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Abstract. When people interact in familiar settings, social conventions

usually develop so that people tend to disregard alternatives outside the conven-

tion. For rational players to usually restrict attention to a block of conventional

strategies, no player should prefer to deviate from the block when others are

likely to act conventionally and rationally inside the block. We explore con-

cepts that formalize this idea for finite normal-form games. Coarsely tenable

blocks are product sets of pure strategies that have the above-mentioned ro-

bustness property. We call Nash equilibria with support in minimal such blocks

coarsely settled. Finely tenable blocks are such that no player should prefer to

deviate from the block when others are likely to act conventionally and ratio-

nally within it but otherwise would be likely to act rationally in the game as a

whole. Equilibria with support in minimal such blocks we call finely settled. An

equilibrium is fully settled if it is both coarsely and finely settled. We establish

existence of fully settled equilibria in all finite games. Being proper, these equi-

libria induce sequential equilibria in all extensive-form games with the given

normal form. For a generic class of normal-form games, our coarse and fine

concepts are equivalent. We demonstrate the nature and power of settledness

by way of examples.
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1. Introduction

Schelling (1960) pointed out the importance and subtlety of pure coordination prob-

lems, problems in which the participants have common interests but there are multi-

ple ways to coordinate. Sometimes one of the solutions may be "salient" (Schelling,

1960). However, in many situations we must in practice rely on what Lewis (1969)

calls precedent in order to solve coordination problems. If all participants know that

a particular coordination problem has been solved in a particular way many times

before, and this is common knowledge, then this may help them solve a current

coordination problem.

More generally, consider a large population that plays familiar games, not neces-

sarily coordination games, in historical and cultural contexts where individuals know

how similar games have been played in the past. When people interact in familiar

settings, social norms or conventions usually develop, specifying which actions or de-

cision alternatives individuals are expected to, or should, consider.1 Such informal

institutions, norms or conventions develop over time and people tend to disregard

alternatives that are physically available to them but fall outside the norm or con-

vention. In order for such a convention to persist, it should not be advantageous for

an individual to take an unconventional action when others are very likely to take

conventional actions.

This setting is close to that in Nash’s (1950) so-called mass-action interpretation:

“It is unnecessary to assume that the participants in a game have full knowl-

edge of the total structure of the game, or the ability and inclination to go

through any complex reasoning processes. But the participants are supposed

to accumulate empirical information on the relative advantages of the various

pure strategies at their disposal. ... To be more detailed, we assume that there

is a population (in the sense of statistics) of participants for each position of

the game. Let us also assume that the ’average playing’ of the game involves

 participants selected at random from the  populations, and that there is

a stable average frequency with which each pure strategy is employed ... The

assumptions we made in this ’mass action’ interpretation lead to the conclu-

sion that the mixed strategies representing the average behavior in each of the

populations form an equilibrium.”

In familiar games, people may come to view some strategies as "conventional" or

"normal", and then may generally disregard other strategic alternatives. Arguably,

this is a pervasive phenomenon in all societies. Social institutions are sustained in a

larger natural interactive context by viewing such unconventional actions as "illegal"

1By a convention we mean a pattern of behavior that is customary, expected, and self-enforcing,

see Lewis (1969) and Young (1993,1998).
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(Hurwicz, 2008). Conformity with such social norms helps simplify people’s decision-

making and coordination. When people are generally expected to act rationally within

the conventional norms, unconventional alternatives should not be advantageous.

We here elaborate a model which permits the endogenous formation of such con-

ventions in finite games in normal form. A block in such a game is a non-empty set of

pure strategies for each player role. We view a block as a potential norm or conven-

tion, a candidate for what strategies individuals are likely to seriously consider when

called upon to play the game in their player role. The associated block game is the

restricted game in which all players are confined to their block strategies. A block is

absorbing (Kalai and Samet, 1984) if every strategy profile near one with support in

the block has some best reply in the block. A block is curb (Basu and Weibull, 1991)

if every strategy profile with support in the block has all best replies in the block.

We call a block coarsely tenable if nobody could do better by choosing a strategy

outside the block when others are very likely to consider only strategies in the block

and play rationally within the block. A coarsely settled equilibrium is any Nash

equilibrium (of the whole game) with support in a minimal coarsely tenable block.

People tend to forget or disregard unused strategies, and minimality allows players to

disregard as many unused pure strategies as possible. This simplifies the convention

and saves on players’ cognitive costs.2

Although minimal coarsely tenable blocks exclude many strategies, some coarsely

settled equilibria do not use all pure strategies in their minimal coarsely tenable block.

Can the block and equilibrium then still be thought of as a convention or social norm,

or may neglect of all or some of the unused pure strategies in the block upset the con-

vention? This concern motivated us to formulate a concept of tenability that allows

blocks to be smaller, resulting in a finer block structure in the game. We do this by

assuming (a) that all non-empty strategy subsets have positive probabilities of being

the consideration set, and (b) that consideration sets other than those constituting

the conventional block are much more likely to be large than small (in terms of set

inclusion). In other words, "unconventional" individuals are much more likely to con-

sider lots of strategies than just a few. In particular, they are most likely to consider

their full strategy set. This way, we discipline the type distribution in the population

so that among the unconventional types, the game-theoretically "standard" types,

who consider their full strategy sets, are much more likely than all other types.

We call a block finely tenable if there is no strategy outside the block that would

be a better reply in such a situation, granted (as under coarse tenability) that con-

sideration sets other than those constituting the conventional block are sufficiently

unlikely. Since we impose additional assumptions on what individuals are likely to

consider when not conventional, every coarsely tenable block is also finely tenable,

2See e.g. Halpern and Pass (2009) and their references.
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and thus there are more finely than coarsely tenable blocks to choose from as poten-

tial conventions. Any curb block is absorbing and every absorbing block is coarsely

tenable. Hence, fine tenability is the weakest block property of all these. We show

that in the limit, as the probability for individuals to look outside a conventional

block that is finely tenable tends to zero, play will constitute a proper equilibrium (of

the whole game) with support in the block. A finely settled equilibrium is any proper

equilibrium that has support in a minimal finely tenable block. A fully settled equi-

librium is an equilibrium that is both coarsely and finely settled. We show that every

finite game has at least one such equilibrium, and by means of examples we show

how these equilibria effectively refine the concept of Nash equilibrium, also in games

where established refinements fail to eliminate arguably unreasonable equilibria.

While the notions of coarse and fine tenability in general differ, for generic normal-

form games they coincide. By contrast, while Nash equilibria are generically perfect

and proper, this is not true for coarsely and finely settled equilibria. The latter,

while being generically identical with each other, constitute a strict subset of the Nash

equilibria in an open set of normal-form games. They also constitute a distinct subset

from the persistent equilibria (Kalai and Samet, 1984) in an open set of normal-form

games.

Before proceeding, let us briefly illustrate the above reasoning by means of a

simple coordination game,
 

   0 0

 0 0  

(1)

where      0. Such a game has two pure and strict and one mixed Nash

equilibrium. All three are proper equilibria that, when viewed as singleton sets, are

strategically stable in the sense of Kohlberg and Mertens (1986). If the game is played

only once by rational players, in the absence of a cultural, historical or social context,

the mixed equilibrium may be a reasonable prediction. Indeed, in these games any

strategy profile is rationalizable and thus compatible with common knowledge of the

game and the players’ rationality (Bernheim, 1984; Pearce, 1984; Brandenburger and

Dekel, 1987; Tan and Werlang, 1988). Hence, when played once, common knowledge

of the game and the players’ rationality has no predictive power. However, if such

a game is often played in culturally familiar settings, the mixed equilibrium appears

unlikely, as do many other strategy profiles. One would expect individuals to develop

an understanding that coordinates their expectations at one of the strict equilibria.

This intuition is captured by the solution concepts developed here.3

3This intuition is also captured by persistent equilibrium. However, in other games, our solution

concepts differ from persistence and this is true even under arguably minor elaborations of the game

(1).
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The rest of the paper is organized as follows. Basic notation and definitions are

given in Section 2. Our model of consideration sets is developed in Section 3. Coarsely

tenable blocks and coarsely settled equilibria are introduced in Section 4 and finely

tenable blocks and finely settled equilibria are given in Section 5. In Section 6 we

shows that coarsely and finely tenable blocks generically coincide. The nature and

power of tenability and settledness is demonstrated in examples throughout the text.

Section 7 provides some additional examples, and Section 8 concludes.

2. Preliminaries

We consider finite normal-form games  = h i, where  = {1     } is the
set of players,  = ×∈ is the non-empty and finite set of pure-strategy profiles,
 :  → R is the combined payoff function, where  () ∈ R is ’s payoff under

pure-strategy profile . Let  be the number of elements of  and let ∆ () denote

the set of mixed strategies available to player :

∆ () =

(
 ∈ R

+ :
X
∈

 () = 1

)


A strategy  ∈ ∆ () is totally mixed if it assigns positive probability to all

pure strategies. Write ∆ () for this subset. Likewise, a strategy profile is totally

mixed if all strategies are totally mixed. Let  () = ×∈∆ () denote the set of
mixed-strategy profiles on  and let  () = ×∈∆ (). We extend the domain

of each payoff function  in the usual way from  to  () by

 () =
X
∈

[Π∈ ()] ·  () 

We use  (− 0) to denote the payoff that player  obtains from pure strategy

0 ∈  when everyone else plays according to  ∈ , and likewise for mixed strate-

gies. Likewise, let  (− []) be the (expected) payoff that player  obtains from
pure strategy  ∈  when everyone else plays according to  ∈  (). Two pure

strategies, 0 
00
 ∈ , are payoff equivalent if  (− 0) =  (− 00 ) for all  ∈ 

and all players  ∈  . A purely reduced normal form game is a game in which no pure

strategies are payoff equivalent.4 Two pure strategies, 0 
00
 ∈ , are payoff equiva-

lent for player i if  (− 0) =  (− 00 ) for all  ∈ . A pure strategy  ∈  is

weakly dominated if there exists a 0 ∈ ∆ () such that  (− 0) ≥  (− []) for
all  ∈  () with strict inequality for some  ∈  (). A Nash equilibrium is any

strategy profile  ∈ () such that

(− [])  max
∈

(− []) ⇒  () = 0

4This is also called the semi-reduced normal form, see e.g. van Damme (1991).
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A Nash equilibrium is strict if any unilateral deviation incurs a payoff loss.

Definition 1 [Myerson, 1978]. For any   0, a strategy profile  ∈  () is -

proper if

(− [])  (− []) ⇒  () ≤  ·  () 
A proper equilibrium is any limit of -proper strategy profiles as → 0.

The proper equilibria constitute a non-empty subset of the Nash equilibria. We

next turn to the concepts of a persistent retract and a persistent equilibrium. Every

finite game has a persistent retract and a persistent equilibrium.

Definition 2 [Kalai and Samet, 1984]. A retract is any set  = ×∈ such that

∅ 6=  ⊆ ∆ () is closed and convex ∀ ∈  . A retract  is absorbing if it has a

neighborhood  ⊆ () such that for all 0 ∈  :

max
∈

(
0
− ) = max

∈
(

0
− []) ∀ ∈ 

A persistent retract is any minimal absorbing retract. A persistent equilibrium

is any Nash equilibrium belonging to a persistent set.

We will use the following terminology and notation: a block is any set  = ×∈
such that ∅ 6=  ⊆  ∀ ∈  . The associated block game is the game  = h i
(with  restricted to  ). We embed its mixed strategies in the full strategy space of

the game : ( ) = { ∈ () : () = 0 ∀ ∈ ∀ ∈ }. If  is a block,

then clearly  ( ) is a retract. By a slight abuse of language, we will call a block

 absorbing if  ( ) is absorbing. A strategy profile  has support in a block  if

() = 0 for all players  ∈  and strategies  ∈ . Write  ( ) for the probability

that a mixed-strategy profile  ∈ () puts on a block:  ( ) =
P

∈ [Π∈ ()].
Thus  ∈ ( ) iff  ( ) = 1.

Definition 3. A Nash equilibrium of a block game  is any strategy profile

 ∈ ( ) such that

 ()  0 ⇒  ∈ argmax
∈

(− [])

Clearly every block game has at least one Nash equilibrium.

Definition 4 [Basu and Weibull, 1991]. A block  is curb (“closed under rational

behavior”) if

argmax
∈

(− []) ⊆ 

for every strategy profile  ∈ ( ) and every player  ∈  .
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Every finite game has a minimal curb block. As noted in Ritzberger and Weibull

(1995), every curb block is absorbing.5 The game in the introduction has two minimal

curb blocks, the supports of its two strict equilibria. Hence, the mixed equilibrium

is not persistent. However, in a slight elaboration of that game, the only absorbing

block is the full pure-strategy space, so persistence then looses all its cutting power

on the set of Nash equilibria.

Example 1. Consider the extensive-form game

‐2 2
2

‐2
2 ‐2

L R L R

L R L R

L R

L R

1
1

0
0 1

2
‐2

2

2

1

1
1

This is an elaboration of game (1) for  =  =  =  = 1, where the added subgame

is a zero-sum game with value zero. Hence, backward induction requires the players

to attach value zero to the subgame, which arguably renders the elaborated game

"strategically equivalent" with the original game.

The purely reduced normal-form representation of the elaboration is

Game 1:

  

 1 1 2−2 −2 2
 1 1 −2 2 2−2
 0 0 1 1 1 1

This game has three Nash equilibrium components: ,  and  = {}, where 
consists of all strategy profiles of the form  = ([] + (1− )[]  []) for 14 ≤
 ≤ 34,  consists of all strategy profiles of the form  = ([]  []+ (1− )[])

for 14 ≤  ≤ 34, and

 = (
1

2
[] +

1

4
[] +

1

4
[]) 

1

2
[] +

1

4
[] +

1

4
[])

5To see this, suppose that  is curb. By continuity of payoff functions and the finiteness of the

game, there exists a a neighborhood  of  ( ) ⊆ () such that all mixed-strategy profiles in 

have all best replies in the block.
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There are three proper equilibria:  = (1
2
[] + 1

2
[] []) ∈ ,  = ([] 1

2
[] +

1
2
[]) ∈ , and . The only absorbing retract is  (), so all Nash equilibria are

persistent. The last conclusion is valid for all games (1) with (   ) in an open

set containing (1 1 1 1).

The mixed equilibrium  in this example would arguably be non-robust as a

convention, since individuals would presumably learn to avoid the zero-sum subgame

and instead be likely to end up in one of the equilibrium components A or B. The

solution concepts to be developed below formalize such intuitions by way of relaxing

the definitions of curb and absorbing blocks by applying their best-response conditions

only at Nash equilibria of the block games in question.

Remark 1. Other related ideas in the recent literature are so-called prep sets (Voorn-

eveld 2004, 2005) and p-best response sets (Tercieux, 2006 a,b). A prep set (or

preparation) is a block  that contains at least one best reply for each player to every

mixed strategy on the block. Every pure Nash equilibrium (viewed as a singleton

block) is thus a prep set and every curb set is a prep set. Voorneveld (2004) shows

that minimal prep sets generically coincide with minimal curb sets and Voorneveld

(2005) establishes that prep sets also generically coincide with persistent retracts (

being a prep set and  ( ) an absorbing retract). Tercieux (2006a) defines a p-best

response set as a block that contains all best replies to all beliefs that put at least

probability  on the block, where beliefs are not constrained to treat other players’

strategy choices as statistically independent (a constraint we here impose). Tercieux

(2006b) weakens the requirement “all best replies” to “some best reply,” and calls the

first notion strict -best response sets. For all finite two-player games: (a) any strict

-best response set with   1 is curb, and every curb set is a strict -best response

set for some   1 (see Lemma 2 in Ritzberger and Weibull, 1995), and (b) if a block

 is a (weak) -best response set with   1, then ( ) is an absorbing retract, and

if ( ) is an absorbing retract, then  is a (weak) -best response set for some   1.

It follows that  is a minimal (weak) -best response set for some   1 if and only if

 = ( ) is a persistent set. Another related idea is the refined best-response corre-

spondence in Balkenborg, Hofbauer, and Kuzmics (2013,2014). Their correspondence

shares many properties with the usual best-response correspondence–such as being

upper hemi-continuous, closed- and convex-valued–but generically differs in games

with more than two players. However, in two-player normal form games it generi-

cally coincides with the usual best-response correspondence. Hence, their solutions

generically differ from ours.

3. Consideration-set games

We proceed to construct a framework within which one can make precise the idea

that conventions or norms should be such that when people are generally expected
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to act rationally within the convention or norm, unconventional alternatives should

not be advantageous. We do this in terms of a situation in which individuals are very

likely to consider only the strategies in some conventional block, but allowing for the

possibility that some individuals may also consider strategies outside the block. An

individual’s effective strategy set, to be called his or her consideration set, a non-

empty subset of the full strategy set, will be treated as his or her type in a game of

incomplete information where types are private information.6

More precisely, let  = h i be a finite game. As in Nash’s mass action
interpretation, let there for each player role  ∈  be a large population of individuals

who are now and then randomly called upon to play the game  in that player role.

Let the type space for each player role  ∈  be Θ = C (), the collection of non-
empty subsets  ⊆ . Let  be any probability distribution over C (), where
 () ∈ [0 1] is the probability that the individual drawn to play in role  will be of
type  = , that is, have  as his or her consideration set. These random draws of

types, one draw for each player population, are statistically independent. A vector

 = (1  ) ∈ ×∈∆ (C ()) is thus a type distribution, where the probability that
any given block  = ×∈ will be the actual consideration block is the product of
the probabilities for each player role; 1 (1)· · (). With some abuse of notation,
we will write  ( ) for this product probability.

Each type distribution  defines a game = h i of incomplete information
in which a pure strategy for each player role  ∈  is a function  : C ()→  such

that  () ∈  for all  ∈ C (). In other words, a pure strategy  prescribes for
each type  ∈ Θ a pure strategy in the type’s consideration set . Let  be the set

of such functions and write  = ×∈. Each pure-strategy profile  ∈  induces

a mixed-strategy profile  ∈  () in , where the probability that player  ∈ 

will use pure strategy  ∈  is



 () =

X
∈C()

 () · 1()=

The resulting expected payoff to each player  is 

 () = 

¡


¢
. This defines the

payoff functions 

 :  → R for all players  ∈  in . The consideration-set game

, so defined, is finite. Payoffs to mixed-strategy profiles can be defined in the usual

way. By Nash’s existence theorem, each consideration-set game  has at least one

Nash equilibrium in pure or mixed strategies.7

6The term “consideration set” is borrowed from management science and marketing. The basic

idea is that decision-makers may not consider all choices available to them. The term originates with

Wright and Barbour (1977). For recent contributions to this literature, see Manzini and Mariotti

(2007, 2013), Salant and Rubinstein (2008), and Eliaz and Spiegler (2011).
7A special case of this set-up is when  () = 1. Then  is effectively the same as ; the

probability is then one that all players will consider all pure strategies at their disposal in .
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For any mixed-strategy profile  ∈  ( ), player role  ∈  and strategy subset

 ∈ C (), let  | ∈ ∆ () be the conditional probability distribution over the

strategy set , given that  =  is ’s type (in particular,  | () = 0 ∀ ∈ ).

When a mixed-strategy profile  ∈ ( ) is played in , pure strategy  ∈  will

be used with probability



 () =

X
∈C()

 () ·  | ()  (2)

This defines the mixed-strategy profile  ∈  () induced by  in the underlying

game . We will sometimes refer to  as the projection of  ∈  ( ) to  ()

under the type distribution .

A strategy profile  ∈  ( ) is a Nash equilibrium of  if and only if for all

player roles  ∈  and consideration sets  ∈ C (),
 ()  0 ⇒ (


−  |) = max

∈
(


− []) (3)

The next result characterizes the set of Nash equilibria of any given block game

 as the limit points of projections of Nash equilibria of consideration-set games

 in which the type distributions tend towards placing unit probability on the

(“conventional”) type profile  = (1  ).

Lemma 1. Let  be any block in  = h i and let  ®
∈N be any sequence

where each  is a type distribution, each  a Nash equilibrium of  , and  ( )→
1 as  → ∞. Any limit of projections of these Nash equilibria to  () is a Nash

equilibrium of the block game  . Conversely, any Nash equilibrium of the block

game  can be expressed as such a limit.

Proof : The second claim is immediate: If  ∈  ( ) is a Nash equilibrium

of  then it is the projection of some Nash equilibrium of  with  ( ) = 1.

Hence,  has the claimed property with respect to the constant sequence  = 

∀ ∈ N. For the first claim, suppose that  ( ) → 1 as  → ∞ and let h i∈N be
a convergent (sub)sequence of Nash equilibria from the associated games  , with

limit  ∗ ∈  ( ). Without loss of generality, assume  ( )  0 ∀. Let ∗ be the
projection of  ∗ to () and suppose that ∗ is not a Nash equilibrium of  . Then

there exists a player  ∈  and pure strategy  ∈  such that  (
∗)  (

∗
− []).

By continuity, (
)  (


− []) for all  ∈ N sufficiently large, where  is the

projection of   . Hence,

(

− 


|)  max∈

(

− [])

so  () = 0 by (3), a contradiction. Q. E. D.
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4. Coarsely tenable blocks and coarsely settled equilibria

Let  = h i be any finite game and let  be any block, interpreted as a potential
convention. Call an individual in player population  ∈  conventional if his or her

type is  = . The following definition formalizes an arguably weak robustness

requirement on such a convention, namely, that if the type distribution  is such that

individuals are very likely to be conventional, and if their average play of the game

 is compatible with some Nash equilibrium of the associated game of incomplete

information, , then nobody could do better by choosing a strategy outside the

block.8

Definition 5. A block  is coarsely tenable if there exists an  ∈ (0 1) such that
(


−  |) = max

∈
(


− []) ∀ ∈  (4)

holds for all  ∈  ( ) that are Nash equilibria of some consideration-set game 

with  ()  1−  ∀ ∈  .

By (3), the full block  =  is coarsely tenable in this sense.

A singleton block that is the support of any pure strict equilibrium is also coarsely

tenable, and so is any curb block and any absorbing block. To see why the last (and

strongest) claim holds, let  be an absorbing block. By definition, there then exists

an  ∈ (0 1) such that if  ∈ () is such that  ()  1−  for all players  ∈  ,

then

max
∈

(− []) = max
∈

(− []) ∀ ∈ 

Let  ∈  ( ) be a Nash equilibrium of any consideration-set game  such that

 ()  1− for this  and for all players . Then  ()  0 and thus (−  |) =
max∈ (


− []) by (3). Moreover,  ( ) = 


 ()  1−  for all players  ∈  .9

Thus

(

−  |) = max

∈
(


− []) = max

∈
(


− []) ∀ ∈ 

We also note that the equilibria of the block game associated with a coarsely

tenable block coincide with the equilibria of the original game that have support in

the block. In other words, oblivion of strategies outside the block then comes at no

cost. In sum:

8We do not require or presume Nash equilibrium play in the consideration-set game , only

that if this were the case, then–at least then–no player in  should have a better strategy outside

the block.
9By definition,



 () =

X
∈



 () =

X
∈

X
∈C()

 () ·  | () ≥  () ·
X
∈

 | () =  ()  1− .
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Proposition 1. Every absorbing block is coarsely tenable. If a block  is coarsely

tenable, then the Nash equilibria of the block game  are precisely the Nash equi-

libria of  that have support in  .

Proof : To prove the last claim, let  be any block in any finite game . First,

if  ∈  ( ) is a Nash equilibrium of , it is, a fortiori, a Nash equilibrium of  .

Secondly, suppose that  ∈ ( ) is a Nash equilibrium of  . Let  ( ) = 1 and let

 ∈ ( ) be such that  | = . Then  = , and by (3),  is a Nash equilibrium

of . If  is coarsely tenable:

() = (

−  |) = max

∈
(


− []) = max

∈
(− []) ∀ ∈ 

Q.E.D.

Kalai and Samet (1984) show that elimination of weakly dominated strategies

and/or payoff-equivalent strategies from the full strategy space  () results in an

absorbing retract.10 Since absorbing blocks are coarsely tenable, the same qualitative

conclusions hold for coarsely tenable blocks. More precisely, for each player  in ,

let  ⊆  be such that every pure strategy not in  is weakly dominated by some

mixed strategy with support in . Then  is coarsely tenable, since each player 

will have some (globally) best reply in  to the projection  of any mixed-strategy

profile  ∈  ( ) in any consideration-set game . Likewise, for each player , let

 ⊆  be such that for every pure strategy not in  there exists a strategy in 
that is payoff-equivalent for player . Then  is coarsely tenable.

Conventions tend to simplify the interaction at hand by excluding as many strate-

gies as possible. This suggests that minimal coarsely tenable blocks are particularly

relevant for prediction.11 The games we study are finite and hence admit at least one

such block. The following definition formalizes an equilibrium notion that combines

the (simplicity) requirement of minimality of the set of conventional strategies with

the (rationality) requirement that individuals should not be able to benefit by using

unconventional strategies when others are likely to use conventional strategies.

Definition 6. A coarsely settled equilibrium is any Nash equilibrium of  that

has support in some minimal coarsely tenable block  .

Evidently, any pure strict equilibrium is coarsely settled. By contrast, the mixed

equilibrium in game (1) is not coarsely settled, since it does not have support in

10Here payoff equivalent can be interpreted in the weak sense of payoff equivalence for the player

in question (see Section 2).
11A coarsely tenable block is minimal if it does not properly contain any coarsely tenable block.
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a minimal coarsely tenable block.12 In that example, also the notion of persistent

equilibrium rejects the mixed equilibrium. By contrast, in the elaborated version

of this game, Game 1 in Example 1, the totally mixed Nash equilibrium was seen

to be persistent. However, it is not coarsely settled. Game 1 has two minimal

coarsely tenable blocks, associated with each of the two continuum Nash equilibrium

components,  and . These blocks are  = {} × 2 and  = 1 ×
{}. The coarsely settled equilibria of Game 1 are the Nash equilibria in these
two components.

5. Finely tenable blocks and finely settled equilibria

In each of the two minimal coarsely tenable blocks in Game 1 in Example 1, there are

pure strategies not used in any block equilibrium. Player 2 uses only pure strategy  in

all block equilibria in  and player 1 uses only pure strategy  in all block equilibria

in . Nevertheless, all 2’s strategies need to be included in  and all 1’s strategies

in  since otherwise there will be block equilibria with a better reply outside the

block. This suggests that one might want to look for a weaker block property that

to a lesser extent needs to incorporate unused pure strategies.13 Hence, something

“finer” than coarse tenability is needed. In Game 1, for example, we want to identify

a narrower block, such as  ∗ = {} × {}, that more tightly represents the
pure strict equilibrium  = (1 2) of game (1). Coarse tenability leaves us no way to

exclude the extreme pure equilibria in the Nash equilibrium component  in Game

1 without adding in all 2’s strategies.

Imposing some structure on the type distributions in the consideration-set games,

beyond placing high probabilities on the conventional types, could allow for smaller

blocks–a finer block structure. The following definition formalizes the notion that

(a) individuals are very likely to be of the conventional types for the block (as under

coarse tenability), (b) all types have positive probability, and (c) unconventional types

(those with other consideration sets than those constituting the block) are much more

likely to have larger than smaller consideration sets (in terms of set inclusion). In

particular, the most likely among the unconventional types is the "standard" type

of player in game theory, the one who considers all strategies available in his or her

player role.

Definition 7. For any block  and any  ∈ (0 1), a type distribution  is -proper
12In Section 7 we show that this conclusion holds also when the mixed equilibrium is represented

as a pair of pure strategies added to the game.
13Indeed, the necessity to include some unused strategies in coarsely tenable blocks may, in some

games, make the concept blunt, see Example 2.
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on  if ⎧⎨⎩ ()  ()  1− 

()  ()  0 ∀ ∈ C ()
()  6=  ⊂  ⇒  () ≤  ·  ()

for every player  ∈  .

The following remark shows that a type distribution has this property if un-

conventional individuals’ inattention to individual pure strategies are statistically

independent.

Remark 2. Let  = h i be a finite game and let  be a block, interpreted as
a potential convention. For all players  ∈  and all consideration sets  other than

, let

 () =  ·Π∈ (1−  ()) ·Π ∈ () (5)

(with the last product defined as unity in case  = ). This can be interpreted

as follows. For each player role  ∈  in the game there is a large population of

individuals who are now and then called to play the game, just as in Nash’s mass-

action interpretation. The fraction 1−  of each player population are conventional;

their consideration sets are those that define the block. Among the unconventional

individuals, who make up the population fraction  ∈ (0 1), each pure strategy

 ∈  is ignored with some probability  () ∈ (0 1), and these are statistically
independent events for all pure strategies and individuals, hence the formula (5).14

Such a type distribution  is -proper on  if all probabilities  () are sufficiently

small. To see this, let kk = max∈  (). Clearly  ()  1−  and  ()  0

for all  ∈ C (). Suppose that  ∈ C (),  ⊂  and  6= . Then

 () ≤  () ·
Y

∈\

 ()

1−  ()
≤ kk
1− kk ·  () 

The factor in front of  () is less than  if kk   (1 + ).15

By requiring robustness only to type distributions that are -proper on the block

in question, one obtains the following weaker block property:

14If an individual would in this way ignore all pure strategies in his player role, then he would

"wake up" and consider the conventional set. This follows from (5):

 () = (1− ) +  · [Π∈ (1−  ()) ·Π ∈ () +Π∈ ()]

15See Manzini and Mariotti (2013) for decision-theoretic foundations for such statistically inde-

pendent inattention, and for relations with random-utility models.
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Definition 8. A block  is finely tenable in  = h i if there exists an
 ∈ (0 1) such that (4) holds for all  ∈  ( ) that are Nash equilibria of some

consideration-set game  where  is -proper on  .

Since every coarsely tenable block is, a fortiori, also finely tenable, there are,

in general, more finely than coarsely tenable blocks. In particular, minimal finely

tenable blocks may be smaller than the minimal coarsely tenable blocks.

Example 1 continued.We noted above that the subblock  ∗ = {}×{} of
the coarsely tenable block  in Game 1 is not coarsely tenable. However, it is finely

tenable. To see this, let  ∈ (0 1) and let  be any -proper type distribution on  ∗.
Consider any Nash equilibrium  ∈  ( ) in the associated consideration-set game

. Then 

1 () = 


1 (). For suppose that 


1 ()  


1 (). By (2) we then

have, for  sufficiently small, 

2 () = 2 ({}) and 


2 () ≥ 2 ({}).

Since  is -proper on  ∗, we also have

2 ({}) ≤  · 2 ({}) ,
so 


2 ()   · 2 (). Then  is a best reply for player 1, and 


1 () 



1 (), a contradiction. By the same token, 


1 ()  


1 () is not possible. A

similar argument establishes 

2 () = 


2 (). These two equations together imply

that each player  has a best reply to  in  ∗ , that is, (4) holds and  ∗ is finely
tenable.

When a block is finely tenable, the projection of any Nash equilibrium in any

consideration-set game  where the type distribution  is -proper on  , constitutes

an -proper strategy profile in the original game .

Proposition 2. Let  be a finely tenable block and let  be as in Definition 8. If 

is any type distribution that is -proper on  , and if  ∈ ( ) is a Nash equilibrium

of , then  ∈ () is an -proper strategy profile in .

Proof : To show that  is an -proper strategy profile in  we first note that

since each  ∈ C () has positive probability of being the consideration set under ,
  () = 0 for all pure strategies  ∈  such that  () ∈ argmax∈ (− [])
for some  ∈ C (). Secondly, let   ∈  be such that (


− [])  (


− [])

and let R ⊆ C () be the collection of sets  ∈ C () such that
 ∈ argmax

∈
(


− [])

Clearly  ∈ R ⇒  ∈ . Moreover,  ∈ R, since  is finely tenable and thus

contains a pure best reply to . For each  ∈ R:
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(i) {} = argmax0∈∪{} (

− [

0
]),

(ii)  () ≤  ·  ( ∪ {}) and
(iii)

P
∈R

 ( ∪ {}) ≤ 

 ()

(where (iii) follows from the fact that, in equilibrium, pure strategy  is necessarily

used when it is the unique best reply within the consideration set at hand). Hence,



 () ≤

X
∈R

 () ≤  ·
X
∈R

 ( ∪ {}) ≤  ·  () 

(where the first inequality follows from the fact that, in equilibrium, pure strategy 
is not used when it is not a best reply within the consideration set at hand). This

establishes that  ∈ () is an -proper strategy profile in . Q.E.D.

Remark 3. The above proof holds also for weaker versions of fine tenability. One

such version is obtained when the hypothesis in condition (c) in Definition 7 is

strengthened to also require that  contains a strategy that is a strictly better

reply to some strategy profile, or, in other words, that  be larger than  in

a "strategically relevant way" for player . Formally: (c’) if  6=  ⊂  and

max∈ (− [])  max∈
(− []) for some  ∈  (), then  () ≤

 ·  ().

The following result is immediately obtained from Proposition 2, establishing the

existence of at least one proper equilibrium with support in any given finely tenable

block.

Corollary 1. Every finely tenable block contains the support of a proper equilibrium.

Proof : By the Bolzano-Weierstrass theorem, every sequence from a compact

set has a convergent subsequence with limit in the set. Given  finely tenable,

let  ∗ be such a limit point of a sequence


®
∈N of Nash equilibria  ∈  ( )

of consideration-set games  where each  is an -proper type distribution on

 and  → 0. Let  and ∗ ∈  () be the projections of  and  ∗ in . By

construction, ∗ is a proper equilibrium of . Moreover, ∗ has support in  , because
 ( )→ 1 and thus ∀ ∈ ,

 () =
X

∈C()
 () · | () → ∗ () =  ∗| () ,

so ∗ () = 0 if  ∈ . Q.E.D.

Remark 4. The above machinery provides a behavioral micro foundation for the

concept of proper equilibrium. For by Proposition 2 as applied to  = , all limit

points (as  → 0) to projections of sequences of Nash equilibria in the associated

consideration-set games are proper equilibria.
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In the light of Proposition 2 and Corollary 1 it is natural to require properness

when defining settledness with respect to finely tenable blocks:

Definition 9. A finely settled equilibrium is any proper equilibrium that has

support in some minimal finely tenable block.

We call any equilibrium that is both finely and coarsely tenable fully settled.

Proposition 3. Every finite game has at least one fully settled equilibrium.

Proof : Let  be any minimal coarsely tenable block (the existence of which

follows from the finiteness of ). Then  is also finely tenable. If  is not a minimal

finely tenable block,  will contain such a block (again since  is finite). According to

the above corollary, there exist a proper equilibrium with support in that subblock.16

Q.E.D.

In the following elaboration of game (1) for  =  =  =  = 1, the only

coarsely tenable block is the whole strategy space . By contrast, there are smaller

finely tenable blocks. Moreover, there are only two finely settled equilibria and these

correspond to the two strict equilibria of the original game (1).

Example 2. Reconsider the extensive-form game in Example 1. If one would replace

the (0 0) end-node by another zero-sum subgame, like the first zero-sum subgame,

the purely reduced normal form (with abstract labeling of pure strategies) would be

Game 2:

2 2 2 2
1 1 1 1 1 2−2 −2 2
1 1 1 1 1 −2 2 2−2
1 2−2 −2 2 1 1 1 1

1 −2 2 2−2 1 1 1 1

Also this elaboration of game (1) has three Nash equilibrium components:

 = { = ([1] + (1− )[1]  [2] + (1− )[2])) for   ∈ (14 34)}

 = { = ([1] + (1− )[1]  [2] + (1− )[2])) for   ∈ (14 34)}
and  = {}, where  is uniform randomization over each strategy set. The

proper equilibria are  = (1
2
[1] +

1
2
[1]

1
2
[2] +

1
2
[2]) ∈ ,  = (1

2
[1] +

1
2
[1]

1
2
[2]+

1
2
[2]) ∈ , and . The only curb, absorbing or coarsely tenable block

16Since curb ⇒ absorbing ⇒ coarsely tenable ⇒ finely tenable, every finite game in fact admits

a fully settled equilibrium with support in a minimal absorbing block that is a subset of a minimal

curb block.
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is the whole pure-strategy space , so all Nash equilibria are persistent and coarsely

settled. However,   = {1 1} × {2 2} and   = {1 1} × {2 2} are
finely tenable blocks by similar arguments to those given in Example 5. The game

thus has only two finely, indeed fully, settled equilibria,  and , corresponding

to (and behaviorally indistinguishable from) the two strict equilibria of the original

game (1).

The finely settled equilibria in the preceding example are also coarsely settled. The

next example shows that a finely settled equilibrium need not be coarsely settled.

Example 3. Consider a version of the battle-of-the-sexes game where player 1 has

an outside option:

1

A E

L L RR

3
1

0
0

1
3

0
0

2
0

L R

1

2

Its purely reduced normal form (with  representing the two payoff-equivalent strate-

gies  and ) is

Game 3:

 

 3 1 0 0

 0 0 1 3

 2 0 2 0

This normal-form game has two Nash equilibrium components, the singleton set  ∗ =
{} × {}, consisting of the strict pure equilibrium ∗ = (), the “forward-

induction” solution, and a continuum component in which player 1 plays  for sure

while player 2 plays  with probability at least 13. The strict equilibrium ∗ is fully
settled. Another proper equilibrium of this game is  = (). (To see this, note

that for all   0 small enough, 1 = (
2  1− − 2) and 2 = ( 1− ) make up

an -proper strategy profile .) What about its supporting block,   = {}×{}?
Clearly,   is not coarsely tenable, since strategy  is the unique best reply if there

is a positive probability that 1 plays , which indeed is the case under some type

distributions that attach arbitrary little, but positive probability to strategies outside

the block  . However,   is finely tenable. To see this, let  be an -proper type
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distribution on   and let  ∈ ( ) be any Nash equilibrium of. Then 

2 ()  ,

so for   0 small enough 

1 () ≤ 1 ({}) ≤ ·1 ({}) ≤ 


1 (), which

implies that  and  are best replies to . In sum, ∗ is fully settled while  is
finely but not coarsely settled. Note that  corresponds to the sequential equilibrium

of the extensive-form game in which play of () is expected in the battle-of-sexes

subgame.

We proceed to establish that coarsely and finely tenable blocks, and thus also

coarsely and finely settled equilibria, are generically equivalent.

6. Generic normal-form games

The concept of regular equilibrium was introduced by Harsanyi (1973) and slightly

modified by van Damme (1991), who defined a Nash equilibrium of a finite normal-

form game to be regular if the Jacobian, associated with a certain system of equations

closely related to those characterizing Nash equilibrium, is non-singular (op. cit.

Definition 2.5.1).

Definition 10. A game  = h i is hyper-regular if, for every block  ⊆ ,

all Nash equilibria of the associated block game  are regular in the sense of van

Damme (1991).

In a well-defined sense, almost all normal-form games are hyper-regular:

Lemma 2. For any (finite) set of players  and (finite) sets of strategies  for each

player  ∈  , the set of payoff functions  in R| |·|| such that  = h i is not
hyper-regular is contained in a closed set of Lebesgue measure zero in R| |·||.

Proof: The property of regularity of a block game depends only on the payoffs

on  , and this property will fail only for payoff functions in a closed set of Lebesgue

measure zero (van Damme, 1991, Theorem 2.6.1). There are only finitely many blocks

 ⊆ , and the union of finitely many such sets is still a closed set of measure zero.

Q.E.D.

Proposition 4. If a game  = h i is hyper-regular, then any block  is finely
tenable if and only if it is coarsely tenable. Any equilibrium of  is finely settled if

and only if it is coarsely settled.

Proof: We first establish that for a hyper-regular game there cannot exist any

Nash equilibrium  of any block game  such that a player  has an alternative

 ∈ \ with (− []) = (). If this equality would hold, and if we added

 to  (obtaining  0 =  ∪ {}), then we would obtain a block game  0 in
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which  would still be a Nash equilibrium but, having an alternative best reply in

 0 that gets zero probability in  ,  would not be quasi-strict in this new block

game  0. By hyper-regularity of ,  is a regular equilibrium of  0 and hence

 is quasi-strict (Corollary 2.5.3 in van Damme, 1991), a contradiction.17 So if 

is a Nash equilibrium of some block game  , then either (− [])  () or

(− [])  (). The first of these inequalities, for any  and , would imply that

 is not coarsely tenable. The second inequality, for all  and , would imply that 

is coarsely tenable. Thus, in the given hyper-regular game , a block  is coarsely

tenable if and only if (− [])  () for all  and  ∈ \, at all equilibria  of
the block game. Coarsely tenable blocks are always finely tenable, so it remains to

prove that, for our hyper-regular game , any block  that is not coarsely tenable is

not finely tenable.

In order to establish this, consider any Nash equilibrium  of any block game

 . The payoff function of  can be viewed as a vector  in R| |·| |. By hyper-
regularity of , the equilibrium  is regular, and thus also strongly stable, in  (van

Damme, 1991, Definition 2.4.4 and Theorem 2.5.5). This means that there is some

open neighborhood  of  ∈  ( ) and some open neighborhood  of  ∈ R| |·| |
such that, for any perturbation of  that has a payoff function ̃ in  , we obtain a

game ̃ = h ̃i that has exactly one equilibrium ̃ in  , and this equilibrium

depends continuously on the payoff function ̃.

Now let’s think about a consideration-set game . Let  be a partial behavior-

strategy profile in the extensive form of that defines a mixed strategy | ∈ ∆ ()

for every player , the player’s local strategy at that information set, and for every

consideration set  other than . Let  ( ) be the set of all such partial behavior-

strategy profiles. When  defines the behavior of players at all consideration sets

other than those of  , then the only question remaining in  is what each player

 would do when considering , which will happen with probability at least 1 − .

So with any given , the consideration-set game  becomes a perturbation of  ,

and its payoff function in R| |·| | will be in the open set  for all   0 sufficiently

small, given . In fact, there exists an ̄  0 such that ̃ ∈  for all . Now, given

any  ∈ (0 ̄), consider the correspondence that sends any profile  ∈  ( ) to each

player ’s (non-empty, compact and convex) best local replies at every consideration

set  6=  to the  and ̃ strategies, where ̃ is the (continuously defined) equilibrium

in  for this perturbation of  . This correspondence is upper hemi-continuous in

, so, by Kakutani’s fixed-point theorem, for any such , there exists a fixed point

∗. This fixed-point ∗, together with its corresponding ̃ at  , will constitute an

equilibrium of the consideration-set game . The projection of this equilibrium to

17A quasi-strict equilibrium (Harsanyi, 1973) is any Nash equilibrium in which all players use all

their pure best replies.
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 () will be -proper with respect to the block  (along the lines given in Section 5)

and these strategy profiles converge to the given block-game equilibrium  as → 0.

But then this sequence would yield a contradiction of  being tenable if we had

(− [])  () for some player  and some strategy  ∈ \. Thus, if  is not
coarsely tenable, then  is not finely tenable either. So for a hyper-regular game, a

block is coarsely tenable if and only if it is finely tenable.

Since all regular equilibria are proper (van Damme, 1991, Theorems 2.5.5, 2.4.7,

2.3.8), an equilibrium in a hyper-regular game is coarsely settled if and only if it is

finely settled. Q.E.D.

The game in the introduction shows that there are generic games in which the

set of settled equilibria is strictly smaller than the set of Nash (perfect, proper)

equilibria. The game in the next example, taken from Table 7 in Myerson (1996),

has an open neighborhood (in the space of 2× 4 normal-form games) in which there

is always a Nash equilibrium which is persistent but not settled. This shows that

settled equilibrium is not generically equivalent with Nash or persistent equilibrium.

Example 4. Consider the game

Game 4:

2 2 2 2
1 0 2 1 1 0 0 1−3
1 1−3 0 0 1 1 0 2

(6)

and note that the block game over the "middle block"   = {1 1} × {2 2} is
identical with game (1) for  =  =  =  = 1. The diagram below shows the payoffs

to player 2’s pure strategies as functions of the probability  by which player 1 uses

her first pure strategy.

-4

-3

-2

-1

0

1

2

3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

a2
b2
c2
d2

Eu2

p 
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This game has three Nash equilibria, all mixed. In each equilibrium, player 1

uses both her pure strategies while player 2 uses only two of his four pure strategies;

either the two left-most, {2 2}, the two middle ones, {2 2}, or the two right-
most,{2 2}, each equilibrium corresponding to a kink in the upper envelope of the

payoff lines in the above diagram.

This game is hyper-regular. This follows from Theorem 7.4 in Jansen (1981) (see

also Theorem 3.4.5 in van Damme, 1991), according to which a Nash equilibrium of

a finite two-player game is regular if and only if it is essential and quasi-strict.18 It is

not difficult to verify that all block equilibria, of all blocks in this game, have both

properties. Moreover, the game has only one curb block, the whole set , and it

has only one absorbing retract, the whole set  (). Hence, all three equilibria are

persistent. However, the "middle" equilibrium is not settled.

More exactly, the three Nash equilibria of this game are

 =

µ
3

4
[1] +

1

4
[1] 

1

2
[2] +

1

2
[2]

¶

 =

µ
1

2
[1] +

1

2
[1] 

1

2
[2] +

1

2
[2]

¶
 =

µ
1

4
[1] +

3

4
[1] 

1

2
[2] +

1

2
[2]

¶
Consider first the "middle" block   = {1 1}×{2 2}, the support of . The

associated block contains, in addition to , two (strict pure) block-game equilibria,

each, however, with better replies outside the block. Hence, by Proposition 1, this

block is not coarsely tenable. Arguably, if   became the conventional block played in

a population, play might drift towards one of these strict block equilibria, which would

induce a movement out of the block, towards a better reply, and thereby destabilize

the block. By contrast, the supports of each of the two other equilibria, the "side"

blocks   = {1 1} × {2 2} and   = {1 1} × {2 2}, do not contain any
other block equilibria and are coarsely tenable. The only coarsely tenable block that

contains  is , which, however, is not minimal. Hence, while all three equilibria

are persistent, only  and  are coarsely settled. These claims hold for an open

set of payoff perturbations of the game. Thus, the property of being coarsely settled

is not generically equivalent to persistence.

The two minimal coarsely tenable blocks,   and  , are, a fortiori, also finely

tenable. Since they contain no other finely tenable block, they are minimal and hence

 and  are also finely settled. Is the middle block   finely tenable? As we will

18An essential equilibrium (Wu and Jiang, 1962) is any Nash equilibrium such that every nearby

game, in terms of payoffs, has some nearby Nash equilibrium.
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see, this is not the case although   is the support of a proper equilibrium, .

First, to see that  is proper, let 1 = (12 12) and 2 = ( 12−  12−  ).

Clearly  is -proper for all  ∈ (0 12), and  →  as → 0. Second, to see that

  is not finely tenable, let   0 and let  be as in Remark 2 , with 2 (2) = ,

2 (2) =  · 2 (2) = 2 · 2 (2) and kk   (1 + ) for both players . Then  is

-proper on   for all   0. However, for all   0 sufficiently small and all Nash

equilibria  ∈ ( ) of  we have

2(

1   2|2)  2(


1  [2]) (7)

so   is not finely tenable. In sum:  and  are the only fully settled equilibria

of this game.

7. More Examples

The next example shows that, unlike minimal curb blocks, minimal tenable blocks

may overlap.

Example 5. Consider

Game 5:

2 2 2
1 3 1 1 3 0 0

1 1 3 3 1 1 3

1 0 0 1 3 3 1

This game has three Nash equilibria: , in which each player randomizes uniformly

across his or her two first pure strategies, , in which they randomize uniformly

across their last two pure strategies, and the totally mixed

 =

µ
2

9
[1] +

5

9
[1] +

2

9
[1] 

2

5
[2] +

1

5
[2] +

2

5
[2]

¶
The supports of  and  are blocks that both contain (1 2). These blocks are

not absorbing, since for certain mixed-strategy profiles near the profile that puts unit

probability on 1 and 2, either player 1 or 2 has no best reply in the block. However,

they are minimal coarsely tenable. The only absorbing block is the full strategy space

, so all equilibria are persistent, while only  and  are coarsely, indeed, fully

settled.

Suppose that game (1) was enlarged by letting each player’s mixed Nash-equilibrium

strategy be represented as a new pure strategy. As the following example shows, this

would not affect the collection of minimal tenable blocks. Hence, the rejection of the

mixed equilibrium in that game does not depend on the fact that it is mixed per se.



Tenable blocks and settled equilibria 24

Example 6. Let  =  =  =  = 2, and consider

Game 6:

2 2 2
1 2 2 0 0 1 1

1 0 0 2 2 1 1

1 1 1 1 1 1 1



where pure strategy  is payoff equivalent with mixed strategy 
∗
 =

1
2
[]+

1
2
[], for

 = 1 2. This 3×3-game has infinitely many Nash equilibria; the two strict equilibria
(1 2) and (1 2), the pure equilibrium (1 2), and a continuum of mixed equilibria

where each player  randomizes arbitrarily between ∗ and  (thus also including

(1 2) as an extreme point). The two strict equilibria are of course fully settled.

Moreover, their supports are the only minimal tenable blocks (and this holds for an

open set of payoffs around  =  =  =  = 2). In particular, the singleton block

  = {1} × {2} is not finely tenable (and hence not coarsely tenable). The reason
is that for arbitrarily small   0 there are type distributions  that are -proper on

  under which  is not a best reply to the projection of any Nash equilibrium in the

associated consideration-set game .19

Established refinements, such as Kohlberg-Mertens stability, are known to have

little bite in sender-receiver games. By contrast, settledness effectively discards ar-

guably implausible equilibria in such games. We illustrate this by way of a simple

example due to Balkenborg, Hofbauer and Kuzmics (2014).20

Example 7. Consider a sender-receiver game in which there are two equally likely

states of nature,  =  and  = . Player 1, the sender, observes the state of nature

and sends one of two messages,  or , to player 2. Having received 1’s message, 2

takes one of two actions,  or . Hence, each player has four pure strategies. Assume

that both players receive payoff 2 if action  () is taken in state  (), and otherwise

both players receive payoff zero. The normal form of this game is

Game 7:

   

 1 1 1 1 1 1 1 1

 1 1 2 2 0 0 1 1

 1 1 0 0 2 2 1 1

 1 1 1 1 1 1 1 1

19For each player , strategy  is a best reply only to the other player’s randomizations between

∗− and −, a one-dimensional subset of the other player’s (two-dimensional) mixed-strategy simplex
in Game 6.
20See also the analysis of related issues in Gordon (2011).
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Any strategy pair that assigns equal probability to the two middle strategies is a

Nash equilibrium: if 1 = (   ) ∈ ∆ (1) and 2 = (0 0 0 0) ∈ ∆ (1),

then  is a Nash equilibrium. As pointed out by Balkenborg et al. (2014), every

Nash equilibrium  of this form, viewed as a singleton set, is strategically stable in

the sense of Kohlberg and Mertens (1986). However, only the two pure and strict

equilibria ∗ = ( ) and ∗ = ( ) ("taking the right action in each state")
seem reasonable as predictions of how people will play this game, especially if they

had some familiarity with this or similar interactions. For the same reasons as given

in the preceding example, only these two equilibria are settled.

8. Conclusion

This paper has focused on an assumption that, in culturally familiar games, people

will develop social conventions that simplify the game by excluding some strategies

from normal consideration. We feel that such an assumption has substantial realism,

not only because of the prevalence of social conventions but also because of cognitive

limitations. In games with very large strategy spaces, such as chess, it falls outside

the bounds on human cognition to consider one’s whole set of pure strategies. Our

assumption, to allow for the possibility that a player may ignore some strategies that

are feasible in the actual game, leads us to analyze games that might not be common

knowledge among the players. But we have assumed also that players can break free

from such conventions and explore other strategies in the game. Thus, our concepts

of tenable blocks have been defined as conditions for a conventional simplification to

justify players’ understanding that they have no reason to consider unconventional

alternatives as long as others are unlikely to do so.

To formalize these concepts, we have analyzed consideration-set games in which

players may randomly and independently consider any nonempty subset of their ac-

tual strategy set in the game. We defined a coarsely tenable block as a convention such

that there could never be any advantage for any player to consider any unconventional

strategy in any equilibrium of any consideration-set game in which the probability of

every player considering the given conventional block is sufficiently close to one. This

seemed a good basic definition of tenability, but the coarsely settled equilibria that we

found in minimal coarsely tenable blocks sometimes failed to exclude some equilibria

that seemed unreasonable to us, and so we developed a concept of fine tenability that

would admit smaller tenable blocks.

Our concept of fine tenability was derived by analyzing a smaller class of consid-

eration set games around any given conventional block, those in which any unconven-

tional player would be much more likely to see more of the strategies that are feasible

in the actual game. This restriction implies some rationality of behavior when play-

ers deviate from the convention and brings the present approach, except for its focus

on conventions, close to the standard game-theoretic approach where players always
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consider their full strategy sets. However, other classes of consideration-set games

around a conventional block might also be worth studying. Any other restriction on

the consideration-set games (within those admitted in our definition of coarse ten-

ability) could yield an alternative concept of "weak tenability" which in turn could

be used to define an alternative concepts of settled equilibria in the minimal weakly

tenable blocks. We would look forward to future research on these ideas.

The present approach also suggests other avenues for further research, where one

is to apply the current solutions to well-known (finite) games that represent important

interactions in economics, political science and other social and behavior sciences. Do

the solutions suggested here match up with what we know or believe about the likely

outcomes in such interactions? For example, standard refinements usually have little

cutting power in voting games, and yet such games usually have a plethora of arguably

unreasonable Nash equilibria. We conjecture that the present machinery might have

a lot of cutting power in such games.21 A second avenue would be to study the

solutions’ predictive power in controlled laboratory experiments. Will human subjects

in the lab, under random rematching and with some opportunity for social learning,

tend towards minimal tenable blocks and settled equilibria? A third avenue could

be to explore connections between our solutions and explicit models of population

dynamics. There is a handful such models in the economics literature. Some of these

have been shown to converge to minimal curb sets, see Young (1993, 1998), Hurkens

(1995) and Sanchirico (1996). It is also known from the literature on dynamic learning

and evolution in games (see e.g. Nachbar, 1990, and Weibull, 1995) that if such a

process meets certain regularity conditions, and if it converges, then the limit point

will be a Nash equilibrium. In such dynamic population models, will settled equilibria

and minimal tenable blocks be good predictors?

21Laslier and Van den Straaten (2004) show that while perfection may have little cutting power,

"true perfecting" (see Kalai and Samet, 1984) effectively eliminates implausible equilibria. The

present machinery might lead to similar conclusions as for true perfection, since tenability effectively

requires robustness to a wide range of type distributions, much in the same way as true perfection

requires robustness to a wide range of strategy perturbations.
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