
Expectation Formation Rules and the Core of

Partition Function Games

Francis Bloch⇤ Anne van den Nouweland†

May 13, 2013

Abstract

This paper proposes axiomatic foundations of expectation forma-
tion rules, by which deviating players anticipate the reaction of exter-
nal players in a partition function game. The axioms single out the
projection rule among the rules that depend on the current partition
and the pessimistic rule among the ones that are independent of the
current partition. This analysis suggests that the projection core and
the pessimistic core are natural candidates to study the stability of
games in partition function form, and we compute these cores in two
standard applications of coalition formation with externalities, namely
cartels and public goods.

JEL Classification Numbers: C71, C70

Keywords: Partition Function Games, Core, Expectation Formation,

Axiomatization

⇤Corresponding author. Department of Economics, Ecole Polytechnique, 91128
Palaiseau, France. Email francis.bloch@polytechnique.edu.

†Department of Economics 435 PLC, 1285 University of Oregon, Eugene OR 97403-
1285, USA. Email annev@uoregon.edu.

1



1 Introduction

The objective of this paper is to provide axiomatic foundations for extensions
of the core to games in partition function form. It is well known that, if one
moves beyond the highly competitive, zero-sum game environment of van
Neumann and Morgenstern (1944), the worth of a coalition cannot be de-
fined independently of the coalition structure formed by other players. The
natural description of a cooperative environment is then a game in parti-
tion function form (Thrall and Lucas (1963)) specifying for each coalition
structure and each coalition embedded in that coalition structure, the worth
that the coalition can achieve. Ray (2007) contains a thorough discussion of
the di↵erence between partition function games and coalitional games, and
references to the early literature on partition functions.

Unfortunately, in games in partition function form, the dominance re-
lation which supports the core cannot be defined unambiguously. When a
coalition of players deviates, the payo↵ they expect to obtain depends on
the way external players react to the deviation. This ambiguity has long
been recognized – at least since Aumann (1967) –, and various definitions
of the core have been proposed corresponding to di↵erent specifications of
the expectations of deviating players on the reaction of external players. For
example, Hart and Kurz (1983) describe the ↵ and � cores, based on pes-
simistic beliefs where players expect external players to organize in such a
way that they minimize the payo↵s of deviating players, and the � and �

cores, where players anticipate that coalitions which have been left by some
members of the deviating group either disintegrate into singletons, or stick
together.1 Chander and Tulkens (1997) and de Clippel and Serrano (2008)
focus attention on a model where deviating coalitions expect all other players
to remain singletons, whereas Shenoy (1979) assumes that deviating players
are optimistic and anticipate that external players organize in order to max-
imize their payo↵s.

Definitions of the core of partition function games proposed in the litera-
ture are thus based on ad hoc assumptions on the reaction of external players
to the deviation. By contrast, our objective in this paper is to ground the
expectations of deviating players on axioms, and derive the core of a par-
tition function game on the basis of properties satisfied by the expectation

1The � model finds its roots in Von Neumann and Morgenstern (1944) who discuss a
game of coalition formation among three agents which requires unanimity and is equivalent
to the � game.
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formation rule. We first propose a set of axioms that pertains to the relation
between the current partition and the expectations formed by deviating play-
ers. An expectation formation rule is independent of the original partition
or independent of the position of deviating players in the original partition
if players do not tie their expectations to the current state. It is instead re-
sponsive if di↵erent partitions of external players always give rise to di↵erent
expectations. The second set of axioms deals with the consistency of ex-
pectations among groups of players. Path independence states that, when a
coalition S[T deviates, the expectations they form on the reaction of exter-
nal players is the same, whether S deviates first and T second, or T deviates
first and S second. Subset consistency specifies that the expectations formed
by a group of players S and by any subset T of S must give rise to the same
organization of players in the complement of the larger set S. Coherence
of expectations introduces a consistency condition between the expectations
formed by S and its complement. Finally, we define preservation of super-
additivity as the property which guarantees that, if the underlying partition
function is superadditive, then for any partition, the coalitional function
which results from the expectation formation rule is also superadditive.

We analyze which of the commonly used expectation formation rules sat-
isfy these axioms, and characterize the projection rule (by which players
anticipate that external players form a coalition structure which is the pro-
jection of the current coalition structure) as the only expectation formation
rule that satisfies responsiveness and subset consistency or subset consis-
tency, independence of position of deviating players in the original partition,
and coherence of expectations. Hence, we believe that the projection rule
(which is equivalent to the � rule proposed by Hart and Kurz (1983)) has a
solid axiomatic basis and is a natural candidate for an expectation formation
rule. If instead of responsiveness to the current partition, we require indepen-
dence of the current partition, the only rules that satisfy subset consistency
are exogenous rules where deviating players anticipate external players to
organize according to the projection of an exogenous partition M. Notice in
particular that if M is a partition of singletons, the M-exogenous rule cor-
responds to the � rule of Chander and Tulkens (1997) or the externality-free
rule of de Clippel and Serrano (2008) whereas if M is the partition formed
by the grand coalition, the M-exogenous rule specifies that agents antici-
pate external players to form a single component. Finally we note that the
pessimistic rule (the ↵ rule) is the only expectation formation rule which
satisfies preservation of superadditivity.

Equipped with a description of the reaction of external players to a devi-
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ation, we define the core of a partition function game by deriving the coali-
tional game generated by the expectation formation rule. To define the
projection core, we first need to compute the coalition structure N ⇤ that
maximizes the sum of payo↵s of all agents, and then construct the coali-
tional game where deviating players in S anticipate external players to form
the projection of N ⇤. The projection core always lies between the pessimistic
core (the largest core) and the optimistic core (the smallest core). In fact,
we remark that if the game is superadditive and has positive externalities,
the projection core coincides with the optimistic core whereas if the game
is superadditive and has negative externalities, the projection core coincides
with the pessimistic core.

We compute the projection core and the optimistic and pessimistic cores
in two standard applications of games of coalition formation with external-
ities. In a game of cartel formation with a fixed cost, similar to the game
considered by Bloch (1996) and Ray and Vohra (1999), we show that the
projection core is identical to the optimistic core, is nonempty if and only
if the fixed cost is higher than a lower bound, and that the pessimistic core
is always nonempty. In a public good game with spillovers similar to the
game proposed by Ray and Vohra (2001), we note that the projection core is
identical to the optimistic core, is nonempty if and only if spillovers are lower
than an upper bound, and that the pessimistic core is always nonempty.

To the best of our knowledge, our paper represents the first attempt to ax-
iomatize the reaction of external players to a deviation in order to define the
core of partition function games. However, the need to specify the partition of
external players also appears in studies of extensions of the Shapley value to
partition function games. Starting with Myerson (1977), several extensions
of the Shapley value to partition function games have been proposed. Re-
cently, Macho-Stadler, Perez-Castrillo and Wettstein (2007) have proposed
an axiomatization based on the classical axioms of Shapley. De Clippel and
Serrano (2008) base their value on axioms of marginality and monotonicity.
Dutta, Ehlers and Kar (2010) extend the axioms of consistency and the po-
tential approach to partition function games. While the axioms we discuss in
the current paper are applied to a di↵erent object than the axioms studied
in the context of the Shapley value, there are clear similarities between our
approaches. In order to use the potential approach, Dutta, Ehlers and Kar
(2010) need to define restrictions of partition function games after one player
leaves. They propose axioms on restriction operators, including a path inde-
pendence axiom which guarantees that the restricted games do not depend
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on the order in which players leave. Implicitly, their axioms embody condi-
tions on the partition formed after a player leaves. By contrast, our axioms
apply directly to expectation formation rules. Hence, their axiomatizations
and ours are complementary.

The rest of the paper is organized as follows. We present our model of
partition function games and expectation formation rules in the next section.
Section 3 is devoted to the description of axioms on expectation formation
rules. Section 4 contains the core of our analysis with the axiomatizations
of the projection and exogenous rules and a discussion of preservation of
superadditivity. We discuss the construction of the core of partition function
games generated by expectation formation rules in Section 5 and present two
applications to standard games of coalition formation with externalities in
Section 6. Section 7 concludes and proposes directions for future research.

2 The Model

2.1 Partition function games

We consider a set N of players with cardinality n � 3. A partition on N

is a collection of pairwise disjoint, nonempty subsets of N covering N . Let
⇧(N) be the set of all partitions on N , with typical element N . Similarly,
for any subset S of N , we denote by ⇧(S) the set of all partitions on S with
typical element S. The partition of S formed only of singletons is denoted
S = {{i} | i 2 S} and the partition of S formed only by the set S is denoted
S = {S}. For any set S, Sc denotes the complement of S in N . Given a set S
and a partition S of S and a subset T of S, we let S|

T

denote the projection
of S onto T , i.e. the partition T of T such that i and j belong to the same
block in T if and only if they belong to the same block in S.

We suppose that the strategic situation faced by the agents is captured by
a TU game in partition function form. Partition function games, introduced
by Thrall and Lucas (1963), generalize coalitional games by allowing for
externalities across coalitions. They arise naturally in environments where
players can form binding agreements, and cooperate inside coalitions but
compete across coalitions (see Ray (2007)). Formally, a partition function
v associates to each partition N and each block S 2 N a positive number
v(S,N ) specifying the worth of coalition S in partition N . Notice that a
partition function only assigns worths to those subsets which are blocks in
N . If S does not belong to N , then v(S,N ) is not defined. A partition
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function v is superadditive if for all N 2 ⇧, for all S, T 2 N ,

v(S [ T,N \ {S, T} [ {S [ T )}) � v(S,N ) + v(T,N ).

It v has positive externalities if for all N 2 ⇧, for all S 2 N , and all T, U 2
N , T, U ✓ S

c,

v(S,N \ {T, U} [ {T [ U)}) � v(S,N )

and negative externalities if for all N 2 ⇧, for all S 2 N , and all T, U 2
N , T, U ✓ S

c,

v(S,N \ {T, U} [ {T [ U)})  v(S,N ).

2.2 Coalitional games

A TU game in coalitional function form associates a real number to any
nonempty subset of N . Formally, for any S ✓ N , S 6= ;, w(S) 2 <+ denotes
the worth of coalition S. A coalitional game is superadditive if the worth of
the union of two disjoint coalitions is greater than the sum of the worths. This
property is justified by the fact that members of the two merging coalitions
can always reproduce the behavior they adopted when the coalitions where
separate, and can in addition benefit from cooperating after merging the two
coalitions. A coalitional function w is superadditive if for all S, T such that
S \ T = ;,

w(S [ T ) � w(S) + w(T ).

2.3 Expectation formation rules

In a partition function game, when a coalition of players S contemplates
deviating from a partition N , they need to form expectations on the reac-
tion of external players to their deviation. We define expectation formation
rules assigning to every deviating coalition an expectation over the coalition
formed by external players. We assume that coalitions have deterministic
expectations, and that expectations may depend on the current partition N ,
on the partition formed by deviating players S and on the partition function
v.

Definition 2.1 An expectation formation rule is a mapping f associating a
partition f(S,S,N , v) of Sc with each coalition S, partition S of S, partition
N of N , and partition function v.2

2The expectation formation rule is not defined for S = N and S = ;.
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2.4 Generating coalitional functions from partition func-

tions

For any expectation formation rule f and partition N 2 ⇧(N), we generate
a coalitional function w

N
f

from the partition function v by assuming that
external players react to a deviation according to f . When coalition S de-
viates, reorganizes itself into a partition S, and expects external players to
react according to f , it obtains an expected worth of

v(S,S, f(S,S,N , v)).

Clearly, this expression depends on S, the partition formed by members.
In order to obtain a coalitional function, we assume that members of S

reorganize into the partition S which maximizes the sum of worths of the
coalition and define

w

N
f

(S) = max
S2⇧(S)

X

T2S

v(T,S [ f(S,S,N , v)). (1)

Notice that, in general, the coalitional function w

N
f

is indexed by the current
partition N . However, wN

f

is not a partition function, as it assigns worths
to all subsets S of N , including subsets which are not blocks in N .

2.5 Some rules of expectation formation

Starting with von Neumann and Morgenstern (1944), game theorists have
made di↵erent assumptions about reactions of external players in order to
reduce partition function games to coalitional function games and apply clas-
sical solution concepts to predict the formation of coalitions and distribution
of coalitional payo↵s.

The disintegration rule Von Neumann and Morgenstern (1944) suppose that
coalitions can only be formed by unanimous agreement of their members,
resulting in an expectation formation rule where deviating players expect
the coalitions they leave to disintegrate into singletons. In this model (also
labeled the � rule by Hart and Kurz (1983)), for any T 2 N , such that
T \S 6= ;, T \S disintegrates into T \ S in f(S,S,N , v) and for any T 2 N
such that T \ S = ;, T remains in f(S,S,N , v).

The projection rule Hart and Kurz (1983) introduce the � model of coalition
formation, where coalitions are formed by all players announcing the same
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coalition. This results in an expectation rule where players expect the coali-
tions that they leave to remain together. Hence, the expectation rule is given
by f(S,S,N , v) = N|

S

c .

M-Exogenous rules An exogenous rule is indexed by a partition M of N .
Players in S expect that external players organize according to the projection
of M onto S

c: f(S,S,N , v) = M|
S

c . Two special exogenous rules are the
N -exogenous rule, where players anticipate that all external players will form
singletons (Tulkens and Chander (1997) and de Clippel and Serrano (2008)),
and the N -exogenous rule, where players anticipate that all external players
join in a single coalition S

c.

The optimistic rule According to the optimistic rule, proposed by Shenoy
(1979), players expect external members to select the3 partition which max-
imizes the payo↵ of the players in S:

f(S,S,N , v) = argmaxSc2⇧(Sc)

X

T2S

v(T,S [ Sc).

The pessimistic rule In the pessimistic rule, inspired by Aumann’s (1967)’s
definition of the ↵-core, and discussed by Hart and Kurz (1983), players
expect external players to select the partition which minimizes the payo↵ of
the players in S:

f(S,S,N , v) = argminSc2⇧(Sc)

X

T2S

v(T,S [ Sc).

The max rule In the max rule, players expect external players to select a
partition which maximizes the payo↵ of the players in S

c:

f(S,S,N , v) = argmaxSc2⇧(Sc)

X

T2Sc

v(T,S [ Sc).

The following table summarizes the dependence of expectation formation
rules on S, N and v:

3We are aware that the argmax partition in this definition may not be unique and the
same holds for the argmin in the pessimistic rule or the argmax in the max rule. Some
tie-breaking rule can be used to choose a partition, but in order to avoid unnecessary
notation, throughout the rest of the analysis we assume that the partition is unique up to
symmetry considerations for the optimistic, pessimistic, and max rules.
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rule dep on S dep on N dep on v

Disintegration no yes no
Projection no yes no
M-Exogenous no no no
Optimistic yes no yes
Pessimistic yes no yes
Max yes no yes

This table makes it clear that the expectation formation rules encountered
in the literature can be organized into three kinds: Rules that depend on the
original partition but not the reorganization of the deviating players or the
partition function game, rules that depend on both the reorganization of the
deviating players and the partition function game but not on the original
partition, and one rule that does not depend on any of these three pieces of
information. Perhaps this way of looking at expectation formation rules can
be used to think about new rules that, for example, depend on N and v but
not on S or rules that depend on all three pieces of information.

3 Axioms on expectation formation rules

In this section, we define axioms for expectation formation rules, and show
how these axioms can be used to discriminate among di↵erent rules. We
first introduce axioms on the dependence of f(·) with respect to the initial
partitionN . We then present axioms relating expectations formed by players
in a coalition and the expectations formed by players in smaller coalitions.
We also introduce an axiom on the coherence of expectations formed by S and
S

c. Finally, we discuss conditions under which an expectation formation rule
preserves superadditivity by generating a superadditive coalitional function
from any superadditive partition function.

3.1 Independence and responsiveness to N
When external players react to the formation of S by coalition S, they can
either be tied by the current partition, N , or can freely reorganize indepen-
dently of the original partition. In a more subtle way, the reaction of external
players may or may not depend on the position in N of players perpetrat-
ing the deviation. The following axioms capture these di↵erent notions of
independence.
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Definition 3.1 An expectation formation rule f is independent of the orig-
inal partition (IOP) if f(S,S,N , v) = f(S,S,N 0

, v) for all N ,N 0 2 ⇧(N).

Definition 3.2 An expectation formation rule f is independent of the posi-
tion of deviating players in the original partition (IPDOP) if f(S,S,N , v) =
f(S,S,N 0

, v) for all N ,N 0 2 ⇧(N) such that N|
S

c = N 0|
S

c.

Definition 3.3 An expectation formation rule f is responsive to the posi-
tion of external players in the original partition (RPEOP) if f(S,S,N , v) 6=
f(S,S,N 0

, v) for all N ,N 0 2 ⇧(N) such that N|
S

c 6= N 0|
S

c.

Notice that all usual rules but the disintegration rule and the projection
rule are independent of the original partition. The disintegration rule does
not satisfy IPDOP nor RPEOP, whereas the projection rule satisfies both
axioms.

3.2 Path independence and subset consistency

The axioms of path dependence and subset consistency establish a connection
between the expectations formed by di↵erent coalitions. Path independence
states that, when a subset S [ T forms expectations, the expectations can
either be formed first by S and then by T or first by T and then by S. In
other words, the expectation formation rule must be independent of the order
in which deviating agents form expectations. Subset consistency relates the
expectations formed by a set S and any subset T of S and requires that
these expectations be compatible, so that the projection of the expectations
of members of T on S

c must be equal to the expectations of the members
of S. The two axioms subset consistency and path independence guarantee
consistency between expectations formed by di↵erent deviating coalitions and
are formalized below.

Definition 3.4 An expectation formation rule f satisfies path independence
(PI) if, for any S, T ⇢ N with S, T 6= ; and S\T = ;, and for all S 2 ⇧(S),
T 2 ⇧(T ), N 2 ⇧(N),

f(S [ T,S [ T ,S [ f(S,S,N , v), v) = f(S [ T,S [ T , T [ f(T, T ,N , v), v)
(2)

Definition 3.5 An expectation formation rule f satisfies subset consistency
(SC) if, for all S ✓ N, T ⇢ S, S 2 ⇧(S), N 2 ⇧(N),

f(T,S|
T

,N , v)|
S

c = f(S,S,N , v). (3)
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Notice that, when subset consistency holds, the expectation formation
rule cannot vary with the reorganization S of the deviating players.4 Also,
for an expectation formation rule that is subset consistent, RPEOP implies
IPDOP, as we demonstrate in the following proposition.

Proposition 3.6 If the expectations formation rule f satisfies subset con-
sistency and is responsive to the position of external players in the original
partition, then it is independent of the position of deviating players in the
original partition.

Proof: Because the expectation formation rule satisfies subset consistency,
the partition S does not influence f(S,S,N , v) and we omit S as an argument
of the expectation formation rule f .
By RPEOP of f , we know that f(S,N , v) 6= f(S,N 0

, v) for allN ,N 0 2 ⇧(N)
such that N|

S

c 6= N 0|
S

c . From this we derive that

|{f(S,N , v) | N 2 ⇧(N)}| � |{N |
S

c | N 2 ⇧(N)}|.

Suppose that in addition to f satisfying RPEOP, there exist N 0
,N 00 2 ⇧(N)

with N 0|
S

c = N 00|
S

c and f(S,N 0
, v) 6= f(S,N 00

, v). Then it follows that

|{f(S,N , v) | N 2 ⇧(N)}| > |{N |
S

c | N 2 ⇧(N)}|.

This, however, leads to a contradiction because

{f(S,N , v) | N 2 ⇧(N)} ✓ ⇧(Sc) = {N |
S

c | N 2 ⇧(N)}.

We conclude that for all N 0
,N 00 2 ⇧(N) with N 0|

S

c = N 00|
S

c it must be the
case that f(S,N 0

, v) = f(S,N 00
, v). Thus, f satisfies IPDOP. ⇤

Path independence and subset consistency impose restrictions on cross-
variations of the expectation formation rule on di↵erent variables: path inde-
pendence considers variations in the original partition, whereas subset con-
sistency focuses on variations in the set of deviating players. In spite of these
di↵erences, subset consistency implies path independence for expectation for-
mation rules that are IPDOP.

Proposition 3.7 If the expectation formation rule f satisfies subset consis-
tency and independence of the position of deviating players in the original
partition, then it satisfies path independence.

4To see this, let S ⇢ N , S,S 0 2 ⇧(S), and i 2 S. Note that S|{i} = {i} = S 0|{i}. Thus,
it follows from subset consistency that f(S,S, v,N ) = f(i, {i}, v,N )|Sc = f(S,S 0, v,N ).
Note that Example 3.8 shows that there exist expectation formation rules that are inde-
pendent of S but not subset consistent.
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Proof: Let N 2 ⇧(N). Consider two coalitions S, T such that S \ T = ;,
and partitions S 2 ⇧(S), T 2 ⇧(T ).
Applying subset consistency to coalitions S and S [ T , we obtain

f(S,S,N , v)|(S[T )c = f(S [ T,S [ T ,N , v).

Because S 2 ⇧(S), f(S,S,N , v) 2 ⇧(Sc), and (S [ T )c ✓ S

c, adding S to
f(S,S,N , v) does not modify the projection onto (S [ T )c so that

(S [ f(S,S,N , v))|(S[T )c = f(S,S,N , v))|(S[T )c

Thus, we obtain

(S [ f(S,S,N , v))|(S[T )c = f(S [ T,S [ T ,N , v). (4)

Similarly, we derive

(T [ f(T, T ,N , v))|(S[T )c = f(S [ T,S [ T ,N , v). (5)

Given (4) and (5), we can apply IPDOP to obtain

f(S [ T,S [ T ,S [ f(S,S,N , v), v) = f(S [ T,S [ T , T [ f(T, T ,N , v), v),

which demonstrates path independence. ⇤

The following examples show that the two axioms of path independence
and subset consistency are not equivalent.

Example 3.8 (The expectation formation rule f satisfies path independence
(and IOP) but not subset consistency)
Let N = {i, j, k, l}. We define an expectation formation rule that only de-
pends on the deviating coalitions S and let f(S,S,N , v) = S

c if S = {i},
and f(S,S,N , v) = S

c for all S such that |S| � 2.
This expectation formation rule obviously satisfies IOP (and thus also the

weaker property IPDOP). The rule also satisfies path independence, because
for all disjoint S, T ⇢ N with S, T 6= ;, we have |S [ T | � 2 so that f(S [
T,S [ T ,N , v) = (S [ T )c, independently of the partitions S, T , or N .

The expectation formation rule does not satisfy subset consistency. To see
this, note that f(i, {i},N , v) = {j|k|l}), so that f(i, {i},N , v)|{i,j}c = {k|l},
whereas f({i, j}, {i, j},N , v) = {k, l}.5

5In examples, we use the less cluttered and commonly used notation of denoting a
partition by separating the players in various coalitions with the symbol |. Hence, we
write {j|kl} instead of {{j}, {k, l}} and so on.
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The intuition for the discrepancy between path independence and sub-
set consistency underlying Example 3.8 is that path independence does not
impose any restrictions on the expectations of singletons, whereas subset
consistency imposes a condition on the link between the expectations of sin-
gletons and those of larger coalitions. The following example illustrates that
the requirement that f satisfies IPDOP cannot be omitted from the state-
ment of Proposition 3.7.

Example 3.9 (The expectation formation rule f satisfies subset consistency
but not path independence)
Suppose that N = {i, j, k, l}. We define an expectations rule that only de-
pends on the deviating coalitions S and the partitions N and so we suppress
S and v in the notation. Let f(S,N ) = S

c if N = N or N = {i|j|kl}, and
f(S,N ) = N|

S

c otherwise.
This expectation formation rule satisfies subset consistency, because if

N = N or N = {i|j|kl}, then f(T,N )|
S

c = (T c) |
S

c = S

c = f(S,N ), and
for all other N it holds that f(T,N )|

S

c = (N|
T

c) |
S

c = N|
S

c = f(S,N ).
However, f violates path independence: Let S = {i}, T = {j}, and N =
{i|jkl}. When i forms expectations first, we obtain

f(S [ T, {S} [ f(S,N )) = f({i, j}, {i} [ {i|jkl}|{j,k,l})
= f({i, j}, {i|jkl})
= {i|jkl}|{k,l} = {kl}.

However, when j forms expectations first, we obtain

f(S [ T, {T} [ f(T,N )) = f({i, j}, {j} [ {i|jkl}|{i,k,l})
= f({i, j}, {i|j|kl})
= {k, l} = {k|l}.

3.3 Coherence of expectations

The next axiom imposes consistency between the formation of expectations of
a coalition S and its complement Sc. Suppose that a coalition S contemplates
reorganizing itself and forming a partition S, expecting that the complement
S

c reacts by forming f(S,S,N , v). The axiom of coherence of expectations
states that if indeed S

c forms this partition after S reorganizes and forms S,
members of Sc expect that the members of S will not subsequently reorganize
again and form a partition di↵erent from S.
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Definition 3.10 The expectation formation rule f satisfies coherence of ex-
pectations (COH) if, for all S, S 2 ⇧(S) and N 2 ⇧(N),

f(Sc

, f(S,S,N , v),S [ f(S,S,N , v), v) = S. (6)

Coherence of expectations puts restrictions only on expectations held by
a coalition and its complement, whereas subset consistency puts restrictions
on expectations held by nested coalitions. Thus, the two axioms are inde-
pendent, which is demonstrated in the next two examples.

Example 3.11 (An M-exogenous rule satisfies subset consistency and vio-
lates coherence of expectations.)
Let N = {1, 2, 3, 4}, M = {12|3|4} and let f be the M-exogenous rule.
f satisfies subset consistency because f(T, T ,N , v)|

S

c = ({12|3|4}|
T

c) |
S

c =
{12|3|4}|

S

c = f(S,S,N , v) for all T ⇢ S ⇢ N . The expectations rule
f does not satisfy coherence of expectations because, for example, for S =
{1, 2} and S = {1|2}, it holds that f(Sc

, f(S,S,N , v),S [f(S,S,N , v), v) =
{12|3|4}|

S

= {12} 6= {1|2} = S.

Example 3.12 (A rule that satisfies coherence of expectations but is not
subset consistent.)
Suppose that N = {i, j, k, l}. Define the expectations rule f that does not
depend on v as follows. If |S| = 1 or |S| = 3, then f(S,S,N ) = N|

S

c. If
S = {i, j}, then f(S, {i|j},N ) = {k|l} and f(S, {ij},N ) = {kl}.

This rule satisfies coherence of expectations. This is seen as follows. If
|S| = 1 or |S| = 3, then
f(Sc

, f(S,S,N ),S[f(S,S,N )) = f(Sc

,N|
S

c
,S[N|

S

c) = (S[N|
S

c)|
S

= S.
If S = {i, j}, and S = {i|j}, then
f(Sc

, f(S,S,N ),S[f(S,S,N )) = f({k, l}, {k|l}, {i|j}[{k|l}) = {i|j} = S.
If S = {i, j} and S = {ij}, then
f(Sc

, f(S,S,N ),S [ f(S,S,N )) = f({k, l}, {kl}, {ij} [ {kl}) = {ij} = S.
The rule violates subset consistency, because with N = {1234}, S =

{1, 2}, S = {1|2}, and T = {1}, we have that f(T,S|
T

,N )|
S

c = {34} 6=
{3|4} = f(S,S,N ).

3.4 Preservation of superadditivity

The next axiom pertains to the superadditivity of the coalitional functions
w

N
f

generated by the expectation formation rule f .
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Definition 3.13 The expectation formation rule f satisfies preservation of
superadditivity (PSA) if, whenever v is a superadditive partition function,
w

N
f

is a superadditive coalitional function for all N 2 ⇧(N).

The preservation of superadditivity is not obvious because in the parti-
tion function game the partition of external players is kept constant when
two coalitions merge, whereas in the coalitional game the external players
may form di↵erent partitions depending on the organization of the merging
players.

4 Axiomatizations of expectation formation

rules

In this section we demonstrate that the axioms on expectation formation
rules that we identified in the previous section can be used to axiomatize some
of the rules. We first consider rules that satisfy responsiveness to the position
of external players in the original partition and find that the projection rule
takes a special position in the class of responsive expectation formation rules.
We then consider rules that are independent of the original partition and find
that the M-exogenous rules and the pessimistic rule are the most prominent
independent expectation formation rules from an axiomatic point of view.

4.1 Responsive rules

We first axiomatize rules which depend on the current partition N . The
following theorem demonstrates that the projection rule is the only subset
consistent rule among the responsive expectation formation rules.

Theorem 4.1 Let n � 4. An expectation formation rule f satisfies sub-
set consistency and responsiveness to the position of external players in the
original partitions if and only if it is the projection rule.

Proof: It is clear that the projection rule satisfies subset consistency and
RPEOP. Now, consider an expectation formation rule f that satisfies the two
axioms. Because the expectation formation rule satisfies subset consistency,
the partition S does not influence f(S,S,N , v) and we omit S as an argument
of the expectation formation rule f . Also, by Proposition 3.6 f satisfies
IPDOP and thus for any N 2 ⇧(N) it holds that

f(S,N , v) = f(S,U [N|
S

c
, v) for any U 2 ⇧(S). (7)
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Using this, and with minimal abuse of notation, we can write f(S,N|
S

c
, v)

whenever we do not want to explicitly specify the behavior of N on players
not in S

c.
First notice that if |S| = n�1, then S

c = {i} for some i 2 N and trivially
f(S,N , v) = {i} for all N .

Claim 4.2 For any S ✓ N such that |S| = n � 2, and any N 2 ⇧(N) it
holds that f(S,N , v) = N|

S

c.

Proof of the Claim: Because the expectations rule f satisfies RPEOP, it
must assign a di↵erent partition to every N|

S

c 2 ⇧(Sc) when taken as given
a coalition S ⇢ N and partition function game v. Thus, for every pair of
players i, j 2 N , either

f({i, j}c, {ij}, v) = {ij} and f({i, j}c, {i|j}, v) = {i|j}

or
f({i, j}c, {ij}, v) = {i|j} and f({i, j}c, {i|j}, v) = {ij}.

Hence, once we determine f({i, j}c, {ij}, v), we have no flexibility in choosing
the expectation f({i, j}c, {i|j}, v).

Consider three players, 1, 2 and 3, the set T = {1, 2, 3}c, and the three
sets S1 = {2, 3}c, S2 = {1, 3}c and S3 = {1, 2}c. Notice that T 6= ; as n � 4.
In what follows, we let {i, j, k} = {1, 2, 3}. Given that the expectation
formation rule satisfies RPEOP, it is su�cient to construct f(S

i

, {jk}, v) for
each S

i

, so there are eight ways in which we can construct the partitions
f(S

i

,N|
S

c
i
, v), i = 1, 2, 3. Disregarding cases which are symmetric up to a

permutation of the players, we only need to consider four di↵erent cases: (i)
the case where f(S

i

, {jk}, v) = {jk} for all i = 1, 2, 3, (ii) the case where
f(S

i

, {jk}, v) = {jk} for two players i 2 {1, 2, 3}, and f(S
i

, {jk}, v) = {j|k}
for the third player, (iii) the case where f(S

i

, {jk}, v) = {jk} for one player
i 2 {1, 2, 3}, and f(S

i

, {jk}, v) = {j|k} for the other two players and (iv) the
case where f(S

i

, {jk}, v) = {j|k} for all three players.
Now consider the expectations of players in T = {1, 2, 3}c. T is a subset

of S
i

for each i 2 {1, 2, 3}. We will use subset consistency to prove that cases
(ii), (iii) and (iv) result in a contradiction.

Consider case (ii) when f(S1, {23}, v) = {23}, f(S2, {13}, v) = {13},
and f(S3, {12}, v) = {1|2}. Then, by subset consistency, for a partition
N 2 ⇧(N) such that N|

T

c = {123},
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f(T, {123}, v)|{12} = f(S3, {12}, v) = {1|2}
f(T, {123}, v)|{13} = f(S2, {13}, v) = {13}
f(T, {123}, v)|{23} = f(S1, {23}, v) = {23}

resulting in a contradiction, as we cannot find a partition f(T, {123}, v) of
{123} that projects into {1|2}, {13}, and {23}.

Consider case (iii) when f(S1, {23}, v) = {23}, f(S2, {13}, v) = {1|3},
and f(S3, {12}, v) = {1|2}. Again, by subset consistency,

f(T, {1|2|3}, v)|{12} = f(S3, {1|2}, v) = {12}
f(T, {1|2|3}, v)|{13} = f(S2, {1|3}, v) = {13}
f(T, {1|2|3}, v)|{23} = f(S1, {2|3}, v) = {2|3}

resulting in a contradiction because we cannot find a partition f(T, {1|2|3}, v)
of {123} that projects into {12}, {13}, and {2|3}.

Finally, in case (iv), consider

f(T, {1|23}, v)|{12} = f(S3, {1|2}, v) = {12}
f(T, {1|23}, v)|{13} = f(S2, {1|3}, v) = {13}
f(T, {1|23}, v)|{23} = f(S1, {23}, v) = {2|3}

resulting in a contradiction because we cannot find a partition f(T, {1|23}, v)
of {123} that projects into {12}, {13}, and {2|3}.

Since cases (ii), (iii), and (iv) all lead to a contradiction, we are left the
conclusion that case (i) must hold, which proves the claim.

We finish the proof of the theorem by induction. Let m < n such that
m � 3 and suppose that we have shown that f(S,N|

S

c
, v) = N|

S

c for all
coalitions S such that |Sc| < m, and any N 2 ⇧(N). Consider a set T such
that |T c| = m. For all i 2 T

c, define the set S
i

:= T [ i. Let N 2 ⇧(N). For
each i 2 T

c, we have T ⇢ S

i

and |Sc

i

| = m� 1, and thus by applying subset
consistency and the induction hypothesis, we obtain

f(T,N|
T

c
, v)|

S

c
i
= f(S

i

,N|
S

c
i
, v) = N|

S

c
i
. (8)
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Fix two players i, j 2 T

c. Then either i and j belong to di↵erent blocks in
the partition N or they belong to the same block in the partition N . Because
|T c| = m � 3, we can find a player k 2 T

c, k 62 {i, j}, and by equation (8)
we know that for the set S

k

= T [ k

f(T,N|
T

c
, v)|

S

c
k
= N|

S

c
k
.

Note that i and j do not belong to S

k

. It thus follows that i and j belong
to di↵erent blocks in the partition f(T,N|

T

c
, v) if and only if they belong to

di↵erent blocks in the partition N|
S

c
k
, and they belong to di↵erent blocks in

the partition N|
S

c
k
if and only if they belong to di↵erent blocks in N . This

establishes that f(T,N|
T

c
, v) = N|

T

c , completing the proof of the theorem.
⇤

Theorem 4.1 characterizes the projection rule as the only responsive rule
that satisfies subset consistency. Notice that this characterization only holds
for n � 4. For n = 3, we can find responsive and subset consistent rules that
are not the projection rule, as is shown in the following example.

Example 4.3 (A rule that is responsive and subset consistent for n = 3 and
that does not coincide with the projection rule).
Suppose that N = {i, j, k}. Define the expectation formation rule f as fol-
lows. If S = {i, j}, then f(S,S,N , v) = {k}. If S = {i} and N|

S

c =
{jk}, then f(S, {i},N , v) = {j|k}. If S = {i} and N|

S

c = {j|k}, then
f(S, {i},N , v) = {jk}.

Clearly, f satisfies RPEOP. It also satisfies subset consistency, because
the only possible choices for two nested coalitions T ⇢ S ✓ N are S = {i, j}
and T = {i} and then f(T,S|

T

,N , v)|
S

c = {k} because the only possible par-
tition of a singleton is a singleton. However, the rule f is not the projection
rule.

An alternative characterization of the projection rule can be given in
terms of subset consistency and coherence of expectations.

Theorem 4.4 An expectation formation rule f satisfies subset consistency,
independence of the position of deviating players in the original partition and
coherence of expectations if and only if it is the projection rule.

Proof: It is easy to check that the projection rule satisfies coherence of
expectations and IPDOP in addition to subset consistency. Now, consider
an expectation formation rule f that satisfies the three axioms. Because the
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expectation formation rule satisfies subset consistency, S does not influence6

f(S,S,N , v) and because the expectation formation rule satisfies IPDOP,
we know that the behavior of N on S does not influence f(S,S,N , v). Let
S ✓ N , S 2 ⇧(S), and N 2 ⇧(N). We obtain

f(S,S,N , v) = f(S, f(Sc

,N|
S

c
,N , v),N , v)

= f(S, f(Sc

,N|
S

c
,N , v),N|

S

c [ f(Sc

,N|
S

c
,N , v), v)

= N|
S

c
,

where the first equality follows from subset consistency (changing the parti-
tion of S from S to f(Sc

,N|
S

c
,N , v) has no influence on the expectation), the

second equality follows from IPDOP because (N|
S

c [ f(Sc

,N|
S

c
,N , v)) |

S

c =
N|

S

c , and the third equality follows by applying coherence of expectations
(with the roles of Sc and S interchanged). This shows that f is the projection
rule. ⇤

The three axioms in Theorem 4.4 are logically independent. The rule in
Example 3.11 satisfies subset consistency and IPDOP, but violates coherence
of expectations. The rule in Example 3.12 satisfies coherence of expectations
and IPDOP, but is not subset consistent. Finally, the next example displays
a rule that satisfies subset consistency and coherence of expectations, but
violates IPDOP.

Example 4.5 (A rule that satisfies subset consistency and coherence of ex-
pectations, but violates independence of the position of deviating players in
the original partition.)
We define an expectation formation rule f that does not depend on S or v and
we simplify notation accordingly. We define f(S,N ) = N|

S

c if N 6= {N}
and f(S, {N}) = S

c.
f satisfies subset consistency because for any T ⇢ S ✓ N it holds that

f(T,N )|
S

c = (N|
T

c) |
S

c = N|
S

c = f(S,N ) if N 6= {N}, while f(T, {N})|
S

c =
T

c|
S

c = S

c = f(S,N ).
f satisfies coherence of expectations because f(Sc

,S[f(S,N )) = f(Sc

,S[
N|

S

c) = (S [ N|
S

c)|
S

= S if N 6= {N}, while f(Sc

,S [ f(S, {N})) =
f(Sc

,S [ S

c) = (S [ S

c)|
S

= S.
f does not satisfy IPDOP and indeed is not the projection rule.

6See footnote 4.
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4.2 Independent expectation formation rules

In this subsection, we consider expectation formation rules that do not de-
pend on the current partition N . Our first result points out that subset
consistency then results in exogenous projections.

Theorem 4.6 An expectation formation rule f satisfies subset consistency
and independence of the original partition if and only if it is an exogenous
rule.

Proof: It is clear that for any M, the M-exogenous rule satisfies subset
consistency and independence of the original partition. Now, consider an ex-
pectation formation rule f that satisfies these two axioms. This implies that
neither the new partition of deviating players S nor the original partition N
influence the expectations, and the expectation formation rule only depends
on S and v. To economize notation, we let f(S, v) denote the expectation
formation rule throughout the remainder of this proof.

To prove that f is an exogenous rule, we need to show that for any two
players i, j 2 N and any two coalitions S1, S2 ✓ {i, j}c, it holds that i and
j are in the same block in the partition f(S1, v) if and only if they are in
the same block in the partition f(S2, v) or, equivalently, that f(S1, v)|{i,j} =
f(S2, v)|{i,j}. But this follows directly from subset consistency, which implies

f(S1, v)|(S1[S2)c = f(S1 [ S2, v) = f(S2, v)|(S1[S2)c .

Notice that {i, j} ✓ (S1 [ S2)c, so that i and j belong to the same block in
f(S1, v) if and only if they belong to the same block in f(S2, v). ⇤

Theorem 4.6 implicitly points out that common independent expecta-
tion formation rules such as the optimistic, pessimistic and max expectation
rules, do not satisfy subset consistency and result in an inconsistency in the
expectation of a coalition of deviating players and a subset of this coalition.

We now turn to preservation of superadditivity. For an expectation for-
mation rule f that is independent of the original partition, the coalitional
function w

N
f

is the same for all N and thus there is a unique coalitional
function that is generated by f and we refer to this function as w

f

. We
show in the next proposition that when the expectation formation rule is the
pessimistic rule, then the coalitional game w

f

is superadditive.

Proposition 4.7 The pessimistic rule satisfies preservation of superadditiv-
ity.

20



Proof: Let f be the pessimistic rule. We simplify notation by suppressing
the original partition and write f(S,S, v).

Let S, T ⇢ N , S, T 6= ;, with S \ T = ;. Define

Ŝ = arg max
S2⇧(S)

X

Si2S

v(S
i

,S [ f(S,S, v))

and let T̂ be defined similarly. The partition Ŝ (T̂ ) is the partition that gives
S (T ) the maximal worth given its expectations according to the pessimistic
expectation formation rule f and thus

w

f

(S) =
X

Si2Ŝ

v(S
i

, Ŝ [ f(S, Ŝ, v))

and
w

f

(T ) =
X

Ti2T̂

v(T
i

, T̂ [ f(T, T̂ , v)).

The worth w

f

(S [ T ) is obtained when the members of S [ T organize
themselves into a partition that maximizes their worth, expecting that the
other players will form a partition that minimizes their worth of the players
S [ T . Since Ŝ [ T̂ is a partition of S [ T that may or may not be optimal
for S [ T ,

w

f

(S [ T ) �
X

Si2Ŝ

v(S
i

, Ŝ [ T̂ [ f(S [ T, Ŝ [ T̂ , v))

+
X

Ti2T̂

v(T
i

, Ŝ [ T̂ [ f(S [ T, Ŝ [ T̂ , v)).

Because the expectations f(S, Ŝ, v) are pessimistic,
X

Si2Ŝ

v(S
i

, Ŝ [ T̂ [ f(S [ T, Ŝ [ T̂ , v)) �
X

Si2Ŝ

v(S
i

, Ŝ [ f(S, Ŝ, v))

= w

f

(S).

Similarly, X

Ti2T̂

v(T
i

, Ŝ [ T̂ [ f(S [ T, Ŝ [ T̂ , v)) � w

f

(T ),

so that w
f

(S [ T ) � w

f

(S) + w

f

(T ) follows. ⇤

It is interesting to note that the coalitional function generated by the
pessimistic rule is superadditive even when the underlying partition function
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game fails superadditivity. As the following example shows, preservation
of superadditivity is a very strong requirement, and other commonly used
expectation rules that are independent of the original partition fail to satisfy
this axiom.

Example 4.8 (A superadditive partition function game that does not gen-
erate a superadditive coalitional game for usual independent expectation for-
mation rules other than the pessimistic rule.)
Let N = {i, j, k, l}. Consider the superadditive symmetric partition func-
tion game v defined by v(i, i|j|k|l) = 2, v(ij, ij|k|l) = 7, v(k, ij|k|l) = 0,
v(ij, ij|kl) = 10, v(ijk, ijk|l) = 8, v(l, ijk|l) = 4, v(ijkl, ijkl) = 21.

Note that w
f

(N) is independent of the expectation formation rule f . In
this example, it is accomplished in the partition N and equals 21. Also, when
|S| = n�1, then S

c = {i} for some i 2 N and necessarily f(S,S,N , v) = {i},
no matter how the rule f is defined. Thus, w

f

(S) is independent of the
expectation formation rule that is used, and in this example it is equal to 8.

If the expectation formation rule f is the N-exogenous rule, then we derive
w

f

(i) = v(i, i [ j|k|l) = 2 and w

f

(i, j) = max{v(ij, ij [ k|l), v(i, i|j [ k|l) +
v(j, i|j [ k|l)} = 7. This coalitional game is shown in the second column of
the table below.

We list the values for the coalitional games w
f

for other IOP expectation
formation rules f without computations.

|S| N-exogenous N-exogenous optimistic pessimistic max
1 2 4 4 0 4
2 7 10 10 7 10
3 8 8 8 8 8
4 21 21 21 21 21

While the coalition game w

f

obtained when f is the pessimistic rule is
superadditive, all the coalitional games derived from the other IOP rules do
not satisfy superadditivity because for the games w

f

in the other columns it
holds that w

f

(i) + w

f

(j, k) > w

f

(i, j, k).

4.3 Summary of properties of expectation formation

rules

The table below summarizes the properties satisfied by the usual expectation
formation rules.
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IOP IPDOP RPEOP PI SC COH PSA
Disintegration X X
Projection X X X X X
M-Exogenous X X X X
Optimistic X X X
Pessimistic X X X X
Max X X X

Most verifications have been covered in the preceding subsections or are
immediate. The remaining (lack of) checkmarks in the table are addressed
in an appendix.

An interesting observation from the table is that path independence does
not allow us to distinguish between the various commonly used expectation
formation rules. The other consistency axioms - subset consistency and co-
herence of expectations - are much more discriminating.

5 Cores of partition function games

Each expectation formation rule gives rise to a di↵erent definition of the core
of a partition function game. The optimistic core is the smallest and the
pessimistic one the largest. In this section we also extend balancedness to
partition function games. We conclude this section by highlighting the core
based on the projection rule, which is singled out because of the summary
table in Subsection 4.3.

5.1 Expectation formation rules and cores of partition

function games

Given an expectation formation rule f and a partition N , we construct the
TU coalitional game w

N
f

as in equation (1):

w

N
f

(S) = max
S2⇧(S)

X

T2S

v(T,S [ f(S,S,N , v)).

The cores of these games - the set of imputations that are immune to devia-
tions by any coalition - will obviously depend on the expectation formation
rule used and also on the original partition. Because the partition function
game v is not necessarily superadditive, we do not assume that the grand
coalition N forms. Instead, in order to prevent deviations by the grand coali-
tion, we use the partition that maximizes the sum of payo↵s of all players:
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N ⇤ = argmaxN2⇧(N)

X

S2N

v(S,N ).

Definition 5.1 The core C

f

(v) of partition function game v with respect to
expectation formation rule f is the set of vectors (x1, x2, ..., xn

) in <n that
satisfy the following two conditions:

1.
P

i2N x

i

=
P

S2N ⇤ v(S,N ⇤)

2.
P

i2S xi

� w

N ⇤
f

(S) for all coalitions S ✓ N .

Keeping the partition function game v fixed and denoting the optimistic
and pessimistic expectation formation rules by o and p, respectively, we have
that for any expectation formation rule f and all S ✓ N ,

w

p

(S)  w

N ⇤

f

(S)  w

o

(S).

Thus, the optimistic core the smallest core and the the pessimistic core is
the largest core:

C

o

(v) ✓ C

f

(v) ✓ C

p

(v)

for all expectation formation rules f .

5.2 Balancedness of partition function games

One way of trying to select a core generated by a particular expectation
formation rule is to parallel the balancedness approach for coalitional games.
The core of a coalitional game is a convex polytope characterized by a set of
linear inequalities. In order to guarantee the existence of a solution to the
set of inequalities, one can consider the dual linear programming problem,
resulting in the definition of balanced coalitional games.

By following a similar approach for partition function games, we are led to
define the set of embedded coalitions E(N) = {(S,N ) | S 2 N 2 ⇧(N)} and
weights �(S,N ) � 0, (S,N ) 2 E(N). A collection of embedded coalitions
E ✓ E(N) is balanced if there exist balancing weights (�(S,N ))(S,N )2E such
that for each i 2 N

X

(S,N )2E: i2S

�(S,N ) = 1.
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Definition 5.2 A partition function game v is balanced if, for any balanced
collection of embedded coalitions E with balancing weights (�(S,N ))(S,N )2E ,

X

(S,N )2E: i2S

�(S,N ) v(S,N ) 
X

S2N ⇤

v(S,N ⇤).

The extension of balancedness to partition function games is related to the
optimistic expectation formation rule, as evidenced by the next proposition.

Proposition 5.3 A partition function game v is balanced if and only if its
optimistic core C

o

(v) is nonempty.

Proof: Let v be a partition function form game. Consider the linear program

maximize
X

(S,N )2E: i2S

�(S,N ) v(S,N )

subject to
X

(S,N )2E: i2S

�(S,N ) = 1 for each i 2 N (9)

�(S,N ) � 0 for all (S,N ) 2 E(N)

and its dual

minimize
X

i2N

x

i

(10)

subject to
X

i2S

x

i

� v(S,N ) for all (S,N ) 2 E(N)

The duality theorem tells us that the optimal values of the two programs are
the same if they have a solution. We observe that the optimal value of (9)
is at least

P
S2N ⇤ v(S,N ), because this value is attained for the balancing

weights �(S,N ⇤) = 1 for each S 2 N ⇤ and �(S,N ) = 0 for all other embedded
coalitions.

It follows from the definitions that v is balanced if and only if the optimal
value of (9) equals

P
S2N ⇤ v(S,N ). By the duality theorem this is the case

if and only if the optimal value of (10) equals
P

S2N ⇤ v(S,N ). In turn, this
is the case if and only if there exist (x1, x2, ..., xn

) 2 <n such that
P

i2S xi

�
v(S,N ) for all (S,N ) 2 E(N) and

P
i2N x

i

=
P

S2N ⇤ v(S,N ). The latter is
the case if and only if C

o

(v) 6= ; (because v(S,N )  w

o

(S) for all S ✓ N

and all N 2 ⇧(N)). ⇤
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Proposition 5.3 shows that balancedness of the partition function game
is equivalent to the optimistic core of the game being nonempty. However,
because the optimistic core is the smallest core, for a balanced game the cores
generated by all expectation formation rules are nonempty.

5.3 The projection core of superadditive partition func-

tion games

Based on the axiomatizations in Section 4, an important intermediate core
is the projection core C

pr

(v), which is the core of the coalitional game w

N ⇤
pr

generated by the projection rule pr. This core is easy to compute, especially
for superadditive partition function games with positive externalities.

Proposition 5.4 In a superadditive partition function game with positive
externalities, N ⇤ = N , and w

N ⇤
pr

(S) = v(S, S [ S

c). Moreover, for such
games the the projection core coincides with the optimistic core.

Proof: Let v be a superadditive partition function form game with positive
externalities. If N is a partition of N that has a at least two blocks S, T 2 N ,
then the sum of payo↵s of all players does not decrease when the blocks S

and T join:

v(S [ T,N \ {S, T} [ {S [ T}) +
X

U2N\{S,T}

v(U,N \ {S, T} [ {S [ T})

� v(S,N ) + v(T,N ) +
X

U2N\{S,T}

v(U,N \ {S, T} [ {S [ T})

� v(S,N ) + v(T,N ) +
X

U2N\{S,T}

v(U,N )

=
X

U2N

v(U,N ),

where the first inequality follows from superaditivity, and the second one
from positive externalities. Thus, N ⇤ = N .

By definition of the projection rule, pr(S,S, N, v) = S

c for all S and S.
If S is a partition of S that has a at least two blocks S1, S2 2 S, then with
expectations according to the projection rule the sum of payo↵s of all the
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players in S does not decrease when the blocks S1 and S2 join:

v(S1 [ S2,S \ {S1, S2} [ {S1 [ S2} [ S

c) +X

U2S\{S1,S2}

v(U,S \ {S1, S2} [ {S1 [ S2} [ S

c)

� v(S1,S [ S

c) + v(S2,S [ S

c) +X

U2S\{S1,S2}

v(U,S \ {S1, S2} [ {S1 [ S2} [ S

c)

� v(S1,S [ S

c) + v(S2,S [ S

c) +
X

U2S\{S1,S2}

v(U,S [ S

c)

=
X

U2S

v(U,S [ S

c),

where the first inequality follows from superaditivity, and the second one
from positive externalities. From this it follows that

argmaxS2⇧(S)

X

T2S

v(T,S [ S

c) = S,

so that

w

N

pr

(S) = v(S, S [ S

c),

the worth of S in the two-block partition N = {S, Sc} consisting of S and
its complement Sc.

Because v has positive externalities, the optimistic expectations of each
coalition S are o(S,S, N, v) = S

c, so that they coincide with the expectations
according to the projection rule when the original partition is N ⇤ = N . From
this, we easily derive that

w

o

(S) = w

N

pr

(S) = v(S, S [ S

c)

for all S ✓ N , so that both of these coalitional games have the same core.
Thus, the projection core and the optimistic core coincide. ⇤

One might suspect that Proposition 5.4 has a counterpart for superad-
ditive partition function games with negative externalities and that for such
games the projection core coincides with the pessimistic core. Such a re-
sult, however, does not hold. This is illustrated in the following example,
which also illustrates that superadditivity of a partition function game is not
su�cient for the grand coalition to be payo↵-maximizing for N .

27



Example 5.5 Let N = {i, j, k, l}. Consider a symmetric partition function
game where v(i, i|j|k|l) = 4, v(ij, ij|k|l) = 9, v(k, ij|k|l) = 1, v(ij, ij|kl) = 3,
v(ijk, ijk|l) = 11, v(l, ijk|l) = 0, v(ijkl, ijkl) = 12. This partition function
game satisfies superadditivity and has negative externalities.

Even though the partition function game v is superadditive, the coalition
structure that maximizes the payo↵ of all players is not N , but the singleton
structure: N ⇤ = N .

Using N ⇤ = N , we find that the coalitional game generated by the projec-
tion rule is given by w

N

pr

(S) = 4 if s = 1, wN

pr

(S) = 9 if s = 2, wN

pr

(S) = 12
if s = 3, and w

N

pr

(N) = 16.
Because the partition function game v has negative externalities, the pes-

simistic rule assigns p(S,S,N , v) = S

c, so that w
p

(S) = 0 if s = 1, w
p

(S) =
3 if s = 2, w

p

(S) = 12 if s = 3, and w

p

(N) = 16.
A necessary and su�cient condition for non-emptiness of the core of a

symmetric coalitional game w is that the game is top-convex (Jackson and
van den Nouweland (2005)), i.e., w(N)

n

� w(S)
s

for all S ✓ N . Notice that this
condition is satisfied for the pessimistic game w

p

but not for the projection

game w

N

pr

. Hence, the projection core is empty, whereas the pessimistic core
is not.

The optimistic core is a subset of the projection core and is thus also
empty for the partition function game in this example. We point out that
the optimistic game w

o

coincides with the projection game in this example,
which follows from the negative externalities (which imply that the optimistic
expectations are o(S,S,N , v) = S

c).

6 Applications

In this section, we compute the projection core and the optimistic and pes-
simistic cores in two applications of coalitional games with externalities,
which have been emphasized in Industrial Organization and Environmental
Economics. Because we single out the projection core as the best stability
concept for games with externalities, our objective is primarily to provide
conditions under which the projection core is nonempty. We focus on set-
tings where players are ex ante symmetric, and assume specific functional
forms to simplify the expressions of partition functions.
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6.1 Cartels

The first application considers the formation of cartels (or mergers by firms)
in a linear Cournot market. We consider the version of the model studied by
Bloch (1996) and Ray and Vohra (1999). Consider n firms in an oligopoly
with linear inverse demand

P = 1�
nX

i=1

q

i

.

Variable costs are normalized to 0, but each coalition of firms incurs a fixed
cost K of operating on the market. Suppose that firms merge so that the
final market structure is given by the coalition structure N = {S1, ..., SM

}.
The firms in each coalition S

m

select one representative, which will be the
active firm on the market. Computations of the equilibrium of the Cournot
quantity setting game easily show that the profit of coalition S

m

only depends
on the number M of coalitions in the market and is given by

v(S
m

,N ) = max{ 1

(M + 1)2
�K, 0},

yielding a partition function game with positive externalities. In order to
compute the optimal partition N ⇤, notice that the sum of profits net of fixed
costs in a market with M coalitions is given by M

(M+1)2 whereas the profit

of a monopolist is 1
4 . It is easy to check that M

(M+1)2 <

1
4 for any M � 2,

so that the coalition structure that maximizes the sum of profits of all firms
is N ⇤ = N . This fact, together with positive externalities, implies that the
projection rule pr is equivalent to the optimistic rule and pr(S,S, N, v) = S

c

for all S and S. The group of firms S will not necessarily form a single
coalition, but will choose the optimal number t

⇤ of coalitions to maximize
the sum of profits of its members. Thus, we compute the coalitional function
generated by the projection rule as7

w

pr

(S) = max
1ts

t

(t+ 2)2
� tK.

Let g(t) = t

(t+2)2 � tK. As @g

@t

= 2�t

(t+2)3 �K, the optimal number of coalitions
in S is either t⇤ = 1 or t⇤ = 2. For any S with 2  s  n� 1, we find t

⇤ = 2
if K  1

72 and t

⇤ = 1 if K � 1
72 . Notice that when K >

1
9 , the maximum

obtainable profit of group S is negative, so that the members of S are better

7Throughout the remainder of this section we write wpr instead of wN
pr.
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o↵ not producing. Summarizing, we obtain:

If K  1

72
w

pr

(S) =
1

9
�K if s = 1,

w

pr

(S) =
1

8
� 2K if 2  s  n� 1,

w

pr

(N) =
1

4
�K.

If
1

9
� K � 1

72
w

pr

(S) =
1

9
�K if 1  s  n� 1,

w

pr

(N) =
1

4
�K.

If K � 1

9
w

pr

(S) = 0 if 1  s  n� 1,

w

pr

(N) =
1

4
�K.

The core of this symmetric coalitional game is nonempty if and only if
the game is top-convex (cf. Jackson and van den Nouweland (2005)), i.e.

w

pr

(N)

n

� w

pr

(S)

s

for all S ⇢ N. (11)

Because

max
1sn�1

w

pr

(S)

s

=
1

9
�K,

condition (11) becomes:

K � 4n� 9

36(n� 1)
.

Hence, the projection core of the game is nonempty if and only if the fixed
cost is larger than an upper bound that tends to 1

9 when n goes to infinity.
The same holds for the optimistic core, which coincides with the projection
core.

Consider now the pessimistic core. Given that the game has positive
externalities, the pessimistic rule is p(S,S, N, v) = S

c for all S and S. If
the group S forms t coalitions, the total number of coalitions in the market
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is t + n � s. The coalitional game generated by the pessimistic rule is thus
given by

w

p

(S) = max
1ts

t

(t+ n� s+ 1)2
� tK.

Let t

⇤(s,K) be the optimal number of coalitions chosen by group S when
the fixed cost is K and assume that K is low enough so that members of S
produce a positive quantity.8 Then for any S ⇢ N

w

p

(S)

s

=
t

⇤(s,K)

s(t⇤(s,K) + n� s+ 1)2
� t

⇤(s,K)K

s

 t

⇤(s,K)

s(t⇤(s,K) + n� s+ 1)2
� K

s

<

t

⇤(s,K)

s(t⇤(s,K) + n� s+ 1)2
� K

n

. (12)

where the first inequality stems from the fact that t

⇤(s,K) � 1 and the
second from the fact that s < n. Next define h(t) ⌘ t

(t+n�s+1)2 . It is easy to
check that

@h(t)

@t

=
n� s+ 1� t

(t+ n� s+ 1)3
.

Thus, for a fixed s, @h(t)
@t

is positive when t < n � s + 1 and negative when
t > n� s+1, so that h(t) attains its maximum at t̂(s) = n� s+1. It follows
that

t

⇤(s,K)

s(t⇤(s,K) + n� s+ 1)2
=

h(t⇤(s,K))

s

 h(t̂(s))

s

=
n� s+ 1

4s(n� s+ 1)2
=

1

4s(n� s+ 1)
. (13)

Furthermore, s(n� s+1)�n = (n� s)(s�1) � 0 for any 1  s < n, so that

8If the members of S do not produce, then top convexity holds trivially.
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w

p

(N)

n

=
1

4n
� K

n

� 1

4s(n� s+ 1)
� K

n

� t

⇤(s,K)

s(t⇤(s,K) + n� s+ 1)2
� K

n

>

w

p

(S)

s

,

where the second inequality stems from (13) and the third from (12). The
game w

p

is thus top convex, establishing that the pessimistic core is nonempty
for any value of the fixed cost K.

6.2 Public goods

In the second application, we consider a model of public good provision in-
spired by Ray and Vohra (2001)’s study of global environmental public goods.
Di↵erent from Ray and Vohra (2001), we do not assume that the public good
is necessarily global, and we introduce a parameter measuring the degree
of spillovers between local public goods provided in di↵erent jurisdictions.
(This formulation was introduced by Bloch and Zenginobuz (2006).) Let
N = {S1, ..., SM

} be the coalition structure representing the di↵erent juris-
dictions (or countries). The utility function of agent i in jurisdiction m is
given by:

U

i

= g

m

+ ↵

X

j 6=m

g

j

� 1

2
c

2
i

,

where g

j

is the amount of public good provided in jurisdiction j, ↵ 2 [0, 1]
a spillover parameter, and c

i

the contribution of agent i. Notice that when
↵ = 1 the public good is a pure (or global) public good whereas when ↵ = 0,
the public good is a local public good. We suppose that the contribution level
of agents in jurisdiction j is jointly chosen in order to maximize the sum of
utilities of all agents in the jurisdiction. Given the convexity of the contribu-
tion cost function, it is optimal for all agents in a jurisdiction j to contribute
the same amount c

j

and thus g
j

= s

j

c

j

. The optimal contributions level in
jurisdiction j is then c

⇤
j

= s

j

, so that the total public good contribution in
the jurisdiction is g

⇤
j

= s

2
j

. Substituting in the sum of utilities of agents in
each jurisdiction, we derive the partition function

v(S
m

,N ) = s

m

(
s

2
m

2
+ ↵

X

j 6=m

s

2
j

).
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For any two disjoint jurisdictions S
l

and S

m

in N , we have

v(S
l

[ S

m

,N \ {S
l

, S

m

} [ {S
l

[ S

m

)})

=
(s

l

+ s

m

)3

2
+ ↵(s

l

+ s

m

)
X

j 6=l,m

s

2
j

=
s

3
l

2
+

s

3
m

2
+

3

2
s

2
l

s

m

+
3

2
s

l

s

2
m

+ ↵(s
l

+ s

m

)
X

j 6=l,m

s

2
j

>

s

3
l

2
+

s

3
m

2
+ ↵s

2
l

s

m

+ ↵s

l

s

2
m

+ ↵(s
l

+ s

m

)
X

j 6=l,m

s

2
j

=
s

3
l

2
+ ↵s

l

X

j 6=l

s

2
j

+
s

3
m

2
+ ↵s

m

X

j 6=m

s

2
j

= v(S
l

,N ) + v(S
m

,N ),

showing that the partition function game is superadditive. In addition, for
any S

k

, S

l

, S

m

2 N ,

v(S
m

,N \ {S
k

, S

l

} [ {S
k

[ S

l

)}) =
s

3
m

2
+ ↵s

m

(s
k

+ s

l

)2 + ↵s

m

X

j 6=k,l,m

s

2
j

>

s

3
m

2
+ ↵s

m

s

2
k

+ ↵s

m

s

2
l

+ ↵s

m

X

j 6=k,l,m

s

2
j

= v(S
m

,N ),

so that the game has positive externalities. As we saw in Proposition 5.4,
for this superadditive game with positive externalities, N ⇤ = N , the coali-
tional function w

N

pr

generated by the projection rule is equal to the coalitional
function w

o

generated by the optimistic rule, and

w

N

pr

(S) = v(S, S [ S

c) =
s

3

2
+ ↵s(n� s)2.

Because this game is symmetric, a necessary and su�cient condition for its
core to be nonempty is that it is top convex, i.e.,

w

N

pr

(N)

n

=
n

2

2
�

w

N

pr

(S)

s

=
s

2

2
+ ↵(n� s)2 for all S ⇢ N.

We verify that the function g(s) = s

2

2 + ↵(n � s)2 is strictly convex so that
it achieves a maximum at s = n if and only if
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g(1) =
1

2
+ ↵(n� 1)2  n

2

2
= g(n).

Hence, the projection core of the public good game is nonempty if and only
if ↵  n+1

2(n�1) . We thus observe that the projection core of the public good
game is nonempty if and only if the level of spillovers across jurisdictions is
bounded above by a parameter that converges to 1

2 when n goes to infinity.
The same holds for the optimistic core, which coincides with the projection
core.

Given that the game has positive externalities, the pessimistic rule is
p(S,S, N, v) = S

c for all S and S, and the coalitional function generated by
the pessimistic rule is:

w

p

(S) =
s

3

2
+ ↵s(n� s).

Define h(s) = wp(S)
s

= s

2

2 +↵(n� s). The pessimistic core is nonempty if and
only if the game w

p

is top convex, which is equivalent to h(s) attaining a
maximum at n. Because the function h(s) is strictly convex, it h(s) attains
a maximum at n if and only if

h(1) =
1

2
+ ↵(n� 1)  n

2

2
= h(n),

a condition that is satisfied for all ↵  1 and n � 1. Hence, the pessimistic
core is nonempty for all values of ↵.

7 Conclusion

This paper proposes axiomatic foundations to expectation formation rules,
by which deviating players anticipate the reaction of external players in a
partition function game. We single out the projection rule – where players
anticipate that external players project the current partition – as the only
rule satisfying subset consistency and responsiveness or subset consistency,
independence of the original partition of deviating players, and coherence of
expectations. Exogenous rules are the only rules satisfying subset consistency
and independence of the original partition, and the pessimistic rule is the
only rule among the common rules proposed in the literature that satisfies
preservation of superadditivity. Our axiomatic analysis suggests that the
projection core is a natural candidate to study the stability of games in
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partition function form, and we analyze the projection core in two standard
applications of coalition formation with externalities.

One of the major drawbacks of our analysis (as of any analysis of the
core) is that we only consider myopic deviations, and do not describe the
full process by which coalitions successively deviate from an allocation. In
particular, we do not submit the allocation of deviating players to the same
stability test as the original allocation. In the context of partition function
games, the recursive core studied by Huang and Sjostrom (2003) and Koczy
(2007) captures this requirement, by assuming that deviating players antici-
pate that external players will select a point in the core of the game restricted
to external players. Alternatively, one could consider farsighted players, as
in Chwe (1994) or Diamantoudi and Xue (2003), and analyze the farsighted
core of the game generated by di↵erent expectation formation rules. When
expectation formation rules are independent of the original partition, we sus-
pect that the analysis of the farsighted core is a straightforward extension
of the myopic core. When expectation formation rules are responsive to the
original partition, as in the case of the projection rule, the analysis of the
farsighted core involves a dynamic process of expectation formation, and we
hope to undertake such an analysis in future research.
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A Verifications of properties of common ex-

pectation formation rules

We first consider the disintegration rule. This rule satisfies path indepen-
dence because for any deviating coalition S it predicts that all blocks U in N
that do not intersect S remain intact, while the other blocks disintegrate into
singletons. This is obviously independent of the order in which the members
of S form expectations. The disintegration rule also satisfies coherence of
expectations because in the partition S [ f(S,S,N , v) the blocks in S do
not intersect the blocks in f(S,S,N , v). The disintegration rule violates all
other axioms:

Example A.1 (The disintegration rule.)
Let N = {i, j, k, l} and let f be the disintegration rule. Because this rule

does not depend on S or v, we simplify notation and write f(S,N ).
IPDOP (and thus IOP) is violated because for N = {ijkl} and N 0 =

{ij|kl}, and S = {i, j}, we have that N|
S

c = N 0|
S

c, while f(S,N ) = {k|l} 6=
{kl} = f(S,N 0).

RPEOP is violated because for N = {ijkl} and N 0 = {i|j|k|l}, and
S = {i, j}, we have that N|

S

c 6= N 0|
S

c, while f(S,N ) = {k|l} = f(S,N 0).
Subset consistency is violated because for S = {i, j}, T = {i}, and N =

{i|jkl}, we have that f(S,N ) = {k|l}, while f(T,N ) = {jkl}.
PSA is violated for the partition function game in Example 4.8 when

N = {i|jkl} because w

N
f

(i) + w

N
f

(jk) = v(i, i|jkl) + v(jk, i|jk|l) = 4 + 7 >

8 = v(ijk, ijk|l) = w

N
f

(ijk).

We have already established that the projection rule satisfies IPDOP,
RPEOP, PI, SC, and COH. The rule violates PSA for the game in example
4.8 when N = {i|jkl}, because wN

f

(i)+w

N
f

(jk) = v(i, i|jkl)+v(jk, i|jk|l) =
4 + 7 > 8 = v(ijk, ijk|l) = w

N
f

(ijk).

The M-exogenous projection rules satisfy IOP, and thus PI. Because
these rules satisfy SC and IPDOP, by Theorem 4.4 they violate COH.

The pessimistic, optimistic, and max rules satisfy IOP and thus also PI.
By theorem 4.6, they thus violate SC. The following example demonstrates
that these rules violate COH.

Example A.2 (Violations of coherence.)
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Let N = {1, 2, 3, 4} and consider a partition function game in which
v(1|2|34) = (4, 4, 4), v(12|34) = (6, 10), v(1|2|3|4) = (1, 1, 1, 1), v(12|3|4) =
(5, 3, 3).

Then, for the optimistic rule o, and S = {12}, S = {1|2}, we have
o(S,S, v) = {34} and o(Sc

, o(S,S, v), v) = o(34, {34}, v) = {12} 6= S,
demonstrating that the optimistic rule violates COH.

For the pessimistic rule p, and S = {12}, S = {12}, we have p(S,S, v) =
{3|4} and p(Sc

, p(S,S, v), v) = p(34, {3|4}, v) = {1|2} 6= S, demonstrating
that the pessimistic rule violates COH.

The max rule m violates COH because when S = {12}, S = {12}, we have
m(S,S, v) = {34} and m(Sc

,m(S,S, v), v) = m(34, {34}, v) = {1|2} 6= S.

38


