conditions to:

Sσ,π(z) = Sσ(z)− 1
p′pS

σ(z)pp′ + 1
p′p

1
2 [U − U ′]pp′ − 1

2 [U − U ′];
Sσ,π(z) = Sσ,π(z)′.

Let Eπ(z) = − 1
p′pS

σ(z)pp′ + 1
p′p

1
2 [U − U ′]pp′ − 1

2 [U − U ′].
By imposing the symmetry restriction on Sσ,π(z), it follows that Eπ(z) must be symmetric.

Therefore,

Eπ(z) = − 1
p′ppp

′Sσ(z) + 1
p′p

1
2pp
′[U ′ − U ]− 1

2 [U ′ − U ]

Postulating that

U − U ′ = 2
p′ppp

′Sσ(z),

we get

9The vec(A) symbol stands for the vectorization of a matrix A of dimension L × L in a vector a = vec(A)
of dimension L2 where the columns of A are stacked to form a. Observe that the symmetry restriction can be
expressed in a sigma notation (entry-wise) but this matrix algebra notation help us to make more clear the use
of the trace operator in the objective function.

8



1
p′p

1
2 [U − U ′]pp′ = 1

p′p
1
2 [ 2
p′ppp

′Sσ(z)]pp′ = 1
p′p [p[p

′Sσ(z)p]p′

p′p ] = 1
p′p [p

′Sσ(z)p
p′p pp′]

since p′Sσ(z)p is a scalar.

Then, Sσ,π(z) = Sσ(z) + Eπ(z), where

Eπ(z) = − 1

p′p
[Sσ(z)pp′ + pp′Sσ(z)− [Sσ(z)p]′p

p′p
pp′],

along with the implied multipliers λ and U , satisfies all the first-order conditions of the problem.

Since we can use arguments identical to those in Claim 2 –only not imposing NSD–, we know

that the solution is unique. Hence, this expression describes the solution to the posed calculus of

variations problem with the symmetry and singularity restrictions. The proof is complete.

If Sσ,π ≤ 0 then we are done, since it has property R and minimizes ||E||2 (by Lemma 3.

Otherwise, the general solution is provided after the following lemma, which rewrites the problem

slightly.

Lemma 2. The matrix nearness problem can be rewritten as minA||Sσ,π − A||2 subject to A ∈
M(Z) having property R.

Proof. Recall the matrix nearness problem: minA∈M(Z)||Sτ − A||2 subject to A satisfying sin-

gularity, symmetry, and NSD. This is equivalent, by manipulating the objective function to:

minA∈M(Z)||Eσ−Eπ +Sσ,π−A||2. Writing out the norm as a function of the traces, and using

the fact that Eσ is skew symmetric, while the rest of the expression is symmetric, we get that

this amounts to writing: minA∈M(Z)||Eσ||2 + ||−Eπ +Sσ,π−A||2 subject to A having property

R. This is in turn equivalent to: minA∈M(Z)||Eσ||2 + ||Eπ||2 − 2〈Eπ, [Sσ,π −A]〉+ ||Sσ,π −A||2

subject to A having property R. Then, exploiting the fact that Eπ and S+ = Sσ,π−A are orthog-

onal (as proved in Lemma 6), we obtain that the problem is equivalent to minA∈M(Z)||Eσ||2 +

||Eπ||2 + ||Eν ||2 subject to A having property R.

Hence, since the objective function of the matrix nearness problem ||E||2 = ||Eσ||2+||Eπ||2+

||Sσ,π−A||2, solving the program minA∈M(Z)||E||2 subject to A having property R is equivalent

to solving minA∈M(Z)||Sσ,π −A||2 subject to the same constraints.

Now, the best NSD matrix approximation of the symmetric valued function Sσ,π is Sr =

Sσ,π,ν . Then, the candidate solution to our problem is A(z) = Sr(z) for all z ∈ Z. Notice that

Sr(z) is symmetric and singular with p in its null space by construction. Indeed, recall that

Sσ,π(z) = Q(z)Λ(z)Q(z)′ and Sr(z) = Sσ,π,ν(z) = Q(z)Λ(z)−Q(z)′. Then it follows that Sr(z)

is symmetric for z ∈ Z. Moreover, by definition λl(z)− = min(0, λl(z)) for l = 1, . . . , L. Since

Sσ,π(z)p = 0, it follows that λL(z) = 0 is the eigenvalue function associated with qL(z) = p

eigenvector. Then we have that λL(z)− = 0 is also associated to the eigenvector p, and we can

conclude that Sr(z)p = 0.

As just argued, Sr(z) has property R, i.e., Sr(z) is in the constraint set of the matrix nearness

problem or Program II. We conclude that it is its solution.

The importance of Theorem 1 is to provide a precise quantification of the size of the depar-

tures from rationality by a given behavior, as well as a revealing decomposition thereof. Indeed,

as was evident in the previous proof, the objective function of the matrix nearness problem can

be expressed as follows:

||E||2 = ||Eσ||2 + ||Eπ||2 + ||Eν ||2.

9



We should think of the three terms in this decomposition as the size of the violation of sym-

metry, the size of the violation of singularity, and the size of the violation of negative semidefi-

niteness of a given Slutsky matrix, respectively. The three terms are the antisymmetric part of

the Slutsky matrix function, the correcting matrix function needed to make the symmetric part

of the Slutsky matrix function p-singular, and the PSD part of the resulting corrected matrix

function. Note that if one is considering a rational consumer, the three terms are zero. Indeed,

if Sτ (z) satisfies property R for all z ∈ Z, Sτ (z) = Sσ(z) and Eσ(z) = 0, Sσ,π(z) = Sσ(z) and

Eπ(z) = 0, and Sr(z) = Sσ,π,ν(z) = Sσ,π(z) and Eν(z) = 0. If exactly two out of the three

terms are zero, the nonzero term allows us roughly to quantify violations of the Ville axiom of

revealed preference –VARP–, violations of homogeneity of degree 0, or violations of the com-

pensated law of demand (the latter being equivalent to the weak axiom of revealed preference

–WARP–), respectively. We elaborate on these connections with the axioms of consumer theory

in Subsection 5.1 below.

The violations of the property R have traditionally been treated separately. For instance,

Russell (1997), using a different approach (outer calculus), deals with violations of the symmetry

condition only. In this case, ||E||2 = ||Eσ||2.

Another application of our result connects with Jerison and Jerison (1993), who study the

case of violations of symmetry and negative semidefiniteness independently. They prove that

the maximum eigenvalue of Sσ(z) can be used to bound ||e||2C1 locally when NSD is violated and

Eσ(z) can be used to bound ||e||2C1
when symmetry is violated. Indeed, this is consistent with our

solution to Program II. In this case ||E||2 = ||Eσ||2 + ||Sσ+||2, where max({λ̃l(z)+}l=1,...,L) ≤
||Sσ+||2 ≤ d ·max({λ̃l(z)+}l=1,··· ,L), with d = Rank(Sσ(z)+) (by the norm equivalence of the

maximum eigenvalue and the Frobenius norm).

Remark 1. The strict convexity of the objective functional of Program II and the convexity

of the constraint set suggest that the solution to Program II can be found by the alternating

projection algorithm. Indeed, one can first project Sτ (z) on the set of symmetric matrices, then

project the result on the set of singular matrices with p in their null space, and finally project this

second result on the set of negative semidefinite functions. The alternating projection algorithm

can only guarantee that Sr(z) has property R, but it may not necessarily be the solution to the

problem. However, in our case, this specific sequence of projections yields the solution because

the procedure results in the additive decomposition of ||E||2 provided in Lemma 2.

Remark 2. Using Lemma 3, one can deduce the analytic expression of Eπ(z) as a projection

on a convex set. The lemma says thatSσ,π(z) = Sσ(z) + Eπ(z) is also the nearest matrix

function with p in the null space of Sσ(z). Thus Eπ(z) must be the minimal matrix additive

adjustment in the Frobenius norm such that [Sσ(z) + Eπ(z)]p = 0. Then, for any fixed z ∈ Z
this problem is analogous to the matrix nearness problem of finding the nearest linear symmetric

system. Defining the feedback error r(z) = −Sσ(z)p, it follows that Eπ(z) = r(z)p′+pr(z)′

p′p −
(rT (z)p)pp′

(p′p)2 (Dennis & Schnabel, 1979; Higham, 1989). The resulting matrix function Sσ,π(z) is

the projection of Sσ(z) on the set of symmetric matrix functions with p in its null space as made

precise in Claim 6.

We underscore that the compactness ofMR(Z) is inherited from the mild assumptions of

continuity of the demand system and its derivatives if we limit ourselves to a compact set Z.

Furthermore, with the supremum norm we guarantee that Sr(z) is continuous. Indeed, the

following is a property of the solution to our problem:

10



Claim 3. Sr(z) is continuous.

Proof. This follows from the Theorem of the Maximum. Specifically, let F : M(Z) 7→ M(Z)

be such that F (M(Z)) has property R. This is a compact-valued correspondence with a closed

graph. Also, F is continuous and the Frobenius norm || · || is a continuous functional. It follows

that Sr is continuous. Alternatively, Sr is the result of three projections on closed subspaces

applied to the convex set of constraints. Such projections are continuous mappings under the

conditions that we have imposed, and then Sr is continuous by construction in all z ∈ Z.

5 Behavioral Interpretations of the Slutsky Matrix Near-

ness Norm

5.1 Connecting with Axioms of Revealed Preference

The Slutsky regularity conditions are implied by utility maximization, but they can also be

derived from the axioms behind revealed preference. Roughly, each of the conditions can be

related to an axiom. Some of these relations have been used by Jerison and Jerison (1992) in

order to provide a behavioral interpretation to the Slutsky matrix distance from symmetry. Our

aim is to generalize this link while providing a behavioral interpretation of the matrix nearness

norm decomposition.

We briefly review connections between the different axioms. Since Houthakker (1950) it is

known that, for the class of continuous demand functions, the strong axiom of revealed pref-

erence –SARP– implies that a demand can be rationalized. Hence, the Slutsky conditions are

satisfied. Nonetheless, it is also known that SARP is indeed strong in the sense that it implies

symmetry of the Slutsky matrix function and also implies WARP and therefore NSD of the

Slutsky matrix function. A weaker axiom implies only the Slutsky matrix function symmetry

condition: the Ville axiom of revealed preference –VARP– is equivalent to the symmetry con-

dition and therefore to integrability of the demand system (Hurwicz & Richter, 1979). VARP

postulates the nonexistence of a Ville cycle in the income path of a demand function. WARP

implies that the Slutsky matrix function is NSD, and furthermore, the NSD and singularity

in prices are equivalent to a weak version of the WARP (Kihlstrom et al., 1976). VARP is a

differential axiom and does not imply SARP or WARP (Hurwicz & Richter, 1979). WARP does

not imply VARP or SARP for dimensions greater than two.

A continuously differentiable demand function is said to be rationalizable if it fulfills SARP.

However, we can also impose other weaker axioms to have the same result while making connec-

tions to the additive components of our Slutsky norm. In particular, VARP and WARP imply

that a demand function is rationalizable. Finally, we can impose the Wald Axiom, homogeneity

of degree zero and VARP, which also imply a rationalizable demand. Moreover, to appreciate

our decomposition, the Slutsky symmetry condition is related to VARP, the singularity in prices

is related to homogeneity of degree zero and the NSD is related to the Wald axiom.

Before stating the main result of this subsection, for completeness, it is useful to posit the

axioms that we employ and their relevant implications for the class of demand functions that

we are considering and for the associated Slutsky matrix functions. Our primitive is a member

of the set of demand functions X (Z) ≡ {xτ ∈ C1(Z)|p′xτ (z) ≤ w} with Z a compact set.
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The first Slutsky condition (price is its left eigenvector) is given by the balance axiom or

Walras’ law.

Axiom 1. (Walras’ law) The first axiom requires that p′xτ (p, w) = w.

We have that xτ ∈ X (Z) satisfies Walras’ law if and only if its Slutsky matrix function

Sτ ∈M(Z) has the following property: p′Sτ (z) = 0 for z ∈ Z.

The second Slutsky condition (price is its right eigenvector or singularity in prices) is given

by “no money illusion”.

Axiom 2. (Homogeneity of degree zero -HD0-) xτ (αz) = xτ (z) for all z ∈ Z and α > 0.

It is easy to prove that xτ ∈ X (Z) satisfies HD0 if and only if Sτ (z)p = 0 for z ∈ Z.

The symmetry of the Slutsky matrix function is given by VARP.10 To state this axiom we need

to define an income path as y : [0, b] 7→W (t 7→ w) and a price path ρ : [0, b] 7→ P . Let (y(t), p(t))

be a piecewise continuously differentiable path in Z. Jerison and Jerison (1992) define a rising

real income situation as whenever (∂y∂t (t), ∂p∂t (t)) exists, leading to ∂y
∂t (t) > ∂p

∂t (t)
′xτ (ρ(t), y(t)). A

Ville cycle is a path such that: (i) (y(0), p(0)) = (y(b), p(b)); and (ii) ∂y
∂t (t) > ∂p

∂t (t)
′xτ (ρ(t), y(t))

for t ∈ [0, b].

Axiom 3. (Ville axiom of revealed preference -VARP-) There are no Ville cycles.

Hurwicz and Richter (1979) proved that xτ ∈ X (Z) satisfies VARP if and only if Sτ is

symmetric.

The negative semidefiniteness condition of the Slutsky matrix is given by the Wald axiom.

The Wald axiom itself is imposed on the conditional demand for a given level of wealth. Fol-

lowing John (1995) a demand function is said to fulfill the Wald axiom when so do the whole

parametrized family (for w ∈ W ) of conditional demands. Formally, a demand function can be

expressed as the parametrized family of conditional demands. That is: xτ (p, w) = {xτ,w(p)}w∈W
where xτ,w : P 7→ X such that p′xτ,w(p) = w for all p ∈ P .

Axiom 4. (Wald axiom) xτ ∈ X (Z) is such that for every w ∈ W and for all p and p,

p′xτ,w(p) ≤ w =⇒ p′xτ,w(p) ≥ w.

The Wald axiom implies that Sτ ≤ 0 (John, 1995).

The Slutsky singularity in prices and the NSD conditions are equivalent to the following

version of WARP.

Axiom 5. (Weak axiom of revealed preference -WARP-) If for any z = (p, w) z = (p, w):

p′xτ (p, w) ≤ w =⇒ p′xτ (p, w) ≥ w.

This is the weak version of WARP, as in Kihlstrom et al. (1976). We follow John (1995),

who proves that for continuously differentiable demands (that satisfy Walras’ law) WARP is

equivalent to the Wald Axiom and HD0. Kihlstrom et al. (1976) and John (1995) prove that

xτ ∈ X (Z) satisfies WARP if and only if Sτ ≤ 0 and Sτ (z)p = 0.

These axioms interact in interesting ways with direct consequences on the properties of the

Slutsky matrix function. VARP and Walras’ law imply homogeneity of degree zero. WARP and

10We present the axiomatization due to Ville as reinterpreted by Hurwicz and Richter (1979) and Jerison and
Jerison (1992). There are alternative discrete axioms due to Jerison and Jerison (1996), that also do the job and
are potentially testable.
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Walras’ law imply homogeneity of degree zero and the Wald Axiom. Ultimately, VARP, Walras’

law and the Wald Axiom implies a rationalizable demand.

The relations to our three Slutsky components can be summarized as follows: If VARP holds

then Eσ = 0, if the Wald Axiom holds then Eν = 0, if homogeneity of degree zero and Walras’

law hold then Eπ = 0. Finally, if WARP and Walras’ law hold then Eπ = 0 and Eν = 0.

We are ready to summarize the main point of this section in the following remark.

Remark 3. The square matrix nearness norm ||E||2 will be equal to zero if and only if xτ satisfies

VARP, is homogeneous of degree zero in prices and wealth, and satisfies the Wald Axiom.

Moreover,

(i) ||E||2 = ||Eσ||2 only if VARP fails while either of the following two situations happens:

(i) Walras’ law or HD0 and the Wald Axiom hold. (ii) Warp holds.

(ii) ||E||2 = ||Eπ||2 only if HD0 and Walras’ law fail while VARP and the Wald Axiom hold.

(iii) ||E||2 = ||Eν ||2 only if the Wald axiom fails while either of the following two situations

happens: (i) Walras’ law and VARP hold. (ii) HD0 and VARP hold.

We can also observe ||E||2 = ||Eν ||2 only if WARP fails while Walras’ law and VARP hold,

but as we saw we do not need the failure of WARP to be stronger than the Wald axiom in order

to have this case. The first part of the remark follows from the Frobenius’ theorem and from

the equivalence of the Ville axiom, WARP and Walras’ law or VARP, Wald Axiom and HD0 to

the Slutsky conditions. Indeed if xτ satisfies any of two groups of axioms, then it can be seen as

rational and ||E||2 = 0. Conversely, if ||E||2 = 0 it follows that Sτ fulfills the Slutsky regularity

conditions and that xτ satisfies the axioms.

The second part of the remark can be explained as follows. If xτ satisfies Walras’ law and

WARP, it follows that Eπ(z) = 0 and Eν(z) = 0, leading to ||E||2 = ||Eσ||2. Then, thanks

to Jerison and Jerison (1992; 1996; 1993) we know that the degree of asymmetry of the skew-

symmetric part of a Slutsky matrix function grows with the rate of real income growth along the

worst (“steepest”) Ville cycle. Along the same lines, due to Russell (1997), we know that the

size of the skew-symmetric matrix is exactly the distance from integrability of xτ . If xτ satisfies

the Ville axiom and homogeneity of degree zero, then it follows that ||E||2 = ||Eν ||2, which

corresponds to the PSD part of Sτ (z) = Sτ−(z) + Sτ+(z) = Sν(z) + Eν(z) for z ∈ Z. Then it

follows that the size of ||E||2 grows exactly according to the degree of violations of the differential

form of WARP (or the Wald Axiom in this case). Finally, if xτ satisfies the Ville axiom and

the Wald Axiom but both the HD0 and Walras’ law fail then Sτ (z) +Eπ(z) ≤ 0, it follows that

||E||2 = ||Eπ||2; in this case, Eπ(z)p = −Sτ (z)p, which shows that the size of Eπ(z) grows in the

same direction as the degree of violations of the differential version of the homogeneity of degree

zero condition (or Walras’ law due to symmetry of Sτ ). In fact, by construction ||Eπ|| measures

how far Sτ is from having the price vector in its null space (as its eigenvector associated to the

null eigenvalue).11 There are partial converse implications to those just presented: If ||Eσ|| = 0

then VARP holds. If ||Eπ|| = 0 then Walras’ law or HD0 hold. If ||Eν || = 0 and ||Eπ|| = 0 then

WARP holds.

11 The idea of measuring violations of axioms by translating their consequences to a metric space was done for
decision making under uncertainty and expected utility in Russell (2003).

13



5.2 Slutsky Wealth Compensations

We now describe ways to obtain related quantifications, in wealth terms, of departures of ra-

tionality. This builds upon the ideas of Russell (1997). First, we define the set Bp = {q ∈
RL++|q′xτ (p, w) = w} that is, all the price vectors that belong to the budget hyperplane for a fixed

wealth w and bundle xτ (p, w) = xτ,w(p). We also define a directional derivative for any function

f ∈ C1(Z) with respect to prices in the direction of a vector v ∈ RL as Dp,vf(z) = Dpf(z)v.

Observe that q ∈ Bp, can be expressed as a function of q : P × {w} 7→ Bp, and the following

identity holds for any q ∈ Bp and any xτ ∈ X (Z): [xτ (p, w)′Dpq(p, w)] + q′Dpx
τ (p, w) = 0. This

identity is obtained under Walras’ law and uses the definition of the set Bp (i.e. we differenti-

ate q(p, w)′xτ (p, w) = w with respect to p). We define the conditional Slutsky matrix function

pointwise: Sτ,w(p) = Dpx
τ,w(p) − 1

wDpx
τ,w(p)pxτ,w(p)′. It can be shown that all the results

of the Slutsky matrix norms carry over to this conditional Slutsky matrix function (to see this,

note that our derivations do not depend on the parameters p, w but only on the structure of the

matrix).

Russell (1997) defines for price vectors q, r ∈ Bp, |q′Eσ(z)r| = m1, where m1 is twice the

wealth compensation required by an agent (who fulfills homogeneity of degree zero and the weak

axiom but not necessarily the Ville axiom –symmetry–) in order to move from r to q on the

budget hyperplane instead of moving from q to r. This quantity is zero for the rational consumer.

Our result builds upon this finding and extends it to the case of the three possible violations of

the Slutsky regularity conditions.

Before stating the main result of this section, we need some intermediate definitions. For

a given observed demand xτ ∈ X (Z) consider the following three associated demand functions

in X (Z) (that satisfy Walras law) that have special properties, linked to the Ville Axiom, ho-

mogeneity of degree zero, and the weak axiom. (i) Let xs ∈ X (Z) be a demand that satisfies

the Ville axiom, with Slutsky matrix function equal to Sσ ∈ M(Z) (i.e., the symmetric part of

the Sτ ∈ M(Z)). (ii) Define xh ∈ X (Z) as the demand function that satisfies the Ville axiom,

homogeneity of degree zero in prices and wealth, and its Slutsky matrix function is equal to

Sσ,π ∈ M(Z) (i.e., the projection of Sτ on the subset of matrix functions that are symmetric

and have p in its null space). (iii) Finally, we have xr ∈ X(Z), the rational demand function

that has its Slutsky matrix function equal to Sr ∈ M(Z) (i.e., the projection of Sτ ∈ M(Z)

on the subset of rational Slutsky matrix functions). The existence of a function that satisfies

(iii) is guaranteed by the result proved in proposition 1. In the same spirit, we can guarantee

the existence of xs, xh ∈ X (Z) by suitable straightforward modifications of the AN principle.

The proof is direct when we notice that the properties of a demand function satisfying the Ville

axiom or homogeneity of degree zero can be expressed in an analogous way as the rational case.12

Then, we can conclude that there exists an xj ∈ X (Z) for j = s, h, r such that we can write

xτ + ej = xj , where ej ∈ C1(Z) is a residual function that has the property: p′ej(p, w) = 0 and

||ej ||C1 = ε(δj).

Proposition 3. For any triple of vectors p, q, r ∈ Bp, define:

• (i) |p′Eσ(p, w)r| = 1
2m1 if only symmetry is violated;

12We note that the Ville Axiom and homogeneity of degree zero can be expressed using a continuous map
aj : X (Z) 7→ M(Z), and by finding an appropriate δj ≥ 0 for j = s, h such that ||Sσ || < δs and ||Eπ || < δh. Also
note the closedness of the symmetric and the singular in p matrix function sets in M(Z) (in this setting this is
sufficient to guarantee the compactness of these sets).
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• (ii) |q′Eπ(z)p| = m2 if only singularity is violated;

• (iii) |q′Eν(p, w)r| = m3 if only NSD is violated.

Then,

• (i) m1 ∈ R is the wealth compensation that a non rational consumer with wealth w will

have to be given in order for her to accept a price change from r in direction q instead of

a change from q in direction r.

• (ii) The quantity m2 ∈ R corresponds to the compensation that a consumer that satisfies

the Ville axiom but that does not fulfill homogeneity of degree zero must receive to accept

a price change from q in direction p.

• (iii) And m3 ∈ R is the difference in wealth compensations that must be paid in order to

accept a movement from q in direction r between the ε−closest rational consumer and that

of a consumer that satisfies the Ville axiom, homogeneity of degree zero but that does not

necessarily fulfill the Wald axiom (or the WARP).

Proof. We proceed to prove the three different parts:

(i) For fixed wealth w:

|q′Eσ(p, w)r| = | 12 [q′Sτ (p, w)r − q′Sτ (p, w)′r]|.
|q′Eσ(p, w)r| = | 12 [q′Dpx

τ,w(p)r − q′Dpx
τ,w(p)p− q′Dpx

τ,w(p)′r + p′Dpx
τ,w(p)′r]

Since p, r ∈ Bp it follows that

|q′Eσ(p, w)r| = | 12 [[xτ,w(p)′Dpq(p)r+x
τ,w(p)′Dpq(p)p]−[xτ,w(p)′Dpr(p)q+x

τ,w(p)′Dpr(p)p]]|.
Observe that Dpr(p, w)q = Dpr(p)q is the directional derivative of r with respect to prices

along that direction and with the magnitude of q ∈ Bp. Then the quantity m1roughly measures

the difference between the compensation in wealth from a price movement r in the direction q

rather than the reverse.

For parts (ii) and (iii), we need an intermediate result, that takes into account the fact that

q′xτ + q′ej = w + q′ej for j = s, h, r as defined above. That is, q, r ∈ Bp may no longer

fulfill Walras’ law for ε−closest demands that satisfies certain axioms. However, for any q ∈ Bp
this identity is satisfied: q′xj = w + q′ej . This in turn implies that: q(p, w)′Dpx

j(p, w) =

q(p, w)′Dpe
j(p, w)− [Dpq(p, w)′xτ (p, w)]′ or equivalently q′Dpx

j = Dp(q
′ej)− [Dpq

′xj ]′ for j =

s, h, r. Here, Dp(q
′ej) = [Dpq

′ej ]′ + q′Dpe
j .

(ii) |q′Eπ(p, w)p| = | − q′ 1
p′p [Sσ(p, w)pp′ + pp′Sσ(p, w)− [Sσ(p,w)p]′p

p′p pp′]p|. It is proved in the

appendix that if Walras’ law holds then |q′Eπ(p, w)p| = 0. We also know, that for singularity to

be the only failure of the Slutsky conditions, Walras’ law and homogeneity of degree zero must

fail together. In this case, |q′Eπ(p, w)r| ≥ 0. To see a wealth interpretation of this quantity, we

will choose q = p and r = p:

Then, |p′Eπ(p, w)p| = |p′Sσ(p, w)p|. Moreover if the failure of Walras’ law is independent

of the level of prices p′xτ (p, w) = c < w for c ∈ R++, then it follows that |p′Eπ(p, w)p| =

|w − xs,w(p)′p| = m2. Where m2 = |w − c|, that is, m2 is exactly the absolute size of the

violation of Walras’ law.

Then m2, quantifies the wealth extraction that this non rational consumer accepts at prices

p. Also, we can derive the following measure (modifying the proof in the appendix accordingly):

|q′Eπ(p, w)p| = | q
′Dpx

s,w(p)p
w [w − p′xs,w(p)]| ∝ |w − c|.
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To complete this part of the proof we show the existence of xs ∈ X (Z). It suffices to recall that

the AN principle can be appropriately modified by letting ||E|| = ||Eσ|| ≤ δ and by noticing that

the cone of symmetric matrix functions is closed, and it is contained in the compact set M(Z).

Then, there exists an ε−closest demand function xs ∈ X (Z) with the desired characteristics.

(iii) |q′Eν(p, w)r| = |q′Sσ,π(z)r − q′Sr(z)r| since Sσ,π(z) = Sσ,π,ν(z) + Eν(z) = Sσ,π+ (z) +

Sσ,π− (z) by the direct sum decomposition of the space of symmetric matrix functions. For fixed

w :

|q′Eν(p, w)r| = |q′Sσ(p, w)r − q′Sr(p, w)r| = |[q′Dpx
s(p, w)r − q′Dpx

r(p, w)r]|. We know

that q′Eπr = 0. Then it follows that:

|q′Eν(p, w)r| = [q′Dpx
s,w(p)r−q′Dpx

r,w(p)r]+[q′ 1wDpx
r,w(p)pxr,w(p)′r−q′ 1wDpx

s,w(p)pxs,w(p)′r]

Notice that, Dpx
r,w(p)p = Dpx

s,w(p)p + Dpe
r,w(p)p. Note that Sr = [Dpx

s + Dwx
sxs

′
] +

[Dpe
r +Dwe

rer
′
+Dwx

ser
′
] = Sσ + Eν .

Since, Eνp = 0 it follows that Dpe
r,wp = 0 because Dpe

r,wp+Dwe
r,wer,w

′
p+Dwx

ser,w
′
p = 0

and er,w
′
p = 0 by construction.

Then, |q′Eν(p, w)r| = |q′Dpx
s,w(p)r − q′Dpx

r,w(p)r| = |q′Dpe
r,w(p)r| = m3.

Finally, by using the identity for q, r ∈ Bp, and the fact that xs = xh when Walras’ law hold

we obtain the desired result:

|q′Eν(p, w)r| =
|[xr(p, w)′[Dpq(p, w)r]−xh(p, w)′[Dpq(p, w)r]]−[q(p, w)′Dp(q

′er(·))r−q(p, w)′Dp(q(·)′eh(·))r]|,
that is, the difference between the wealth compensation that has to be made for the consumer

to accept a change from q with respect to prices in the direction r when she is rational versus

when she satisfies the Ville axiom and homogeneity of degree zero but not necessarily the weak

axiom. To this quantity, a correction term is subtracted that measures the difference between

the product of q times the marginal change of q′ej = w − xτ for j = h, r with respect to prices

in the direction of r for both kinds of consumers (rational and Ville Axiom plus homogeneity of

degree zero). Equivalently, |q′Eν(p, w)r| = |[q(p, w)′Dpe
h(p, w)r − q(p, w)′Dpe

r(p, w)r]| = m3.

That is, a measure of the difference between the marginal change of the correction term ej in

the direction r when initial prices are q between the two types of consumers. In particular, when

xh(p, w) = xτ (p, w) this simplifies to |q′Eν(p, w)r| = | − q(p, w)′Dpe
r(p, w)r| = m3.

Of course, the existence of xr ∈ X (Z) follows from our result in Proposition 2. By an

analogous argument to part (ii) of this proof we modify the E = −[Eσ(z)−Eπ(z)] = −[Sτ (z)−
Sσ,π(z)] (||E|| ≤ δ) and note that the intersection of the cone of symmetric matrix functions

with the set of matrix functions with p in its null space is closed and thus compact under our

assumptions. Furthermore, the AN principle guarantees under these conditions that there exists

an ε−closest demand xr ∈ X (Z) with the required properties.

Remark 4. The extension of Russell’s (1997) idea for using a Slutsky residual matrix to our

case, which covers all three possible violations, makes heavy use of the AN principle, modified

appropriately in each case to guarantee the existence of a “corrected” demand system that fulfills

certain axioms. This extension comes at a cost. Indeed, the wealth compensation measure does

not depend only on the primitive xτ ∈ X (Z), but it must incorporate corrections for price

changes that may not belong to the budget hyperplane of the relevant demands. In geometric

terms, one can think of the correction term as measuring the change in the cosine of the angle

between the price vector q and the residual ej with respect to prices in the direction r times
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the initial vector of prices q. This measure is converted in wealth (i.e., for fixed p = p and w,

q′e = cos(θq,e)||q|| · ||e|| and Dp(q
′e) = Dp(cos(θq,e)||q|| · ||e||) with the euclidean norm in RL++).

The proposition serves mainly as a blueprint on how to compute measures to the size of

bounded rationality that are expressed in wealth terms. These measures have the advantage

of having an intuitive interpretation, in the sense that a rational consumer should have always

for all p, q, r ∈ Bp a measure of q′E(z)r = 0 where r may be equal to p, since E(z) = 0. The

measures are imperfect, though: observe that there is a family of measures for each q, r ∈ Bp
and for each w that must be fixed for a particular application. In addition, this measure of the

size of bounded rationality does not induce a metric, as nothing prevents that there exists a

q, r ∈ Bp such that q′E(z)p = 0 when E(z) 6= 0.

Remark 5. Consider two consumers with demands xτ1(p, w) and xτ2(p, w) satisfying Walras’

law and exhibiting identical violations of the Wald Axiom and homogeneity of degree zero (or

violations of WARP). Suppose further that the first consumer violates the Ville axiom, but the

second satisfies it. We write xτ1(p, w) + es1(p, w) = xs1(p, w) and xτ2(p, w) = xs2(p, w). When

forced to satisfy the Ville axiom, both have the same first order behavior for compensated wealth

changes. In that case, for prices q, p ∈ B1
p ∪B2

p , assuming there is a q vector in the budget line

of both consumers different from p,we have:

2|q′Eσ1(p, w)p|+ |q′Eπ1(p, w)p| > |q′Eπ2(p, w)p|. That is, |mτ1
1 |+ |mτ1

2 | > |mτ2
2 | since mτ1

2 =

q′Sσ(p, w)p = mτ2
2 because both consumers fulfill Walras’ law, and in that case q′Eπ1(p, w)p =

q′Eπ2(p, w)p = q′Sσ(p, w)p as shown in proposition 3. Also observe that |mτ2
1 | = 0 by construc-

tion.

In other words, the wealth measure of bounded rationality is larger for xτ1 than for xτ2.

Observe that this can be concluded only when assuming the equality in first order compensated

behavior of the “corrected” (Ville axiom) demand xs1 and xτ2. But this assumption can be

justified in an interesting way when we think of xτ2 as a “minimally perturbed” version of xτ1

(with Slutsky matrix function Sσ), such that xτ2 is the demand of the first consumer when

forced to satisfy the Ville axiom.

5.3 Normalizations and Relative Matrix Nearness

The norm of bounded rationality that we have built so far is an absolute measure. Therefore,

for a specific consumer, this distance quantifies by how far that individual’s behavior is from

being rational. Furthermore, one also can compute how far two or more consumers within a

certain class are from rationality, and induce an order of who is closer in behavior to a rational

consumer. However, we are limited to the case where the setting of the decision making process

is fixed in the sense that the decision problem faced by each of the individuals is presented in

the same way. This implies that the measure is unit dependent, being stated in the same units

(the units in which the consumption goods are expressed).

Therefore, we next propose a relative matrix nearness norm that, while keeping most of the

features of the absolute measure of bounded rationality, is unit-free.

Definition 5. For any non null Slutsky matrix function Sτ ∈ M(Z), let its relative Slutsky

norm be defined as follows: ρ(Sτ ) = d(Sτ )
||Sτ || , where d(Sτ ) = ||E|| is the absolute matrix nearness

distance to rationality.
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Observe that we have excluded from the definition the case of null Slutsky matrix functions

(i.e., Sτ = 0 ∈ M(Z)). This, however, is just a technicality since the null Sτ satisfies property

R, and hence, one can postulate ρ(0) = 0.

Claim 4. The ρ : M(Z) 7→ R++relative error is positive, unit-free, and has the following com-

ponentwise bounds:

Let Eσ 6= 0, Eπ 6= 0, Eν 6= 0. Then, ||E
σ||

||Sτ || ≤ 1, ||E
π||

||Sτ || ≤ 1, and ||E
ν ||

||Sτ || ≤ 2, leading to

ρ(Sτ ) ≤
√

6.

The proof of this claim can be found in the appendix. The following equation, used in it, is

of importance: ρ(Sτ )2 = ||Eσ||2
||Sτ ||2 + ||Eπ||2

||Sτ ||2 + ||Eν ||2
||Sτ ||2 .

The bounds established in the claim can sometimes be made tighter. For instance, if E = Eν ,

ρ(Sτ ) =
||Eν ||
||Sτ ||

=
||Sτ+||
||Sτ ||

≤ max{||λ+||s}
max{||λ||s}

≤ 1.

This is because Sτ+ shares the same non negative eigenvalue functions as Sτ , and then ||Sτ+|| <
||Sτ ||.

This claim shows that all violations of rationality in the consumer choice setting are indeed

bounded above and we have computed the exact upper bound for the relative matrix nearness

error: ρ(·) ≤
√

6.

However, it is interesting to think of ρ(Sτ ) = 1 as being an important threshold for bounded

rationality, in the sense that it is the upper bound for violations of VARP alone and WARP

alone. It is also interesting to note that the violations of WARP have a higher upper bound for

the relative measure than the other two axioms.

Another useful approach to deal with the unit dependence of the Slutsky matrix norm that

we have built is to consider a normalized Slutsky matrix that is expressed in dollars.13

Definition 6. For any Slutsky matrix function Sτ ∈ M(Z), let its normalized Slutsky matrix

function be S
τ

= Diag(p)SτDiag(p) = ΛpS
τΛp or element-wise S

τ

ij = Sτijpipj .

Observe that this normalized Slutsky matrix function is expressed in dollar terms, and that

its Frobenius norm is ||Sτ (z)||2 =
´
z∈Z Tr(S

τ
(z)′S

τ
(z)) =

´
z∈Z

∑
i,j [S

τ
ij(z)pipj ]

2dz. We can

reformulate our matrix nearness problem using a dollar-norm for any Slutsky matrix function

defined as ||Sτ ||$ = ||Sτ (z)||, which is the Frobenius norm applied to the weighted matrix

function. Under this new norm choice we have maxA||Sτ −A||$ where A has property R.

We state a technical remark that underscores how the main results carry over to this modified

problem.

Remark 6. 14

A∗ = Sσ when only the VARP is violated but ||E||$ = ||ΛpEσΛp||. Also, one has the same

Sσ,π = Sσ +Eπ, but the negative semidefinite matrix nearness solution is no longer the same as

under the Frobenius norm.

The solution to this problem is given implicitly by:

Sr = argminA≤0||Λp[Sσ,π − A]Λp||2 − 2〈ΛpEπΛp,Λp[S
σ,π − A]Λp〉, where Sr has property

R and has an associated rational demand that is ε- close to the observed demand by the almost

implies near principle.

13We thank Xavier Gabaix for suggesting the use of this norm and pointing out its importance.
14The proof of this technical remark is in the appendix.
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The exact solution to this problem is given by Sr = Λ−1p (ΛpS
σ,πΛp)−Λ−1p with the quadratic

dollar norm given by:

||E||2$ = ||ΛpEσΛp||2 + ||ΛpEπΛp||2 + ||ΛpEµΛp||2,

where Eµ = Λ−1p (ΛpS
σ,πΛp)−Λ−1p .

We use µ to make clear that the projection under the dollar norm such that the Slutsky matrix

function fulfills the NSD constraint is different from the solution under the Frobenius norm (ν).

Here we provide the main elements of the proof or this technical remark while leaving the details

to the appendix. To solve this problem we use the alternating projection technique. Therefore,

we postulate Sσ,π,µ as a solution to the problem above, where Sσ,π,µ = Λ−1p (ΛpS
σ,πΛp)−Λ−1p .

Define Eµ = Λ−1p (ΛpS
σ,πΛp)+Λ−1p .

We can easily check that Sσ,π,µ is a symmetric matrix and since for every matrix function

such that S(p, w)p = 0 then S(p, w)Λp1 = 0 where 1 ∈ RL. It also follows that Sσ,π,µ(p, w)p = 0

since (ΛpS
σ,π(p, w)Λp)−1 = 0 and Λ−1p p = 1. We conclude that this must be the solution, and

since it is unique, we let Sr = Sσ,π,µ. Moreover,

||E||2$ = ||ΛpEσΛp||2 + ||ΛpEπΛp||2 + ||ΛpEµΛp||2.

The weighted norm is important in applications. In principle, the interested reader can tailor

a different symmetric positive definite weighting matrix instead of Λp, as a function of the specific

application. The alternating projection algorithm will still yield the solution.

It is also important to observe that the objective function using the dollar-norm is bounded

above by ||Sτ −A||$ ≤ ||Λp||2 · ||Sτ −A||, so we know that the bounds that we have established

for the relative norm carry over to this case.

6 Examples and Applications

The rationality assumption has long been seen as an approximation of actual consumer behavior.

Nonetheless, to judge whether this approximation is reasonable, one should be able to compare

any alternative behavior with its best rational approximation. Our results may be helpful in

this regard, as the next examples illustrate.

6.1 The Sparse-Max Consumer Model of Gabaix (2012)

This model generates analytically tractable behavioral demand functions and Slutsky matrices.

In this example, we compare the matrix nearness distance to the “underlying rational” Slutsky

matrix function proposed by Gabaix and compare it to the one proposed here. This example

shows that there exists a rational demand function that is behaviorally closer to the sparse max

consumer demand proposed by Gabaix than the “underlying rational” model of his framework.

Consider a Cobb-Douglas model xCD(p, w) such that:

xCDi = αiw
pi

for i = 1, 2.

xCDi,pi = −αiw
p2i

xCDi,w = αi
pi

sCDi,i = −αiw
p2i

+ αi
pi
αiw
pi

= −αi(1−αi)w
p2i
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sCDi,j = αi
pi

αjw
pj

.

The Slutsky matrix function is:

SCD(p, w) =

[
−α1α2w

p21

α1

p1
α2w
p2

α1

p1
α2w
p2

−α1α2w
p22

]
.

Let us denote Gabaix’s theory of behavior of the Sparse-max consumer by G. Then the

demand system under G is:

xGi = αi
pGi

w∑
j αj

pj

pG
j

for i = 1, 2.

This demand system fulfills Walras’ law. This function has an additional parameter with

respect to xCD(p, w), the perceived price pGi (m) = mipi + (1 −mi)p
d
i . The vector of attention

to price changes m, weights the actual price pi and the default price pdi .

Consider the following matrix of attention for the sparse-max consumer:

M =

[
1 0

0 0

]
That is, the consumer does not pay any attention to price changes in p2, but perceives price

changes perfectly for p1. One of Gabaix’s elegant results relates the Slutsky matrix function of

xG, to the Cobb-Douglas benchmark. The behavioral Slutsky matrix evaluated at default prices

(in all this example p = pd) is:

SG(p, w) = SCD(p, w)M

SG(p, w) =

[
−α1α2w

p21
0

α1

p1
α2w
p2

0

]
.

This matrix is not NSD, nor singular with p in its null space. Applying Theorem 1, the

nearest Slutsky matrix when p = pd is:

Sr(p, w) =
p22

p21+p
2
2

[
−α1α2w

p21

α1

p1
α2w
p2

α1

p1
α2w
p2

−α1α2w
p22

]
Also, one has

E(p, w) = Sτ (p, w)− Sr(p, w)

E(p, w) =

[
[1− b(p)][−α1α2w

p21
] b(p)(−α1

p1
α2w
p2

)

[1− b(p)][−α1

p1
α2w
p2

] b(p)(α1α2w
p22

)

]
with

b(p) =
p22

p21+p
2
2
.

Now, we compute a useful quantity:

Tr(E′E) =
w2α2

2α2
1

p21p
2
2

.

It is convenient to compute the contributions of the violations of symmetry and singularity

in p separately.

Tr(E′E) = Tr(Eσ
′
Eσ) + Tr(Eπ

′
Eπ) = 1

2
w2α2

2α2
1

p21p
2
2

+ 1
2
w2α2

2α2
1

p21p
2
2

. In this case, regardless of

the values that w takes, the contribution of each kind of violation is equal and amounts to

exactly half of the total distance. In fact, we have: ||E||2 = 1
2

´ w
w
Tr(Eσ(w)′Eσ(w))dw +

1
2

´ w
w
Tr(Eπ(w)′Eπ(w))dw =

(
w3−w3

3

)
α2

2α2
1

p21p
2
2

, with p = pd.

Note, however, that in this example the third component of the violations, the one stemming

from NSD, is zero when the prices are evaluated at the default. Since the behavioral model

proposed by Gabaix does not satisfy WARP and its Slutsky matrix function violates NSD, we

conclude that the the violation of the WARP is not massive, in fact, it affects the size of the

Slutsky norm only through its interactions with homogeneity of degree zero or “money illusion”.

20



Our approach can also be used in the general case. We compute the previous quantities at any

p, and any pd with m = [1, 0]′.

Tr(E′E) =
w2α2

2α2
1

p21

[pd2 ]
2

[p2+[pd2−p2]α1]4
, with Tr(Eσ

′
Eσ) = Tr(Eπ

′
Eπ) and Eν = 0.

The expression above has a positive derivative with respect to pd2 for α1+α2 = 1, this indicates

that ∂
∂pd2

δ(·) > 0 for any p. A sparse consumer that does not pay attention to p2 will be further

from rationality when the default price pd2 is high. Furthermore, the power of our approach lies

in the decomposition of ||E||2 = ||Eσ||2 + ||Eπ||2. In this case, the decomposition suggests that

the violation of WARP can be seen as a byproduct of the violations of symmetry and singularity

stemming from the “lack of attention” to price changes of good 2 and the “nominal illusion” or

lack of homogeneity of degree zero in prices and wealth in such a demand system.

By Proposition 1, we can automatically conclude that there exists a xr ∈ X (Z) with Slutsky

matrix function Sr ∈ MR(Z) such that ||E|| < δ and ||xG − xr|| < ε(δ), i.e., there is a rational

demand system xr ∈ R(Z) that is ε-close in the behavioral sense to xG ∈ X (Z) that is different

from the underlying Cobb-Douglas model. It must be underlined that the Cobb-Douglas model

and xr are related to xG in different ways. The first one is a distortion of a rational model

using the sparse max operator, while the second is ε−closest behaviorally, as defined here.

Our approach helps to complement the understanding of how much this particular bounded

rationality model differs from the standard rational one.

Indeed, fixing p = pd, one can compare the Tr(E′E) to the trace of the residual matrix of

the distance between SG and SCD from the Cobb-Douglas consumer:

Tr(E′CDECD) =
p21+p

2
2

p22

w2α2
2α2

1

p21p
2
2

, with ECD = SG − SCD or

Tr(E′CDECD) = 1
b(p)Tr(E

′E), notice that 0 < b(p) < 1 for p >> 0. Then, as expected due

to our theoretical results, the Sr(p, w) obtained using Theorem 1 is uniformly closer (under the

Frobenius norm) to SG(p, w) than the Cobb-Douglas matrix in any compact space Z of pairs

z = (p, w) where ||E|| and ||EG|| are defined. This result says that both ||E||2 = 1
b(p) ||ECD||

2 are

proportional for any segment of wealth [w,w] due to linearity of the definite integral operator.

To finish this example, we will study a very simple region Z, with the aim of illustrating how

one can learn from the effect of a behavioral parameter such as α1 and pd2. Let Z = {w, p1 =

1, p2 ∈ [1, 2]}, then δ(α1, p
d
2) = 1

3 (α1 − 1)α1
2[pd2]2

(
1

(α1(pd2−2)+2)3
− 1

(α1(pd2−1)+1)3

)
. One can now

visualize this δ in the α, pd2 space, that is at pd2 ∈ [1, 2] and α1 ∈ [0, 1] (figure 1). We can observe

that α1 has a non-linear effect on δ, and the distance toward the rational matrix goes to zero

when either α1 → 0 or α1 → 1 for all pd2 ∈ [1, 2].

6.2 Hyperbolic Discounting

The literature on self-control and hyperbolic discounting has flourished in macroeconomics and

development economics. In this example, we study a three-period model that allows us to

illustrate the use of our methodology. Our aim is to measure the violations of property R by

naive and sophisticated quasi-hyperbolic discounters.

The optimization problem for a consumer that can pre-commit is:

max{xpi }i=1,2,3.
u(xp1) + βθu(xp2) + βθ2u(xp3)

subject to the budget constraint∑3
i=1 pix

p
i = w.

The first order conditions are:

u′(xp1) = λp1
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δ(pd2, α)
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Figure 1: Level curves sparse-max consumer example . The figure plots α ∈ [0, 1] on its vertical
axis and pd2 ∈ [1, 2] on its horizontal axis.

βθu′(xp2) = λp2

βθ2u′(xp3) = λp3

With CRRA utility with relative risk aversion σ:

u′(xpi ) = [xpi ]
−σ

xp2 = [βθ p1p2 ]
1
σ xp1

xp3 = [βθ2 p1p3 ]
1
σ xp1

Then, imposing the budget constraint:

p1x
p
1 + p2[βθ p1p2 ]

1
σ xp1 + p3[βθ2 p1p3 ]

1
σ xp1 = w,

which gives the demand system:

xp1 = [p1 + p2[βθ p1p2 ]
1
σ + p3[βθ2 p1p3 ]

1
σ ]−1w

xp2 = [βθ p1p2 ]
1
σ xp1

xp3 = [βθ2 p1p3 ]
1
σ xp1.

The naive quasi-hyperbolic discounter will have the following demand system:

In the first period, the consumer assumes she will stick to his commitment in the second

period and consumes the same amount as in the pre-commitment case:

xh1 = [p1 + p2[βθ p1p2 ]
1
σ + p3[βθ2 p1p3 ]

1
σ ]−1w.

However, when period two arrives, she re-optimizes taking as given the remaining wealth

w − p1xh1 .

xh2 =
w−p1xh1

p2+p3[βθ
p2
p3

]
1
σ

xh3 = [βθ p2p3 ]
1
σ xh2 .

The analytical result for the matrix nearness norm has a nice expression:

22



δ(β, θ)
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Figure 2: Level curves hyperbolic discounter example . The figure plots β ∈ [0, 1] on its horizontal
axis and θ ∈ [0, 1] on its vertical axis.

Tr(E′E) =

(σ − 1)2w2
(
p21 + p22 + p23

)((
βθ2p1
p3

) 1
σ −

(
βθp1
p2

) 1
σ
(
βθp

2

p3

) 1
σ

)2

2σ2

(
p3

(
βθp

2

p3

) 1
σ

+ p2

)2(
p2

(
βθp1
p2

) 1
σ

+ p3

(
βθ2p1
p3

) 1
σ

+ p1

)4 ,

which readily gives us that: (i) when σ = 1 then Tr(E′E) = 0 and δ = 0, that is the demand

is rational, (ii) when β = 1 then Tr(E′E) = 0, (iii) finally when β → 0, θ → 0, then δ → 0.

In these three cases by the previous results ε → 0. In fact, in the limit cases the hyperbolic

demand system is rational. Take for instance case (iii), because the agent consumes everything

in the first period and gives no weight to the other time periods then it is trivially rational, with

Sr → 0 and xh1 → w
p1 and xh2 , x

h
3 → 0. In case (i), the logarithmic utility case, the hyperbolic

discounter manages to keep his commitment and therefore her consumption is time consistent

and ||E|| = 0.

To illustrate further the use of the tools developed here, we find an explicit value for δ

in terms of the behavioral parameters β, θ, for an arbitrary rectangle Z of prices and wealth.

Consider the region Z = {p1, p2, p3 = 1, w ∈ [1, 2]} , with σ = 1
2 we compute δ(β, θ), which

can be represented graphically in the box β ∈ [0, 1], θ ∈ [0, 1]. The analytical expression for

δ2 =
7β4(β2−1)

2
θ8

2(β2θ2+1)2(β2(θ4+θ2)+1)4
.

The level curves (figure 2) show that the hyperbolic discounter is very close to the rational

consumer, in the matrix nearness sense, for very low values of β, θ and for values of θ ≤ 1
2 . This

makes intuitive sense as a lower θ means heavier discount on the future and lower consumption

of goods of time 2 and 3 that are the ones affected by self-control.
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The analytical expression for δ is messy. When evaluated at β = 0.7 and θ = 0.9, then

δ = 0.074, where the parameters are taken from the empirical literature.

Another observation that we can draw from this example is that for any arbitrary compact

region Z of prices and wealth analyzed ||E||2 = ||Eσ||2. That is, only the asymmetric part

plays a role in the violation of property R. In other words, under this numerical conditions

the hyperbolic discounter violates symmetry but it satisfies singularity in prices and negative

semidefiniteness. The hyperbolic discounter fulfills WARP.

Finally, one can also use this example to identify pairs (β, θ) that are “equidistant” from

rationality, capturing an interesting tradeoff between the short-run and the long-run discount

factors and its effects on the violations of the Slutsky conditions.

6.3 Sophisticated Quasi-Hyperbolic Discounting

The sophisticated quasi-hyperbolic discounter is intuitively closer to rationality. However, the

Slutsky norm helps appreciate some of the subtleties and assess which conditions of rationality

are fulfilled by this type of consumer. We build this example as a followup to the naive quasi-

hyperbolic consumer. In this case, the consumer knows that in t = 2 she will not be able to

keep her commitment and therefore will adjust her consumption at t = 1. Then the consumer

maximizes

maxxsh1 u(xsh1 ) + βθu(xh2 ) + βθ2u(xh3 )

where xh2 , x
h
3 are known to her in t = 1 and depend on period 1 consumption. However, she

can control only how much she consumes in the first period. Taking first order conditions and

keeping the assumption of the naive quasi-hyperbolic case, the first order conditions are:

u′(xsh1 ) + βθu′(xh2 )
∂xh2
∂xsh1

+ βθ2u′(xh3 )
∂xh3
∂xsh1

= 0

Under the parametric assumptions made in the previous example, the new demand system

of the sophisticated hyperbolic discounter is:

u′(xpi ) = [xpi ]
−σ

[xsh1 ]−σ + βθ[xh2 ]−σ
∂xh2
∂xsh1

+ βθ2[xh3 ]−σ
∂xh3
∂xsh1

= 0

xh2 =
w−p1xh1

p2+p3[βθ
p2
p3

]
1
σ

xh3 = [βθ p2p3 ]
1
σ xh2 .

∂xh2
∂xsh1

= p1

p2+p3[
p2βθ
p3

]
1
σ

∂xh3
∂xsh1

= −
p1[

p2βθ
p3

]
1
σ

p2+p3[
p2βθ
p3

]
1
σ

.

Then the first period consumption under the sophisticated hyperbolic discounting is:

xsh1 =


p1βθ + p1βθ

2[βθ p2p3 ]
1−σ
σ[

p2 + p3[βθ p2p3 ]
1
σ

]1−σ


1
σ

+ p1


−1

w
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The argument in the integral of the expression for δ for a generic Z is given by the quantity:

Tr(E′E) =

(β − 1)2(σ − 1)2w2θ4/σ
(
p21 + p22 + p23

)(
βp2 + p3

(
βθp2
p3

) 1
σ

) 2
σ−2

 βp1

p3

(
p3
(
βθp2
p3

) 1
σ +p2

)
2/σ

2σ4


 θp1

(
p3
(
βθp2
p3

) 1
σ +p2

)σ−1(
βp2+p3

(
βθp2
p3

) 1
σ

)
p2


1
σ

+ p1


4

As expected, this implies that: (i) when σ = 1, δ = 0 for any Z; (ii) when β = 1, δ = 0;

and (iii) when β = 0, δ = 0. Thus, in all these cases, ε = 0. Also, the decomposition of

||E||2 = ||Eσ||2, which means that only the symmetry property is violated, while the weak

axiom and the homogeneity of degree zero in prices and wealth are preserved.

Finally, we want also to compare this quantity with the case of the naive hyperbolic dis-

counter. The ratio of r =
Tr(E′shEsh)
Tr(E′hEh)

< 1 means that the sophisticated hyperbolic consumer has

a lower δ for any Z and any parameter configuration. To simplify expressions, we let pi = 1

for i = 1, 2, 3. The first finding is that the relation between the naive and the sophisticated

discounter δ’s depends crucially on the parameter σ. For σ = 1, they are equal to zero: this is a

knife-edge case, in which the marginal rates of substitution yield optimal consumptions equal to

the commitment baseline. For σ = 1
2 , the sophisticated hyperbolic discounter has a uniformly

lower δ. However, for σ = 2, the naive hyperbolic discounter has a uniformly lower δ. Although

this may seem counterintuitive, it tells us that the closest rational type (which need not be the

commitment baseline) is closer for the naive than it is for the sophisticated consumer. More

precisely, in light of the interpretation of the matrix nearness norm, the slope of the steepest

Ville cycle changes with the amount of wealth remaining after the first period. Consequently,

if there is a larger amount of remaining wealth for “re-optimization” in the second period, the

Ville cycle slope is greater. This is the case when σ < 1, which increases the consumption in

period 1 of the sophisticated hyperbolic discounter leaving less residual wealth and thus a lim-

ited rate of growth of the real income path along the Ville cycle. Furthermore, to enhance the

comparison for the case of σ = 1
2 , we compute explicitly the expression for δ in the same region

Z = {p1, p2, p3 = 1, w ∈ [1, 2]} as in the previous example for the naive discounter.

δ2(β, θ) =
14(β − 1)2β6θ8

(
βθ2 + 1

)2
(β2θ2 (βθ2 (βθ2 + 2) + 2) + 1)

4

The level curves of this δ expression are very similar to the naive case, but it is even closer

to rationality everywhere. Evaluated at the typical values of β = 0.7 and θ = 0.9, one gets the

value δ = 0.0703847, which is slightly lower than the δ of the naive hyperbolic case for the same

σ = 1
2 .
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Figure 3: Level curves hyperbolic discounter example . The figure plots β ∈ [0, 1] on its horizontal
axis and θ ∈ [0, 1] on its vertical axis.

6.4 Semiparametric and Nonparametric Estimation of the Slutsky Ma-

trix Norm with Noisy Data

Even though our Slutsky matrix norm main attractiveness is its analytical tractability, our ap-

proach can be useful when applied to observed consumer behavior where nonparametric estimates

of the demand function are obtained from noisy data. Its main advantage over alternatives that

use a least distance approach to measure violations to rationality such as Blundell et al. (2008) or

Varian (1990) is its closed-form solution. Moreover, it not only quantifies by how much a behav-

ior departs from rationality, but also suggests why (e.g. the violations to the Slutsky conditions

and its axiomatic counterparts). It also has a potential advantage with respect to tests on the

Slutsky regularity conditions such as those proposed by Hoderlein (2011) and Haag et al. (2009)

because our approach deals with the condition in a unified manner. Here we propose a blueprint

of a consistent estimator for departures from rationality using our results of the matrix nearness

problem. The estimator of our functional is semiparametric and uses the plug-in principle. Its

main interest rests in its simplicity.

In most applications, one observes noisy versions of our primitive xτ ∈ X (Z). Indeed, the

practitioner may have access to a noisy version of the expenditure of households given the

sampled prices and incomes and budget shares for each commodity. In this setting, we formally

define these alternative functions of consumer behavior as ατ ∈ X (Z) (e.g. when the demand

is modeled as a budget share, then ατ is defined componentwise ατl (p, w) =
plx

τ
l (p,w)
w ). Also,

we assume that we observe N identically and independently distributed draws of the random

vector Y = (A P W )′, where A = f(P,W, V ) is the noisy measure of the budget shares that

depends on (random) price and wealth (P,W ) pairs and on a vector V of noise or unobserved

heterogeneity. In this simple framework, we assume that (P,W ) is independent of V . Ideally,

the practitioner should use experimental data for individual choice with a bundle set that is

infinite X ⊆ RL and a random linear budget constraint with the objective of inferring the shape
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of xτ . However, the typical situation that a practitioner faces does not involve experimental

data. In that case, the interested reader should use the Slutsky matrix function estimator that

addresses the issues of endogeneity and heterogeneity (Hoderlein, 2011) while imposing strong

assumptions about the population demand behavior (Lewbel, 2001).

To retain generality, we will only assume that there is some functional of the observed random

variable A such that it is equal to the deterministic ατ for given observables (prices and wealth).

A classical assumption is that E[A|P = p,W = w] = ατ (p, w) (Haag et al., 2009). More

recently, Blundell et al. (2013) use the conditional quantile of A, assumed to correspond to the

actual deterministic behavior component such that Qτ (A|P = p,W = w) = ατ (p, w), where

we interpret τ both as a type of behavior and a population quantile. In this environment, we

redefine our problem without loss of its structure. We can compute the Slutsky matrix function

associated to ατ , and call it Sα,τ . It must be the case that Sα,τ inherits all the properties of

Sτ when τ is a rationalizable behavior. In particular, if it is symmetric, p-singular and NSD

then our results hold for ατ . The typical budget share estimation is done under Walras’ law,

so we assume it here as well.15 Interestingly, we find that our semiparametric estimator can be

seen as a generalization of the well-known Slutsky matrix symmetry test, and it is close to an

L2 distance test of symmetry proposed by Hagg et al. (2009).

Our aim is to provide a blueprint to estimate the distance from rationality of ατ (or xτ ). We

define the quantity of interest γ = ||Eα||2 =
´
Z
g(z)dz (or δ in the case of xτ ) where the function

g is defined pointwise as g(p, w) = Tr[Eα
′
(p, w)Eα(p, w)].16 Abusing notation, we omit α from

the following derivations.

The first step in the estimation of γ, is the nonparametric estimation of the function g. Note

that g is constructed using only the shares ατ and its partial derivatives (e.g., Dpα
τ and Dwα

τ )

that we can readily estimate in this environment. 17

(i) Plug-in estimator. By the plug-in principle, we propose the estimator γ̃ =
´
Z
ĝ(z)dz =

Γ(ĝ), where Γ : C(Z,R+) 7→ R is a linear functional and
´
Z
||ĝ(z)||2 < ∞. This functional is

Fréchet differentiable (or Hadamard differentiable), then the plug-in estimator converges.

In particular, we will take advantage of a sufficient condition (i.e. the fact that γ = Γ(g),

and that Γ is a linear bounded functional of g). To see this, observe that for all f ∈ C(Z,R)

we have: |Γ(g) − Γ(f)| ≤ c ||g(z) − f(z)||C for some constant c > 0.18 Since Γ is a bounded

functional, it follows that if ĝ
p→ g, and then Γ(ĝ)

p→ Γ(g).

In the remaining part of this application, we propose an estimation procedure for the first

nonparametric step for this estimator. This procedure takes advantage of our closed-form so-

lutions to the matrix nearness problem. The emphasis of this procedure is on obtaining an

15It is desirable to use estimators for xτ when heteroscedasticity is not an issue for the estimation technique.
16We can write γ =

´
Z
g(z)
h(z)

h(z)dz or γ = E[
g(P,W )
h(P,W )

] where h is the probability density function (pdf) of (P,W )

that is assumed to be bounded away from zero and whose support is Z. This will be useful to simplify the algorithm
to compute the estimator as explained in the appendix. The estimator can be written as γ̂ = 1

N

∑n
i=1

1

ĥ(zi)
ĝ(zi)

where ĝ(zi) can be computed only at the data points.
17In particular, following Hagg et al. (2009), in the case where E[A|P = p,W = w] = ατ (p, w), we can use

the Naradaya-Watson local polynomial estimator of the conditional mean for ατ and the partial derivative of α̂τ

for the corresponding functions of interest. Then we are ready to construct an estimator of ĝ. To estimate h we
can use a traditional kernel estimator for probability density functions ĥ. We must underline that Haag et al.
(2009) shows that the asymptotic properties of an object such as ĝ are driven by the rate of convergence of the
derivatives of ατ , and therefore, we can treatα̂τ as known in the asymptotic theory.

18In fact, note that by linearity of the integral operator, we have
|Γ(g − f)| ≤ c maxz∈Z |g(z) − f(z)|. Then we can construct a c using the fact that |Γ(g − f)| ≤ Γ(|g − f |)

and fixing c = maxf∈L2(Z,R+){
Γ(|g−f |)

maxz∈Z |g(z)−f(z)|} for f 6= g.
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algorithm that provides a consistent estimator of g in general settings, when we have consistent

estimators of ατ and its derivatives.

The procedure can be summarized in two steps:

• Use a local smoother on {pi, wi, gi}i∈{1,··· ,N}to obtain and estimate of ĝ(p, w) for all

(p, w) ∈ Z.

• Use the plug-in principle and obtain γ̂ = Γ(ĝ) =
´
Z
ĝ(z)dz.

(ii) Properties of the estimator. The advantage of the semiparametric estimation procedure is

that it is consistent if we have a uniform consistent estimator as an input. Formally, we state

the following remark.

Remark 7. The semiparametric estimator γ̂
p→ γ as n → ∞ if the estimators of ατ and its

derivatives converge in probability to their true value.

The asymptotic distribution of this statistic can be done under regularity conditions using

the classical results of Newey (1994). The interested reader might want to check the following:

(i) Mean square continuity. To achieve this we have to use an o(n−1/4) consistent estimator of

g. (ii) Linearity. This condition holds trivially when we know h then γ is a linear functional

of g. In fact, the functional derivative of E[m(z, γ, g)] with respect to g is E[c(P,W )δg(P,W )]

where c(p, w) = 1
h(p,w) . (iii) Stochastic equicontinuity. Proving stochastic equicontinuity if

possible depends on the specific estimator used by the practitioner. Under these conditions, the

estimator converges at n−1/2 rate.

(iii) Symbolic or algebraic algorithm for the estimation of g.19 In the case of the first

nonparametric step, we propose a simple polynomial estimator for all the components of our

Slutsky matrix norm. These components (matrix functions) will be used to compute γ̂ using

the plug-in principle and other quantities of interest. We assume that we have polynomial

consistent estimators of ατ and its partial derivatives such that Ŝτ (p, w) = Sr,qp
rwq (i.e.,

we use the Einstein notation where pr = pr11 p
r2
2 · · · p

rL
L , and wq is the q-th power of w and

Sr,qp
rwq =

∑
r1,··· ,rL;q Sr,qp

r1
1 · · · p

rL
L wq with −k ≤ rl, q ≤ k and Sr,q constant matrices). Notice

that our map a : X (Z) 7→ M(Z) is closed to rational polynomials in the sense that if ατ is

a rational polynomial then E has rational polynomial entries. Indeed, if ατand its derivatives

are polynomials then Sτ has polynomial entries. Moreover, Sσ,π having rational polynomial

entries implies that the eigen-values and eigen-vectors (of Sσ,π) are rational polynomials and so

is Sr (entrywise). Finally, E itself has rational polynomial entries. In this case, we can apply

our analytical solutions in a very simple and numerically efficient way using readily available

algorithms.

Notice that the estimator of Eσ, Êσ = − 1
2 (Sr,q − S

′
rq)p

rwq = E
σ

rqp
rwq is computed using

only constant matrix subtraction. The estimator of Eπ has rational polynomial entries instead

of just polynomial ones due to the presence of 1
p′p . However, we can factor the estimator in two

components, a scalar rational polynomial and a polynomial matrix: Êπ = 1
p′p [E

π

s,tp
swt]. The

change of subscripts denotes that this is a new polynomial matrix due to the following operation

E
π

s,tp
swt = E

σ,π

r,q (p, w)prwq where E
σ,π

r,q (p, w) = −(pp′S
σ

r,q + S
σ

r,qpp
′)20 is a polynomial matrix

itself and E
π

s,t is a constant matrix coefficient of the polynomial expansion of the matrix factor

of Êπ after rearranging the polynomial terms.

19For a numerical algorithm, the reader is referred to the appendix.
20This formula works under the assumption of Walras’ law or adding-up.

28



Finally, the computation of the estimator of Eν is more involved. We can apply the algorithms

of Kitamoto (1994) on Ŝσ,π,ρ = (p′p)Ŝσ,π if the polynomials have no interaction terms. More

generally, we can exploit an additional structural property of Ŝσ,π,ρ. Most modern algorithms de-

signed to obtain an eigen-decomposition or a spectral decomposition of a polynomial matrix need

that Ŝσ,π,ρ belongs to the class of para-hermitian polynomial matrices (i.e. Ŝσ,π,ρ(−p,−w) =

Ŝσ,π,ρ(p, w)′). If this is not the case, one can always obtain the para-hermitian matrix transfor-

mation Ŝσ,π,h(z) = Ŝσ,π,ρ(−z)′Ŝσ,π,ρ(z), where Ŝσ,π,h(z) = Q(−z)′Λ(−z)′Λ(z)Q(z)′, and where

Q(z) is a para-unitary polynomial matrix such that Q(−z)′Q(z) = I and Λ(z) is a diagonal

polynomial matrix. Then, the estimator is defined pointwise as Êν(z) = 1
p′p [Q(−z)′Λ(z)+Q(z)′].

Observe that one can recover Λ(z) from Λ(−z)′Λ(z) (Foster et al., 2010). To exploit the para-

hermitian property when possible is generally recommended, because of the increasing avail-

ability of algorithms to compute it. In particular, by using a decomposition algorithm for

multivariate polynomial matrices with this property proposed by Avelli and Trentelman (2008)

to obtain algebraic solutions to the PSD projection of Ŝπ,σ.21

We want to underscore that, in the process of deriving an estimator for Ê, we have reduced

the computation of the matrix function E to a simple algebraic or symbolic algorithm when the

primitives are polynomials. Therefore, this process can also be applied when the practitioner

has access to deterministic polynomial evaluator of xτ or a Taylor approximation thereof. The

benefits may be important computationally because we transformed the infinite-dimensional

problem into a finite-dimensional one (except for the Êν that requires to apply a specialized

algorithm).

We can use the approximate function Ê to calculate an estimator of γ. We start by obtaining

ĝj = Tr(Êj;Ê) for j ∈ {σ, π, ν}, and we use the plug-in estimator to compute the approximate

γ̃ =
´
Z
ĝ(z)dz.22

As we can see, our closed-form solutions for the departures of rationality are advantageous

when proposing estimators and algorithms for the computation of our Slutsky matrix norm.

The asymptotic distribution and other properties of the matrix function polynomial estimator

(Sτ ,Sr and E), are potentially interesting avenues for future research. Also, it seems natural

to use these techniques to impose rationality in nonparametric demand estimation when using

sieves techniques.23

21In the case of para-hermitian polynomial matrix functions, there is a spectral decomposition algorithm
with para-unitary matrices such that Sσ,π(z) = Q(−z)′Q(z) where Q(z) ∈ Rm×L. Denote Q(z) =
[q1(z) q2(z) · · · qm(z)], in other words, Sσ,π(z) =

∑m
r=1 qr(−z)qr(z)′. In this setting, we can obtain the PSD

part Eν(z) =
∑
k∈K qk(−z)qk(z)′, where K ≡ {k ∈ {1 · · ·m}|qk(−z)′qk(z) ≥ 0}. Certainly, Eν(z) is symmet-

ric, PSD, and singularity in p is preserved since Q(−z)′Q(z)p = 0 and p′Q(−z)′Q(z) = 0, which implies that
ql(z)

′p = ql(−z)′p = 0 for all l ∈ {1, · · · ,m}. Uniqueness of the solution ensures that this is the PSD projection.
Alternatively, we can obtain the PSD part by noticing that this decomposition can be seen also as a J-spectral

decomposition where Sσ,π(z) = F (−z)′JF (z) with F (z) ∈ RL×L and J =

 Iα 0 0
0 −Iβ 0
0 0 0


L×L

, where It

denotes an identity matrix of dimension t, t = α is the number of positive eigen-values, t = β is the number of
negative eigen-values, and m − (α + β) is the number of null eigen-values. Then Eν = Q(−z)′J+Q(z), where

J+ =

 Iα 0 0
0 0 0
0 0 0


L×L

.

22The consistency of the plug-in estimator stems from the boundedness of the operator Γ (and Hadamard

differentiability). Observe that the consistency of the coefficients of Ê polynomial matrix are guaranteed in the
case of polynomial primitives. For general cases, we have approximate solutions that nevertheless can be made
arbitrarily precise at a computational cost.

23Recent work on two-step estimators by Ackerberg et al. (2012) may prove useful in this setting to compute
the asymptotic variance because it assumes that the first step is done using polynomial approximations
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7 Literature Review

The canonical treatment of measuring deviations from rational consumer behavior was establish

by Afriat (1973) with its critical cost-efficiency index. Afriat’s index measures the amount by

which budget constraints have to be adjusted so as to eliminate violations of the Generalized

Axiom of Revealed Preference (GARP). Varian (1990) refines Afriat’s measure by focusing on the

minimum adjustment of the budget constraint needed to eliminate violations of GARP. Houtman

and Maks (1985) measure deviations from GARP through identifying the largest subset of choices

that is consistent with maximizing behavior.

The closest treatment of the problem to our work is the approximately rational consumer

demand proposed by Jerison and Jerison (1993) These authors are able to relate the violations of

negative semi-definiteness and symmetry of the Slutsky matrix to the smallest distance between

an observe smooth demand system and a rational demand. Russell (1997) proposes a measure

of quasi-rationality. Russell’s measure corresponds to Slutsky matrix symmetry violations. He

uses exterior calculus and obtains a measure of non integrability that corresponds to the residual

of a symmetric decomposition of the Slutsky matrix.

Our work gives a different methodological approach to this problem and generalizes the

results to the case of violations of singularity of the Slutsky matrix. More importantly, this new

approach allows to treat the three kinds of violations of the Slutsky conditions simultaneously.

For instance, new behavioral models like the sparse-max consumer (Gabaix, 2012) suggest the

presence of a money illusion such that prices are not in the null space of the Slutsky matrix.

More recently, Echenique, Lee and Shum(2011), give a new measure of violations of revealed

preference behavior called the “money pump index” . Also Jerison and Jerison (2001) propose a

way to bound Afriat’s index of cost-efficiency using an index of violations of the symmetry and

negative semidefiniteness Slutsky conditions. It would be interesting to compare our Slutsky

matrix norm with these other approaches.

8 Conclusion

By redefining the problem of finding the closest rational demand to an arbitrary observed be-

havior in terms of matrix nearness, we are able to pose the problem in a convex optimization

framework that permits both a better computational implementability and the derivation of

semiparametric consistent estimator and tests. We define a metric in the space of smooth de-

mand functions and finally propose a way to recover the best Slutsky approximation matrix

function under a Frobenius norm. Our approach gives a geometric interpretation in terms of

transformations of the Slutsky matrix or first order behavior of demand functions. As a result,

a classification of the different kinds of violations of rationality is also provided.
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Appendix

Proof of Claim 1:

Proof. First, we show thatX (Z) is closed. Take any sequence {xn}n∈N of demand functions

with xn ∈ X (Z). For any n ∈ N, we have p′xn(z) = w by assumption. Let the arbitrary

convergent sequence be such that xn(z) → x(z) to some function x ∈ C1(Z). Then we want to

show that, for xn(z) = [xn1 (z) · · ·xnL(z)], if xnl (z) → xl(z) then p′x(z) = w. By Walras’ law, we

have p′xn(z) = w. Define the function gn(z) = p′xn(z) − w, taking limits on this new function

limn→∞g
n(z) = limn→∞[

∑L
l=1 plx

n
l (z)− w] it follows that gn(z)→ 0 and since z = (p, w) and

z ∈ RL+1
++ is given we can conclude that p′x(z) = w. This implies that x ∈ X (Z).

We also show thatX (Z) is uniformly bounded. Since xτ ∈ X (Z) is continuously differentiable

and Z is compact, then every xτ (z) is compact-valued, and so is ∇xτ (z). Then, there exists a

bound Mxτ > 0 such that ||xτl ||C1,1 ≤ Mxτ for l = 1, . . . , L. Then let M = max{Mxτ }xτ∈X (Z).

It follows that ||xτl ||C1,1 ≤M for l = 1, . . . , L, for all z ∈ Z, and for all xτ ∈ X (Z).

Finally, we demonstrate that X (Z) is equicontinuous. This is a direct consequence of the

assumption of continuous differentiability and the compactness of Z. In fact, under the assump-

tions of continuity of Dxτ (z) = [Dpx
τ (z) Dwx

τ (z)], then set {∇xτl (z) ∈ C(Z)} is uniformly

bounded in Z (by the same uniform boundedness argument of X (Z)). Also, by the multivariate

mean value theorem applied to each function xτl (z), it follows that for l = 1, . . . , L, for every

u > 0 there exists a vl > 0 (vl = M | such that for z ∈ [z1, z2]: ||∇xτl (z)||∞,L+1 < M), depending

only on u, such that for a pair z1, z2 ∈ Z: d(z1, z2) < vl =⇒ ||xτl (z1) − xτl (z2)||C1,1 < u

for all entries of the functions xτ ∈ X (Z). Under the || · ||C1 norm for X (Z), it follows that

||xτ (z1) − xτ (z2)||C1 < u.24 Finally we choose l = argmax
l
{||xτl (z1) − xτl (z2)||C1,1} and we

fix v = vl. Then we can conclude that for every u > 0 there exists a v > 0 which depends

only on u (since all vl depend only on u), such that for a pair z1, z2 ∈ Z: d(z1, z2) < v =⇒
||xτ (z1)− xτ (z2)||C1 < u ∀ xτ ∈ X (Z).

To conclude, we apply the Ascoli-Arzelà theorem to the family of functions xτ ∈ X (Z). Since

X (Z) is closed, uniformly bounded and equicontinuous, it is a compact subset of C1(Z).

Claim 5

The following claim is an auxiliary result to be used in the sequel.

Claim 5. The map s : X (Z) 7→ M(Z) defined as s(xτ ) = Sτ is continuous.

Proof. First, we will prove that Dp : X (Z) 7→ M(Z) and Dw : X (Z) 7→ C(Z,RL) are not

only closed linear operators, but are also continuous maps. In general, differential operators are

closed but not continuous. However, in this specific domain, Dp, Dw are defined everywhere by

assumption, additionally Dp and Dw are closed operators, and finally X (Z),M(Z) are Banach

spaces with the norms || · ||C1 and || · || respectively, and so is C(Z,RL), the space of continuous

functions f : Z 7→ RL with supremum norm || · ||∞,L. Then, by the closed graph theorem, we

can conclude that Dp and Dw are continuous maps.

24Three different norms are used in this proof. The partial derivatives of xτl are not required to be differentiable
hence the norm in this space is the supremum norm || · ||∞. By contrast, xτl is continuously differentiable and has
norm || · ||C1,1. For a fixed z = z, ||xτ (z)||C1,1 = max(||xτ (z)||∞,1, ||∇xτ (z)||∞,L+1). Finally, the norm in X (Z)
is || · ||C1 as defined in Section 2.
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Second, take a convergent sequence in X (Z), {xτn}n∈N → xτ . To finish the proof we want to

show that limn→∞s(x
τ
n) = s(xτ ). By continuity of Dp, Dw and by the properties of the limit of a

product of vectors it follows that limn→∞s(x
τ
n) = limn→∞Dpx

τ
n+ limn→∞Dwx

τ
n[limn→∞x

τ ]′ =

Sτ , where s(xτ ) = Sτ , thus proving continuity of s.

Proof of Claim 2

Proof. The problem is minSr ||Sτ − Sr|| subject to Sr(z) ≤ 0, Sr(z) = Sr(z)′, Sr(z)p = 0 for

z ∈ Z.

Under the Frobenius norm, the minimization problem amounts to finding the solution to

minSr
´
z∈Z Tr([S

τ (z)− Sr(z)]′[Sτ (z)− Sr(z)])dz
subject to

Sr(z) ≤ 0

Sr(z) = Sr(z)′

Sr(z)p = 0

The objective function is strictly convex, because of the use of the Frobenius norm. This

norm is also a continuous functional.

The constraint set MR(Z) is convex and closed. In fact, the cone of negative semi-definite

matrices is a closed and convex set. Also, the set of symmetric matrices is closed and convex,

and finally the set of matrices with eigenvalue λ = 0 associated with eigenvector p is convex.

To see the last statement, let A(z)p = 0, B(z)p = 0, and let C(z) = αA(z) + (1 − α)B(z) for

α ∈ (0, 1). It follows that C(z)p = 0. Then MR(Z) is the intersection of three convex sets and

is therefore convex itself. It is also useful to note that all three constraint sets are subspaces of

M(Z) and the intersection MR(Z) is itself a subspace of M(Z).

Now we prove that not only the symmetric and the NSD constraints sets are closed but

all MR(Z) is closed. Any matrix function in the constraint set is a symmetric NSD matrix

with p in its null space. Therefore, every sequence of matrix functions in the constraint set

has the form Dn(z) = Qn(z)Λn(z)Qn(z)′, where Λn(z) = Diag[λni (z)]i∈1,...L with ascending

ordered eigenvalues functions. It follows that the eigenvalue function in position L,L is the

null eigenvalue λL = 0, or the null scalar function. That is, imposing an increasing order

the position 1, 1 is then held by λn1 (z) ≤ λn2 (z) ≤ . . . ≤ 0 where the order is induced by the

distance to the null function using the euclidean distance for scalar functions defined over Z.25

The matrix function Qn(z) = [qn1 · · · p] is the orthogonal matrix with eigenvectors functions

as columns. For all Dn(z) ∈ MR(Z), λnL = 0 is associated with the price vector qnL = p

always, to guarantee that p is in its null space. The eigenvectors are defined implicitly by the

condition Dn(z)qni (z) = λn(z)qni (z) with pointwise matrix and vector multiplication and qni ⊥ p
or 〈qni , p〉 = 0 using the inner product for C0(Z) for i = 1, . . . , L− 1 and for all n ∈ N. Take any

sequence of {Dn(z)}n∈N with Dn(z) ∈MR(Z) for each z ∈ Z, with limit limn→∞D
n(z) = D(z).

We want to show that D(z) ∈MR(Z). It should be clear that any Dn(z)→ D(z) converges to

a symmetric matrix function (the symmetric matrix subspace is an orthogonal complement of a

subspace ofM(Z) (the subspace of skew symmetric matrix functions) and therefore, it is always

closed in any metric space). It is also clear that D(z)p = 0 since λnL = 0 for all n and certainly

λnL → 0 with the associated eigenvector qnL = p for all n and qnL → p. This condition, along with

25This eigenvalue functions can be labeled because the domain Z is simply connected. The order admits
crossing eigenvalue functions.
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symmetry, guarantees that qni 6=L → q ⊥ p. Finally, the set of negative scalar functions is closed.

Then, λni6=L → λ(z)− with λi 6=L(z)− = min(0, λi6=L(z)). This is a negative scalar function by

construction, since if λi 6=L(z) > 0 then λi 6=L(z)− = 0. Then MR(Z) is closed.

Let MS(Z) ⊂ M(Z) be the subset of Slutsky matrix functions, defined as the image of

the Slutsky map defined over X (Z). Let s : X (Z) 7→ M(Z), be a matrix map defined by

s(xτ ) = Dpx
τ + Dwx

τ [xτ ]′, i.e s(X (Z)) ≡ MS(Z). By Claim (1), X (Z) is compact and by

continuity of the s map (proven in Claim 5), it follows that MS(Z) is a compact set. Since

MR(Z) ⊂MS(Z), and given that MR(Z) is a closed subspace of a compact set, then MR(Z)

is also compact.

Note also that the image of the feasible set satisfying the constraints is closed (because all

constraint sets images are pointwise subspaces of euclidean metric spaces of finite dimension

and therefore are closed) and convex because it is the intersection of three convex sets. Under

the assumption of z ∈ Z for Z compact, then it follows that the constraint set is pointwise

compact. To see why the previous statement is true observe that the set of images of M(Z) for

a fixed z, Imz(M(Z)) consists of real-valued L × L matrices that forms a vector space that is

isomorphic to the euclidean space RL2

. Then let MR(Z) be the set of matrix functions that

have property R. It follows that Imz(MR(Z)) ⊂ Imz(M(Z)), is compact if and only if it is

closed and bounded. Observe first that MR(Z) is closed since it is in the intersection of three

closed sets. The entries of a matrix S ∈ R are not necessarily bounded for all (p, w) ∈ RL+1,

but Imz(MR(Z)) is bounded. Then MR(z) is pointwise compact.

In conclusion, since the Frobenius norm in M(Z) is a continuous and strictly convex func-

tional and the constraint set is compact and convex the minimum is attained and it is unique.

Proof of Claim 4

Proof. First, we establish the basic properties of this new measure:

Positive: ρ(Sτ ) ≥ 0 by construction (if Sτ ∈M(Z)).

Unit-free: ρ(cSτ ) = ρ(Sτ ) (if Sτ ∈M(Z) and c ∈ R).

ρ(cSτ ) = |c|d(Sτ )
|c|||Sτ || = ρ(Sτ )

Let Eσ 6= 0, Eπ 6= 0 and Eν 6= 0. Next, we establish each of the componentwise bounds.

We write
||Eσ||
||Sτ ||

=
|| 12 [Sτ − Sτ ′ ]||
||Sτ ||

≤
| 12 |2||S

τ ||
||Sτ ||

= 1.

Next, since

Eπ(z) = − 1
p′p [Sσ(z)pp′ + pp′Sσ(z)− [Sσ(z)p]′p

p′p pp′],

By Walras’ law:

Eπ(z) = − 1
p′p [Sσ(z)pp′ + pp′Sσ(z)],

then

||Eπ|| ≤ 1
p′p [||Sσ(z)|| · ||pp′||].

Note that ||pp′|| = p′p then

||Eπ|| ≤ ||Sσ(z)||
and
||Eπ||
||Sτ || ≤

||Sσ(z)||
||Sτ || ≤ 1.

Next, since Sσ,π = Sσ + Eπ = 1
2 [Sτ + Sτ

′
] + Eπ

then ||Sσ,π|| ≤ 2||Sσ||
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and

||Sσ,π|| ≤ 2||Sτ ||.
It follows that:
||Eν ||
||Sτ || ≤ 2 ||E

ν ||
||Sσ,π|| ≤ 2.

Finally, recall that

ρ(Sτ ) = ||E||
||Sτ ||

and

ρ(Sτ )2 = ||Eσ||2+||Eπ||2+||Eν ||2
||Sτ ||2 = ||Eσ||2

||Sτ ||2 + ||Eπ||2
||Sτ ||2 + ||Eν ||2

||Sτ ||2 .

Using the componentwise bounds afor established yields the overall bound of
√

6.

Lemma 3

Lemma 3. The solution to minA||Sτ − A|| subject to A(z)p = 0 and A(z) symmetric is the

nearest matrix function with this characteristics for Sσ(z).

Proof. Using the symmetric, skew symmetric matrix decomposition of Sτ we can write:

||Sτ −A||2 = ||Sσ +−A(z) + Eσ||2 = ||Sσ −A||2 + ||Eσ||2 + 2〈Sσ +−N,Eσ〉
Since Sσ(z) − A(z) is symmetric, it follows that 〈Sσ + −N,Eσ〉 = 0, because Tr([Sσ(z) +

−A(z)]′Eσ(z)) = 0, for z ∈ Z. In fact, the trace of the product of a symmetric matrix-valued

function and skew symmetric valued function is zero for any z ∈ Z.

This implies that the proposed program can be written as:

maxA||Sσ + Eσ −A(z)||2 = ||Sσ −A(z)||2 + ||Eσ||2

with A(z) = A(z)′ and A(z)p = 0.

With the solution A(z)∗ = Sσ(z) +Eπ(z), with Eπ(z) the nearest matrix function under the

Frobenius norm that makes [Sσ(z) + Eπ(z)]p = 0.

Thus, A(z)∗ = Sσ,π(z).

Lemma 4

Lemma 4. The solution to the problem with only the symmetric restriction active is Sσ(z) =
1
2 [Sτ (z) + Sτ (z)′]

Proof. Consider the reduced problem with only the symmetry restriction active:

minSr
´
z∈Z Tr([S

τ (z)− Sr(z)]′[Sτ (z)− Sr(z)])dz
subject to

Sr(z) = Sr(z)′.

This is equivalent to minimize

Sσ(z) = argminSr∈R
´
z∈Z [Tr(Sτ (z)′Sτ (z))−Tr(Sr(z)Sτ (z))−Tr(Sτ (z)′Sr(z))+Tr(Sr(z)Sr(z))]dz

The optimization solution when only the symmetry restriction is active is obtained using the

strong Euler-Equation. The objective function expansion is obtained using the linearity of trace

operator. We also use the property that ∂Tr(AX ′)/∂X = A. Note that the Lagrangian only

depends on the function Sr(z) and not on z or its derivatives. Therefore the first order pointwise

conditions give:

−Sτ (z)− Sτ (z)′ + 2Sr(z) = 0, for z ∈ Z
which yields
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Sσ(z) = 1
2 [Sτ (z) + Sτ (z)′].

It is useful to note that this corresponds to the symmetric decomposition of a square matrix

function.

Lemma 5

Lemma 5. The negative semi-definite nearest matrix function to Sσ(z) is also the NSD nearest

matrix function to Sr(z).

Proof. It is a known fact that the nearest NSD matrix to Sσ(z) is the projection of this function

on the NSD cone (Higham, 1989). That is, it is the negative semidefinite part of the matrix

Sσ(z).

To obtain it, let Sσ(z) = Q(z)Λ(z)Q(z)′, where Λ(z) is the diagonal matrix of eigenval-

ues, (with ordered entries), of Sσ(z) and Q(z) is an orthogonal matrix whose columns are the

eigenvectors associated with Λ(z). Every real, symmetric matrix has such decomposition.

Also note that one can decompose the symmetric matrix Sσ(z) into its PSD part and NSD

part: Sσ(z) = Sσ+(z) + Sσ−(z). Here, Sσ+ =
∑
λi>0 λiqiq

′
i and Sσ− =

∑
λi<0 λiqiq

′
i. We abuse

notation and let λi < 0 denote λ−i = min(0, λi) and λi > 0 represent λ+i = max(0, λi).

In other words, Sσ(z)− = Q(z)[Λ(z)−]Q′, with Λ−(z) = diag(min(λi, 0))i∈1···L.

We want to solve

maxN ||Sτ −N ||
subject to N(z) ≤ 0, that is negative semidefinite.

Notice that, Sτ (z) = Sσ(z) +Eσ(z), can always be decomposed in the sum of its symmetric

and skew-symmetric part.

Then the objective functional can be written as

||Sτ −N || = ||Sσ + Eσ −N ||
Then:

||Sτ −N ||2 = ||Sσ +−N + Eσ||2 = ||Sσ −N ||2 + ||Eσ||2

Because Sσ(z) − N(z) is symmetric it follows that 〈Sσ(z) + −N(z), Eσ(z)〉 = 0, since

Tr([Sσ(z) + −N(z)]′Eσ(z)) = 0, for any z. That is the trace of the product of a symmet-

ric matrix-valued function and skew symmetric valued function is zero for any z ∈ Z.

This implies N∗(z) = Sσ(z)−. The solution is the negative semidefinite part of Sσ(z).

Claim 6

Claim 6. The matrix Eπ(z) is pointwise orthogonal to S(z)+. That is Tr(Eπ(z)′S(z)+) = 0.

Proof. By definition Sσ,π(z) = Sσ(z) + Eπ(z), with Eπ(z) a symmetric matrix such that

Eπ(z)p 6= 0 when Sσ(p)p 6= 0 and Eπ(z) = 0 when Sσ(p)p = 0. Thus, Eπ(z) is always

singular.

One can then write the direct sum decomposition of the set A(z) of symmetric singular

matrix functions with the property that p′A(z)p = 0 as follows: A(z) = P(z) ⊕ N (z) for all

z ∈ Z, where

P(z) = {Eπ(z) : Tr(Eπ(z)pp′) = 0 and Eπ(z)p 6= 0 for Eπ(z) 6= 0}
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and

N (z) = {N(z) : Tr(N(z)pp′) = 0, N(z)p = 0}.

To see that this is a direct sum decomposition, first observe that P(z) ∩ N (z) = {0}, with

0 denoting the zero matrix function, by construction. Furthermore, any A(z) ∈ A(z) can be

written as a sum of A(z) = Eπ(z)+N(z) since A(z)p = 0 or (exclusive) A(z)p 6= 0, for A(z) 6= 0.

Furthermore, p′A(z)p = p′Eπ(z)p+ p′N(z)p = 0 for any Eπ(z), N(z). Then the decomposition

is precisely A(z) = Eπ(z) when A(z)p 6= 0 and A(z) = N(z) when A(z)p = 0. Since every

direct sum decomposition represents the sum of a subspace and its orthogonal complement,

andN (z) is a subspace in the space of symmetric matrix-valued functions, it follows that P(z)

is its orthogonal complement. In particular, since S(z)+p = 0 and Tr(S(z)+pp
′) = 0, it follows

that Tr(Eπ(z)S(z)+) = 0, for z ∈ Z.

Claim 7

Claim 7. The map a : X (Z) 7→ M(Z) defined element-wise as a(xτ ) = Sr − Sτ is continuous.

Proof. The continuity of the map a follows directly from the continuity of the Slutsky map

s and the continuity of the projections maps that generates Sr. By Claim 5, we know that

s : X (Z) 7→ M(Z) is continuous. It remains to be shown that the projection maps are indeed

continuous. For this we need that the range of the projection map is a closed subspace under the

metric induced by the norm ofM(Z). The first projection is p1 : s(X (Z)) 7→ Sym(M(Z)) with

range equal to the closed subspace of symmetric matrix-valued functions onM(Z), therefore p1 is

continuous. The second projection is p2 : Sym(M(Z)) 7→ P(Z) with P(Z) defined as in Claim 6.

The closedness of P(Z) is not trivial and is proved now. Take a sequence of matrices {Eπ,n}n∈N
in P(Z), now consider the definition of this space and it must be the case that Tr(Eπ,npp′) = 0

with Eπ,n(z)p 6= 0 for Eπ,n(z) 6= 0. Taking limits in the three conditions (one equality and two

inequalities), it follows that limn→∞E
π,n(z) = Eπ ∈ P(Z), therefore P(Z) is closed and p2 is a

continuous map. Finally, the third projection p3 : Sym(M(Z)) ⊕ P(Z) 7→ Sym(M(Z))− that

is with range equal to the closed cone of negative semidefinite matrix-valued functions is also a

continuous map. It follows that a is continuous.

Proof of Remark

If Walras’ law hold then |q′Eπ(p, w)r| = 0 for any q, r ∈ Bp.
In particular for a fixed w:

|q′Eπ(p, w)r| = | − q′ 1
p′p [Sσ(p, w)pp′ + pp′Sσ(p, w)− [Sσ(p,w)p]′p

p′p pp′]r| = 0

The proof is separated in three parts:

(i) First component:

Eπ,1(p) = −q′ 1
p′pS

σ(p, w)pp′r = q′[Dpx
s,w(p)− 1

wDpx
s,w(p)pxs,w(p)′]p p

′r
p′p

Since xs,w(p)′p = w then Eπ,1 = [q′Dpx
s,w(p)p− q′Dpx

s,w(p)p] p
′r
p′p = 0.

(ii) Second component:

Eπ,2(p) = q′ 1
p′ppp

′Sσ(p, w)r = q′p
p′pp

′[Dpx
s,w(p)− 1

wDpx
s,w(p)pxs,w(p)′]r

Deriving p′xs,w(p, w) = w with respect to prices, it follows that p′Dpx
s,w(p) = −xs,w(p)′.

Eπ,2(p) = q′p
p′p [−xs,w(p)′r + xs,w(p)′r] = 0

(iii) Third component:
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Eπ,3(p) = q′ 1
p′p

[Sσ(p,w)p]′p
p′p pp′r = 1

p′p [q′[Sσ(p, w)p]′pp] p
′r
p′p

By definition of the conditional Slutsky matrix function for a fixed w:

Eπ,3(p) = 1
p′p [q′[p′Dpx

s,w(p)′p− 1
wp
′xs,w(p)p′Dpx

s,w(p)′p]p] p
′r
p′p

Eπ,3(p) = 1
p′p [q′[w − 1

wp
′xs,w(p)w]p] p

′r
p′p

Eπ,3(p) = q′p
p′p

p′r
p′p [w − p′xs,w(p)] = 0 when Walras law hold.

Proof of Remark 6

maxA||Sτ −A||$ with A satisfying R.

Then notice that ||Sτ −A||$ = ||Sτ −A||
||Sτ −A||2 = ||Λp[Sτ −A]Λp||2 = ||Λp[Sσ −A+ Eσ]Λp||2

= ||Λp[Sσ −A]Λp||2 + ||ΛpEσΛp||2.

Observe that if A is symmetric then ΛpAΛp is symmetric, if A is skew-symmetric then ΛpBΛp

is also skew-symmetric. This means that 〈ΛpEσΛp,Λp[S
σ −A]Λp〉 = 0.

Similarly, for the general case:

||Λp[Sτ −A]Λp||2 = ||Λp[Sσ,π−A+Eσ−Eπ]Λp||2 = ||ΛpEσΛp||2 + ||Λp[−Eπ+Sσ,π−A]Λp||2

Where the inner decomposition of Sτ comes from the following Lagrangian:

L =
´
z∈Z Tr([ΛpS

τ (z)Λp − ΛpA(z)Λp]
′[ΛpS

τ (z)Λp − ΛpA(z)Λp])dz +
´
z∈Z λ

′A(z)pdz +´
z∈Z vec(U)′vec[A(z)−A(z)′].

Equivalently,

L =
´
z∈Z [Tr([S

τ
(z)−A(z)]′[S

τ
(z)−A(z)]) + Tr(A(z)pλ′) + Tr(U ′[A(z)−A(z)′])]dz

FOC:

Sσ,π(z) = 1
2 [Sτ (z) + Sτ (z)′] + Λ−2p [λp′ − U + U ′]Λ−2p ;

Sσ,π(z)p = 0

Sσ,π(z) = Sσ,π(z)′

Postulate that Λ−2p [λp′ − U + U ′]Λ−2p = Eπ. This proposed solution satisfies the FOC

an by uniqueness of the solution due to the nature of the objective functional one has that

Sσ,π(z) = Sσ(z) + Eπ under the dollar norm and ||Sτ − Sσ,π||$ = ||Eσ − Eπ||$. Therefore the

general matrix nearness problem with the dollar-norm is equivalent to computing:

Sr = argminA≤0||Λp[Sσ,π − A]Λp||2 − 2〈ΛpEπΛp,Λp[S
σ,π − A]Λp〉, where Sr has property

R. This problem has a closed-form solution.

A Simplified Algorithm for the Plug-In Estimator of the Distance to

Rationality

We can write γ =
´
Z
g(z)
h(z)h(z)dz or γ = E[ g(P,W )

h(P,W ) ] where h is the probability density function

(pdf) of (P,W ) that is assumed to be bounded away from zero and whose support is Z. This

suggests a simple semiparametric estimation procedure. The functional statistic of interest is

given implicitly by the moment E[m(z, γ, g)] = 0, where m(z, γ, g) = g(z)
h(z) − γ. In this setting,

we use the analogy principle to estimate γ in two parts. First, a nonparametric step to compute

ĝ, ĥ and, second, a parametric step in which we can use the sample average to estimate γ:

γ̂ =
1

N

n∑
i=1

1

ĥ(zi)
ĝ(zi).
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This approach has a computational advantage in the estimation of g, but does not provide

an estimator for the matrix function E.

The construction of ĝ takes several nonparametric steps that nevertheless are simple to obtain

due to our analytical approach. In short, we need a nonparametric consistent estimator α̂τ and

its partial derivatives (that converge uniformly to the true functions). We assume that we have

them. Then, we can build an estimator of Ŝτ (pi, wi) for i ∈ {1, · · · , N}.26 Finally, using our

analytical results pointwise, we can get an estimator of Ê(pi, wi). Then, we use this object to

build ĝ(pi, wi) also pointwise, and this helps us to obtain γ̂.

The construction of Êσ(pi, wi) and Êπ(pi, wi) is computationally trivial since they only

require Ŝτ (pi, wi). An important computational step in the estimation of g is the pointwise

projection of Ŝσ,π(pi, wi) in the NSD space of matrix functions to compute Êν(pi, wi). Following

our results, this problem amounts to computing an eigen-value decomposition of the numeric

matrix Ŝσ,π(pi, wi) at each i. The steps are summarized below:

• Input: Consistent nonparametric estimates of ατ and its partial derivatives, and h.

• Result: The semiparametric estimatorγ̂.

• First, build Ŝτ (pi, wi) for every pair (pi, wi), construct Ŝσ,π(pi, wi) and Êσ(pi, wi), Êπ(pi, wi).

• Second, obtain Êν(pi, wi) = Ŝσ,π(pi, wi)+ as the numeric matrix projection on the NSD

matrix cone.

• Third, obtain gi = Tr(Ê(pi, wi)′Ê(pi, wi)) for all i ∈ {1, · · · , n}.

• Finally, Compute the sample average γ̂ = 1
n

∑n
i=1

1
ĥ(pi,wi)

gi.

The semiparametric estimator γ̂
p→ γ as n → ∞ if the estimators of ατ and its derivatives

converge in probability to their true value.

We assume we have a local kernel polynomial estimator of ατ and its partial derivatives such

that if n→∞, then ŝτ (pi, wi)
p→ sτ (pi, wi), where ŝτ (pi, wi)l,k = ˆ∂pkα

τ
l + ˆ∂wαl(p

i, wi)α̂k(pi, wi).27

Then, we have an entrywise convergent estimator of the Slutsky matrix Ŝτ (pi, wi)
p→ Sτ (pi, wi).

If this holds, we can get a pointwise convergent estimator of g(pi, wi) (i.e., the image of g

at (pi, wi)) for all i by applying the continuous mapping theorem). In fact, we know that

Sσ, Sσ,π and Sσ,π,ν are obtained as projections on closed subspaces, and therefore, each of

the projections is a continuous map. Fix (pi, wi), if Ŝτ (pi, wi)
p→ Sτ (pi, wi), first observe

that Êj(pi, wi) = [Ŝτ (pi, wi) − Pj(Ŝτ,i(pi, wi))] for j ∈ {σ, π, ν}, where Pj is the projection

in the closed subspace of matrices with property j (i.e. Pj is a continuous map). Then, by

the continuous mapping theorem, it follows that Êj(pi, wi)
p→ Ej(pi, wi). Then, for (pi, wi), the

gi,j = Tr(Êj(pi, wi)′Êj(pi, wi)) also converges in probability to gj(pi, wi) for all j since the trace

operator is continuous. Moreover, it is smooth. Finally, because of the additive separability of

the components of g, we have gi = gσ,i + gπ,i + gν,i. We conclude that gi
p→ g(pi, wi).

In the case of the semiparametric estimator, consistency is guaranteed because γ̂ is the sample

average of gi

ĥ(pi,wi)

p→ g(pi,wi)
h(pi,wi) under the assumptions on h and g.

26We can construct Ŝτ using a local polynomial estimator of the Slutsky matrix function as proposed by (Haag
et al., 2009).

27Here, ˆ∂pkα
τ
l is the estimator of

∂αl(p,w)
∂pk

|(pi,wi)and ˆ∂wαl is defined analogously.
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