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Abstract

We study the relaxation to equilibrium of a strongly damped
charge density wave in the presence of a pinning potential. Nu-
merical simulations on a computer yield a decay following the
Williams-Watts—-Kohlrausch law exp[—(t/T)a] with a=)¥, and lead
to an analytical treatment of single points, thereby introducing
the concept of waiting times. By introducing a stochastical term
to represent the elastic coupling with neighbouring sites, the
system can be described by an effectively one particle approxi-
mation. By averaging over all possible phases, and therefore
over all waiting times, we retrieve the N particle system and

are able to theoreticatly confirmthez=stretched exponentiai law: -
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1 Introduction

1.1 Relaxation phenomena

A subject of intense study these days consists of relaxation
phenomena. As early as 1847, Kohlrausch proposed & ubiquitious ex-

ponential decay law,
W(t) = v, expl-(t/0) ", (0<asl), (1.1)

in order to describe viscoelasticity'!. In 1971 Williams and Watts
rediscovered this law when investigating dielectric relaxation?»?,
and. since then, numerous‘authors Qave been concerned with the ap-
plicability or with the dérivation of this law, which is by now
generally known as the Williams-Watts—Kohlrausch (WWK) law.

The most striking feature of this law is the wide range of phe-
nomena in which it can be succesfully applied. This might surprise
the reader somewhat, for he should be familiar with the so-called
Debye law , which is a special case of the WWK law, namely with

a=1, and which is simply a solution of a first order linear differ-

ential equation, as it is often encountered in mechanical friction

and damping:

Y(t) = ¥, expl-t/7], (1.2)
so that

bo) = 2By 2L gt/ = I e,
or equivalently

b(t) = c b(t). (1.3)

On the other hand, eq.(1.1) is a solution of

N -a t o1 a -0 .t a-1
Y(t) = ¥, — [‘T‘] exp[-(t/t) ] = — [Z] p(t),
T T

or



. a=1
P(t) = c(a) t b(t), (1.4)
an equation that looks not as common as eq.(1.3) does.

Among the areas in which use of eq.(1.1) seems justified are

charge density waves (CDWs)®s®, spin glasses® and glasses’.

1.2 Hierarchical models

Although the WWK law describes properly the observed behaviour
of this whole range of seemingly unrelated systems, the physical

reason why it does so remains unclear.
A nice property of eqf(l.3) is, that it is a linear equation
and consequently, doubling the (generalized) force constant implies

relaxing twice as fast:
D) = 2¢ () = o= p(t)
- T ot/2

yields

v(t) = v, exp[-t/(/2)] = v, exp[-2t/<].

Eq.(1.4) lacks this property since

o-1

scla) t%7 w(t) = =2 —t 3 " y(x),
2l/ar Zl/aT

v(t)

and therefore

p(t) = v, expl=(t/(/1277%1))%] = v, exp[-(2"%/1)%],

I

so that the scaling factor depends in a non-linear way on a.
Generally, a linear response is regarded as a basic mechanism?
for relaxation, and attempts will always be made to build a non-

linear system out of a linear one. Indeed, for the WWK law, several

mechanisms have been proposed, but most of them only make the
streched exponential law seem plausible, instead of deriving it

from assumptions, supported by physical rather than phenomenologi-

cal evidence.

t For a better motivation, the reader is referred to the appendix.
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The most convenient way to proceed, is to assume weightfunctions®

w( 1), chosen in such a way as to give the WWK law in the equation
SW(t) = [drw(t)exp[-t/t]. (1.5)

It is clear that this a purely phenomenological approach, and that
it only displaces the physical difficulties from a towards w(T).
The form of the w(t) therefore is crucial and what is called for
is a persuasive mechanism from which it can be obtained.

The hierarchical model, as was first described by Palmer et al.?®,
gives us a form of w(t) which can be explained by physical proper-
ties and which gives, inserted in eq.(1.5) the WWK law.

They use a discrete:version of eq.(1.5)

by 3
p(t) = § wln)exp[-t/t ]
n
n=0
where
(p)
P ¢!
Tn+l 2 h (1.6)
and
N
__n
wn = N ) J

with Nn the number of independent degrees of freedom belonging to
a cluster with relaxation rate T
They postulate a number of different functional forms for M and

Nn presumably arising from hierarchical dynamical constraints. They

consider
Hp = Ho d. Nn+l = Nn/x
My = poexg(—yn) e. Nn = “n/a
C. pn = pon f. Nn+l = pnNn/a

Case (cd) is the one that gives a WWK law.

Another interesting choice is the one with

(1.7)
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With the saddlepoint method it is readily shown that

b(t) = v expl-(t/x) B/ (B+1)

or substituting

B = — (1.8)

1-a

we find the WWK law
b(t) = voexpl-(t/1)7].

The physical significance of eq.(1.7) is that the number of points

Nn that relax after Nn— has.felaxed decays exponentially, and that"

1
the relaxation time associated with this channel is equal to T, but

since it had to wait (n-1)t before being activated, the effective

relaxation time equals nrt.

1.3 Aim of this research

The aim of this work ié to test a Hamiltonian model, using nu-
merical and analytical methods. We investigate a discrete one di-
mensional system with overdamped nearest-neighbour elastic inter-
actions, plus a non-linear, random, 'pinning'-potential, giving
WWK-like relaxation for intermediate times. (For very long times
the relaxation is once more pure exponential, as it is to be expec-
ted®.)

The particular model chosen was originally devised for the de-
scription of the dynamics of CDWs'®, and is presented in chapter 2.
We will focus not only on the macroscopic behaviour of the polari-
zation, but in particular on the microscopic contributions it con-
sists of. We have found, on the basis of our numerical work, pre-
sented in chapter 3; that a lot of insight is to be gained by con-
sidering in detail the relaxation mechanism of the individual sites,
and this we do in some detail in chapter 4. There, two important
concepts are introduced and developed: a sudden rapid increment. of
the polarization, called an 'event', and the time after which an
event manifests itself, the so-called 'waiting-time'. In chapter

5, we try to treat waiting-times in a statistical way, in order to
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obtain a distribution of waiting times, leading to a relaxation
law in the form of a stretched exponential. Chapter 6 concludes
the work and gives a few suggestions for things still to be inves-

tigated.

_— (1-5)




2 The model

2.1 Model Hamiltonian for pinned charge density waves

In this chapter we present the model we are to investigate in
later chapters. The model consists of a one dimensional discrete
system, the discretization arising from impurity potentials. First
we derive the equation of motion. Following the approach of Pietro-

nero and Stridssler'’, we consider the following CDW:
p(x) = ep [1 + Ccos(qg,x+d(x))]. (2.1)

Here p(x) is the charge density at location x and ¢(x) the phase
at x. ep, represehts the éHafge,‘qo the Fermi wavevector in one di-
mension, and C the amplitude of the CDW. ForAa Peierls system with

a constant density of states per site Noj, this is a constant and

equal to!?

N_A

— oo
akp,’
where 2A is the enrgy gap, a the lattice constant, and A the constant
of phonon-electron coupling.
We will consider a pinned system, which means we have impurities,
giving rise to pinning potentials. This situation is realized in
nature in one dimensional conductors like NbSe,!®. The pinning po-

tential is given by

VvV =V

b 0 o(x) S(X—xj)- (2.2)

|t~ 2

j=1

Next we assume a damping mechanism acting only at the impurities,

that is we write

[
m
F = 2
T

T

g{ 6(X—Xj), (2.3)

J=1

where 1 determines the strength of the damping, and we allow an

external field E to be applied, which shifts the CDW as a whole:

U, = —Fa B9, (2.4)




We will work with phase dynamics, that is, while we hold the am-
plitude of the CDW constant, we consider the modulations of ¢(x),
the position of the CDW, along the chain. For a CDW this is the most
interesting mode, for it is the only one yielding a non-zero cur-
rent!?!.

The Hamiltonian for the dynamics of the phase ¢(x) can be written

as

SRS TYVR T
H = 3 de[/zom(at) + WG T, (2.5)

and here, it has turned out that a picture of overdamped motion
seems most appropriate, and henceforth we may safely neglect the
kinetic term.

Now, putting in all ingredients, we have

N o} N
K 2° m 9 .
R ax? + ) 8(x=x){- 7, 3% + ep,CV, N sin{q x +¢(x) ]} +
o j=1 I j=1 )
+ Eﬂa E = O (2.6)
9o

as our equation of motion.
If we integrate this equation between neighbouring impurity sites

Xj’ we obtain the relatively simple equation of motion for the pha-

ses wj = ¢(xj)/2n:

j+l—2wj+¢j_l] - sin[2n(¢j¥wj)] + E. (2.7)

The first term in the brackets represents an elastic coupling between
the phases wj at neighbouring impurity sites, where we have neglec-
ted the randomness in the impurity spacings. We have likewise taken
the effective charge at each impurity site to be uniform. The random
positions of the impurities are included however, in the random phase
¢j = qoxj/Zn (cpj is not the variable ¢(x) which appears in the equa-
tions above), appearing in the non-linear pinning potential. The ef-

fective coupling constant B is given in terms of the quantities de-

fined above, as

___ 27mKn
B e;)OCVoqo3 ’
where n is the one dimensional impurity concentration. The electric

field has been normalized by 1/E_ , where E, = CV,nq,.
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2.2 Existence of a threshold field

When E is sufficiently high, all $j increase, and if all wj are
raised by an amount 1, we cannot distinguish this situation from the

previous one on the basis of eq.(2.7). Consequently the process will

be repeated continuously, the polarization raising higher and higher.

The minimum value of E which initiates this process is called the
threshold field, Eth'

Above threshold, a system will behave in a periodic way; below
it there is always at least one stable state. Usually however, there
is a large number of metastable states, besides the genuine ground-
state, and the system can be found in quasi-equilibrium in any one
of these low lying states. Once the system is in a particular state,
it will not go to other statgs, for we assumed T=0, i.e. no thermal
noise. ‘ ,

We are primarﬁly interested in relaxation. This word is under-
stood to be given its literal meaning of going to a state of rest.
Our discussion will be based entirely on systems with E sufficient-
ly small. Others'®’ '? have determined the values of Eth’ and these
are reproduced in fig.(2.1).

1 I |
1.04 : —

=9
7777
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fig.(2.1) The threshold field (reproduced from 12).

2.3 Observable quantities

Since the model was originally devised for CDWs, we can think
of each point bearing a unit amount of charge, e. If we take this

to be 1, we can define the polarization P by




1wj (2.8)

ol
m
I o~ 2

J

and with this in mind, we can proceed by defining the current J by

N 3V, N
P
J E—a‘Ez Z E’EJE Z F(IIJJ), (2.9)
j=1 3=1

where we defined a generalized force F by writing the equation of

motion (2.7) as

b, = F(v,). ' (2.10)

pr=t 2 (2.11)
p

because it is independent of P . Since we expect the polarization
to follow a WWK law, it is even more suitable to use 1+P', because
a plot of this curve versus time offers us a rapid investigation

of both o and T:
1+P' = [1 - (t/0)%7, (2.12)

so that the intersection with the 1+P'-axis gives a, while the in-

tersection with the t-axis gives r.

(2-4)




3 A numerical approach

3.1 Formulation of the problem

Eq.(2.7) is a non-linear equation, and for more than one point
(N>1) we obtain N coupled non-linear differential equations, which
are clearly too hard to solve by analytical methods. As we will see
in chapters 4 and 5, progress can be made by some suitably made ap-
proximations, but in order to know what is meant by 'suitably', we
first consider the problem numerically. And above all, it is always
very instructive to perform simulations on a combuter.

There are some difficulties in interpreting the results: clearly
a small system can show péculiarities due to non-averaged fluctua-
tions, while on the other handva large system smoothes everything
out.

The next sections describe what the program does and what results
it gives. Finally we will discuss how to tackle the analytical pro-
blem. For those who want to study the program in detail: it is im-
plemented on the Cyber and written in PASCAL, and it can be obtained
by the command 'GET,CDWSIMU/UN=PIETR®3'.

3.2 Methods

Cyclic boundary conditions (CBC) constitute a generally accep-
ted way to simulate an infinite system by a finite one. In case of
long-range interactions the danger of delayed feedback is present,
but in our system it turns out that we may safely apply CBC.

The way in which the differential equation will be solved is the
usual simplest one, in which the force at each point is evaluated
and, accordingly, a tiny time-step dt later, all points are set to
their new positions, and the process is repeated. That is to say

Y

B_‘E = F(¥)

is written as

¢im  V(t+dt)-V(t)
dt+0 dat = F(¥),




and a small but non-vanishing value for dt is taken. Te smallness
of dt is cecked, for instance by comparision with dt' = 10 dt.

Since F(wj) depends explicitly on j's neighbours, we have to be
cautious not to introduce a direction in the algorithm. This is the
reason for computing the ¢j of a whole generation, and only then
replacing the old generation by the new one.

We expect some exponential decay, and thus will never reach the
equilibrium state, but can approach it as closely as we like by be-
ing more patient. From the analytical treatment (see chapter 4), we
can extract that it is very unlikely to see anything interesting
after $ has decreased beyond, say 10_5. This conclusion we may extend
to a many particle system, but it does not apply to the current
(which can in principle consist of one large and many small &is,
and still be considerably below 10_5), but only to the sole @3 of

each j in the sample. Our only‘criterion for equilibrium is there-

fore

and even this J, is an estimate. When @j becomes very small (say

< 10 -l2 w }, the fluctuations in w are of the order of the last
digit, and since this can only change by an integer amount, W

the next step may be disturbed. In conclusion, computational noise
might come into play below @j = 10—12, and we'd better stop the ex-

periment. By then the probability for seeing interesting things is

negligible, we hope.

Preparation of the system and ways of averaging

Our system has to be prepared in a certain way, so as to give a
relaxation from a well-defined initial state to a final state. For
this preparation we use the following method:

a. give all wj a certain value wj(tz—w) =

apply a field E = E_,

c. release all wj until @j < J,. Now we have our wj(t=o).

For the first and second step there are several possibilities,
of course, for the choice of E, and c. Most experiments were done
with E; = 0 and ¢ = O.

In order to get better statistics there are several possibilities

(the index (ij) denotes ith sample, jth phase point):

(3-2)




a. take one very long chain,

take several chains with wij(t=—m) = 0 and each point (ij) having

a different phase ¢ij’

c. take several chains with ¢ij = ¢Oj and wij(tz—w) = wio(tz-m).
Case b. corresponds to an average over configurations, while case c.
is an average over initial states.

Taking one long chain (case a.) turns out to be almost equivalent
to dividing the chain in several segments and tying the ends of each
(case b.). When using E, = 0, an average over initial states (case
c.) also gives the same behaviour. For convenience in notation (a—
voiding double indices), we always use one chain (case a.).

After preparation comes our experiment:

a. change the field by an amount e at t=0, i.e. E(t>0) = E +¢,

b. observe the quantities as discussed in section (2.3) during the
relaxation towards the new equilibrium state,

c. stop the experiment when @. <J,, ¥j. For the J, we nearly al-
ways choose J, = lO_lo.

The field E should be below Eth’ as discussed in section (2.2),

but it should not be too small, so that a clear observation of P(t)

and J(t) is possible. For this, we have found that E = %Eth to be a

good choice, and we have studied experiments with E; = O, E = ZEth,

and with E, = %Eth’ E = 0.

3.3 Results

For the typical behaviour of pinned CDWs, a set of 500 randomly
distributed impurity phases was generated. Unless indicated other-
wise, this system is used with a coupling constant B = 1, wj(tz—w)
=0, E, =0, and E = %Eth = 0.3. This system is abbreviated as S500.
Only a few times, a system is used with 20 or 5 points and with the
impurity phases arranged in a special way.

A typical example of the relaxation behaviour, obtained from si-
mulations, is provided by fig.(3.1), -which is a representation of
the polarization P versus time t of system 5500, with superimpdsed
a streched exponential with vt = 0.3 and o = 0.5,

A plot of the logarithm of the current J versus time t (fig.(3.2))
is a revealing way to picture some phenomenological properties of
the system. First we notice that we can only approximate J by a

stretched exponential for intermediate times. Secondly, we observe

(3-3)
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fig.(3.1) Polarization P versus time t, together with a stretched

exponential curve exp[=(t/t)%] with 0=0.5 and 1=0.3.
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fig.(3.2) Current J versus time t, with the time derivative of the

same stretched exponential.

various peaks, more or less pronounced, and occurring at various
time intervals. In the tail of the graph there are no more peaks,

but an equally sudden change of the slope and therefore of the rate

of the decay, appears.
Simulations up to 10000 points have been performed. These last

give more peaks covering each other, thereby improving statistics

-
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and fitting in a better way with a stretched exponential with 2=0.5.

At long times, we still see isolated peaks, and finally the transi-

tion to the slow relaxation rate, t_
A straight line in a log(J) versus t plot means Debye relaxation.

To be able to read of the relaxation time t, we define

-1

! = T o
+l1In(9)]

and it is straightforward to prove that in case of Debye decay
(eq.{1.2)) we have t=1'. 1' is shown in fig.(3.3). Here we see in
a direct manner the equality of the slopes before and after a peak,

and the significantly differing v at the long time tail.

2.00 —

1.50 ﬁ_’,_’—/
1.00 -

0.50 p~ ! ]
I |
J U
! I ' ! ; 1 : I
T ocoeeg Ti5 E.S P 7.0 6K Ti.84 3.8 15,78 1777 1574
T
i
w1
f
|
B
1.00 f
150 -
-2.00 -
fig.(3.3) 1' = constant means Debye relaxation with t-= t!.

The function P' defined by Mih&ly et al. (eq.(2.12)) turns out
to be of little use, since it depends on P and P and is therefore
very sensitive to small perturbations. Every time a peak occurs,
it is disturbed, ard at long times the computational noise as men-—
tioned in the previous section becomes evident (fig.(3.4)).

The most intiguing part is the occurence of peaks in fig.(3.2).
It looks like the opening of a new channel as was explicitly sugges-
ted in the hierarchical model®. We will therefore try to understand
the origin of the peaks. To study this, we divide the chain into

two smaller ones and compaire their behaviour. The two segments are
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fig.(3.4) P' is of little value.

of equal length (250 points). Fig.(3.5a) shows the current for the
first half, fig.(3.5b) for the second half, and fig.(3.5c) for the
average of these two. We refer to fig.(3.2) for the two parts tied
together.

We notice that fig.(3.5c) is equal to fig.(3.2). This supports
our statement in section (3.2) that taking one long chain is equi-
valent to dividing this chain in segments and tying the ends of each.
Furthermore we observe that the peaks and the tail in one half of
the cahin contribute almost linearly to the behaviour of the system
as a whole. From these observations, we deduce that long-range cor-
relations and long-range hierarchical effects are (nearly) absent.

To proceed in the investigation of the peaks, we make three di-
mensional plots of J(j, t) = ﬁa(t) or its logarithm (j denotes the
various points; t the time). These are shown in fig.(3.6a, b) for
a specially constructed system, and the current of this system is

shown in fig.(3.6c). This special system consists_of 20 points (CBC),

with the impurity phases arranged in the following way:

J 1 2 3 4 5 6 7 8 9 10
¢ |0.70 0.60 0.40 0.60 0.70 0.80 0.70 0.30 0.70 0.80

J 11 12 13 14 15 16 17 18 19 20
¢ |0.20 0.30 0.20 0.60 0.70 0.35 0.70 0.60 0.80 0.75

th = 0.3,

o

and B =1, E_ = 0, E = 4E

(3-6)
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fig.(3.5) Two chains of 250 points (a. and b.) build one larger

chain (c.).

Fig.(3.6a) shows the current J for the first 4 time units, and
we see that remote parts of the chain suddenly show a peak, and
barely influence their neighbours. Fig.(3.6b) shows log(J) for the
first 8 time units, and from this, we see that a slow relaxation
rate of one part of the chain determines the relaxation rate at
long times. At this moment we do not understand why certain combi-
nations of ¢ show peaks or a slow tail.

We knew already from fig.(3.5) that segments of a chain could
make important contributions to the current when they either show
a peak or have a slow relaxing long time tail. Here we see that
both properties are manifestations of individual sites although

the reason for this behaviour still can lie in collective effects

(3-7)




(combinations of ¢ seem to be important).
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/N AN A Y A [ ANV (Y AN O R N |
7 AR SN A AV A A S A A |

= [ 7 7
S 3

fig.(3.6) Distribution of peaks along the chain (a.),

and influence on the long time tail (b.),

together with the average of the current (c.).

By taking a very small chain (five or even three points with CBC),
we still get a peak if the impurities are properly chosen. Fig.(3.7)
illustrates this for a system of 5 points with phases inspired by

the 20 particle system:

J‘[ 1 2 3 4 5
¢ |0.60 0.70 0.35 0.70 0.60

o

with again B =1, E_. = 0, E = %Eth = 0.3.




Fig.(3.7) Current (a.) and polarization (b.) b.

in an interesting five particle system.

From this figure we conclude that this peaking behaviour is a very
localized thing. And if we look at the polarization P(t), we see
that a peak doesn't affect its neighbouring sites too much. A sin-
gle point seems to move suddenly before its final smooth relaxation
towards its equilibrium state. This movement of a point we call an
event. Events can be treated semi-analytically by making an effec-

tive one particle approximation, and we will do so in section (4.2).

Other values of B

We also looked at other values of B. B = 1 seems to be the most
interesting case, since the pinning potential and the neighbour
interaction are comparable in magnitude and will compete. For
B << 1 the pinning force.will dominate and we expect a rather smooth
Debye-like decay. For B >> 1 we expect that there will be stronger
short-range correlations and clusters of points on the chain might
exhibit more complex relaxational behaviour.

We exhibit the results for B = 0.2 and B = 5 in fig.(3.8). For
much smaller values of B the observation of a current becomes pro-
blematic (strongly pinned system); for larger values of B the re-
laxation is very slow, consuming a lot of computation time. Fig.

(3.8a) indeed gives a Debye-like relaxation, without peaks.

(3-9)




id!
1-10

-2 0.00 0.78 1.56 2.33 3.11

= a. I
10"3 =
104 =
10_5 E—
-6 | | | | |

0 8 16 24 32 40

b. T

Fig.(3.8) System S500 with (a.) B = 0.2 and (b.) B = 5 shows a
different behaviour than with B = 1 (fig.(3.2)).

For large B (fig.(3.8b)) we do observe peaks, but their form
does not resemble the peaks in fig.(3.2). We think the relaxation
behaviour is far more complicated in this case. It remains to be
investigated if this behaviour can be analyzed in terms of a hier-
archy of relaxation times.

Samples prepared in non-zero field

We have also investigated what happens if the samples are pre-—
pared in the presence of an external field E = %Eth’ and then at

t=0 the field turned off. The subsequent time dependendence of the

current is illustrated in fig.(3.9) for the system S500 with B = 1.

(3-10)
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Fig.(3.9) Current when prepared in E, =% ' and E = 0.

Observe that the behaviour is not WWK-like but rather Debye-like
with a fast and a slow decay rate, with a gradual transition zone
in between. In other experiments, the transition.was faster, some-
times. The graph resemples the long time part of fig.(3.2).

It is common to observe hysteresis effects in random systems
with many stable (and metastable) states, such as the present one.
The presence of a field during the initial relaxation seems to drive
the system to a ground state, which shifts smoothly with the turning
off of the field. This description presupposes a truly collective
relaxation phenomenon however, in contradiction to the nearly one
particle picture (see chapter 4) in which we have been able to under-
stand the case E, = 0, E > 0. Within this one particle approach, it
is not possible to explain the difference between the two cases.

This point still remains to be clarified.
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4 An analytical approach

4.1 Equilibrium states

In this chapter we will use the observation from the numerical
work ‘that a single point seems to 'undergo' an event without much
influence on its neighbours. Therefore we will study a system con-
sisting of one particle (N=1) with boundaries fixed at O (wj+1 =
wj—l = 0), and drop the index j. The equation of motion (2.7) now
reads

0 = —2BY - sin[27(¢+V)] + E. (4.1)

It is worthwhile to use a kind of generalized phase space wih base

(v, @). If we plot eq.(4.1) within this space we get a curve as

shown in fig.(4.1).

»s.oor

-6.00 —

fig.(4.1) Phase plot of eq.(4.1) with B=1, E=0.3, $=0.2.

From this we observe that

a. changing ¢ corresponds to shifting the @—axis,

b. changing E corresponds to shifting the y-axis,

c. changing B corresponds to a rotation of the frame,

d. the V-axis corresponding to some value of E crosses the function

$(¢) at least at one point (B>0), and depending on the choice

of B, multiple solutions (3(or degenerate 2), 5(or 4), ...) are

(4-1)




possible,
e. the intersections of &(w) with the V-axis are fixed points of
the system; it is a repulsive fixed point if the slope in a small

neighbourhood is positive; otherwise it is attractive. Mathemati-

cally:
Y = 0, %% > 0 implies repulsive,
(4.2)
3
Y = 0, 5% < 0 implies attractive,

f. the initial V(t=—) determines at which stable point we will end:
if we start between two unstable we will go towards the stable
point in between; if we start beyond the last stable one we will
go towards the last stable one,

g. there is always at least one stable fixed point (B#0).

To gain some intuition it suffices to look at fig.(4.2).

<~

5 U S U S \

a. b. c.

fig.(4.2) Stable and unstable, single and multiple solutions
>B. > .
(Ba Bb BC)

It is useful to calculate the location of the extrema of ¢(¢):

~Z = 2B — 2mcos[2n(¢+P)] 0, (4.3)

oV =

which implies

B
cos[2n(d+¥,)] = -
so that
1 B
Vv, = == arccos[—;] - ¢ -m, me Z, O<B<m.

2w

The integer m reflects the fact that the potential is periodic.
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To investigate what kind of extrema these V¥, correspond to, con-—

sider

2
o ¥ 4w2 sin[2m(o+ ¥ )] = 4“2 Sin{iarccos[—g]} =

Q
<
™)

I

an® v (1-121%) 2 o,

minimum}
maximum
that we write 'maximum' above 'minimum', we have extrema at

and consequently it is a { If we now adopt the convention

b, = 1 o arccos[—%] - ¢ - m, ’ (4.4)

which has real solutions only for B<w.

The value of $ at those points is

A {td

@o = % arccos[—%] + 2B(¢+m) % /(l—[§]2) + E,

and defining

c,(B) = i%ax‘ccos[—%] N /([%]2-1)}, (4.5)

we write this as

U, = C,(B) + 2B(6+m) + E. (4.6)

4.2 Events

Suppose we have a situation as in fig.(4.3a) with ¥( =—0) > U,

¢ )
H 1 ! ! { |
5.5 T B A R R AT 5.3 3.5 T

o
T -0.60 -u.w ] %]

-3.00 —

a. b.
Fig.(4.3) Demonstration of the various scenarios; B = 1, ¢ = 0.49,

Ea = 0.0, Eb = 0.6.
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The system will relax towards s2. If we now increase the field E by
an amount e such that we get fig.(4.3b), the system will relax
smoothly from s2 towards s'.

Next assume ¥(t=-=) < u. The corresponding equilibrium situation
is ¥(t=0) = sl, and increasing E now causes & to decrease at first,
but then, before reaching zero current, & will increase strongly
for a while. Afterwards it will again decrease, and when it reaches
the point s2, the situation is indistinguishable from the one pre-
viously described, and the kind of time dependence of @ is the same.

In fig.(4.4) we show the time dependence of log(J) of the two
cases. For this one particle system, P is of course equal to ¥,
and J to &. Fig.(4.4b) shows very clear the phenomenon of an event,

and now it should be obvious that an event is an observable proper-—

ty of a single point. 1

0.00 0.55 [.10 .66 2.21 2.76
a. I

Fig.(4.4) Current of a system (a.) without, and (b.) with an event,

corresponding to Y(t=—=)>u and {(t=—w=)<u respectively,
obtained by numerically integrating eq.(4.1).
' (4-4)
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We now can draw some conclusions for the conditions under which
an event will take place:
a. for E = E, (i.e. t<0), there must be more than one stable fixed
point (i.e. solutions of ¢(s) = O with 2¥ < 0),

3V |y=s
b. E, + E +e, with s§ec, such that a pair of stable.(s) and unstable
(u) fixed points collide and disappear. Clearly, e_ = v(y,), where
V, is the local extremum of $@w) bracketed by u and s,

c. Y(t=—w) 2 u if ¢ § O.

In this discussion we left out the case y(t:—w) = u, which would
give Y(t=0) = u. The resulting current and polarization then show
a third possibility, namely the current possesses a peak without a
fall in advance. For a numerically treated system this can in prin-
ciple occur, but it is not likely to do so. For an anlytical treat-
ment it can, of course. Therefore, we won't analyze it in detail.

We can calculate €, using eq.(4.4):

e, = C, + 2B(¢+m,) + E;, €50, (4.7)

where E_, denotes the initial field and m, the value of the integer

N
minm , €<0

m at t=0. This m, = { max m N O} to guarantee y(t=-») 2 u.

From eq.(4.4) we see that

C E
{m} = {m,¢& 7| E:—4'—-Jf'—-*i‘-+ ¢ < my < ~=j§;—ﬂ - ¢}, (4.8)
and defining
C+ + E
0. (By BEg) = — 55 (4.9)

we have (in case of three solutions of @(w) = 0)

m, = intlp, - ¢), €50, (4.10)

o

where int(x) denotes the integer value of x: int(r)=3, int(—r )=-3.

Inserting eq.(4.10) into eq.(4.7), we obtain after a little al-

gebra

e = 2B[(¢-0)) ~ intlp—p )],
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or in short
€, = ZB[mid(d)—cbi)], eS0. (4.11)

From this, the physical significance of ¢' becomes clear: it is a

quantity that depends‘on the systemparameter B and on the initial

field E_ , and selects the values of the phase ¢ (namely those that
lie slightly above ¢') for which an event will be observed upon

changing the field by an amount e.

In conclusion, eq.(4.11) provides a threshold value €. (which
depends on B, E, and ¢) for e. If our system has an unstable fixed
point u for t<0, V(t=—=)2u, and we apply at t=0 E = E_+¢ with s§ec,

we will once see an event.

4,3 Rates of relaxation

By expanding the function @(w) near a fixed point ¥=s, we can try
to make an estimate of t_, the relaxation time as t+«. Near {=s we

can approximate &(W) by a Taylor expansion:

by = i(e) + ey, Ju-s<<a. (4.12)

Now, since &(s) = 0 and (cf. eq.(4.3))

30 (V)

= -2B - 2mcos[on(o+¥)],

we can write
¥() = —2[B + mcos[2n (p+s)11(¥-s),
or
b(v) = =V o+ S, ' (4.13)

where

t = (2[B + ncosl2n(s+s)11) L (4.14)
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and
S = fi S.
Eq.(4.13) has a solution of the form
v(t) = s(exp[-t/7_] + 1), |p-s|<<1, (4.15)

that is, a normal Debye decay characterized by t_. Notice that ther

is a lower-bound for T ¢

-1 (4.16)

but no upper-bound:

1

< - =
t = 2(B-m)’

oo

which doesn't have a finite value (eq.(4.13) presupposed t_>0, and
0<B<w). This means the system cannot approach s faster than t_,, but
can go very slow. This calculation is supported by observations from

the numerical work. Eq.(4.16) also implies that B small (<1) barely

influences 1.

4.4 Waiting times

We have seen in fig.(4.4b) that there is a waiting time 1 asso-
ciated with the coming of an event. We can understand this by con-
sidering ¥(t+At) as a function of ¥ (t), namely f(¥). We argue that
iterating f(¥) gives us a good approximate picture for the behaviour
n+l)5$n+l:f(wn) will
lie on a trajectory which satisfies eq.(4.1). Fig.(4.5) shows ().

of Vv (t), namely for tn=t+nAt, the points ¥(t

Whenever f(y) lies very close to the diagonal (around Y=n), it
takes a lot of iterations to go through this region. We call this
region a 'neck'. If we start at ¥<n, we have to pass n through'the
neck, spending a lot of time. Having quit this part, we move much
faster, and we observe a rise of the current, still later a fall,
until we approach the fixed point s. The width of the neck deter-

mines the number of iterations and, with it the waiting time for

an event.
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Fig.(4.5) f(p)=p(t+at) versus ¢(t); B=1, ¢=0.49, E=0.6, At=0.1.

Until -so far, we wrote the equation of motion in the form @:F(w),

but we can rewrite this as
Y(t+dt) = v(t) + v(v(t))dt
or taking dt=1, we have approximately

b=+ (). (4.17)
n

n+1 n

Pomeau and Manneville!® proved that for a map of the form

_ 2 3
v = wn + Kwn + A+ O(\l)rl ) (4.18)

n+l

around its point of near tangency with the diagonal (here normal-

ized to occur at ¥=0), there exists a laminar region in an inter-

val [-a, a] around the neck, and the time passed within this region
A

is proportional to | %,

At the point of near tangency wno with the diagonal, we have

aq~)n+l

BWH

or using eq.(4.17)

.a.
1*%“'
n

-
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and this fulfilled for (cf. eq.(4.4))

-1 Bl _ 4 -
wno i arccos[—n] ) m. (4.19)

This means the neck is located at nzwno as given in eq.(4.19).
In the vicinity of w:wno, we can approximate f(y) by a parabola

in the following way

b=, Y, |v]<<1. (4.20)

This leads to

f(y) = t% arccos[—%] + 2B(¢+m) — 2Bv +

v=y=y_,

n

—sin[;arccos[—%] + 27v] + E

Expanding to second order (sin(x)=x, cos(x):l—ZXZ), this yields

w2 (4.21)
v=y-9_

n

() = (Ci+2B(¢+m)+E) + (IZWZ/(l—[g]Z))

We see that in eq.(4.18) A = C, + 2B(¢+m) + E, and using eq.(4.10),

we know the scaling behaviour of A and hence T

~ 2B[m§d(¢4¢i)]- o - (4.22)

It turns out that the neckwidth A is exactly egual to € from

eq.(4.11), the threshold value for € to get an event. This should

not surprise us.

In conclusion, the time spent in the laminar region, associated

with the coming of an event is proportional to

Ao vy1
" e-e 11T (4.23)

b

T « |2B(

maximum

depending on whether f£({¢) has a {minimum} near $=¢n0.




5 A statistical approach

5.1 Reduction to a one particle system

Within this chapter we tackle the N particle system. To do so,
we first consider, in a way, similar to the one used in chapter 4,
N coupled one dimensional maps. Next we use the observation from
chapter 3 that for B not too large (1), an event hardly influen-
ces its neighbours. In this way we can reduce the system of N coup-
led maps to 1 effectively one dimensional map with a stochastic term.
We will treat this map statistically. ‘ '

We rewrite eq.(2.7) as

b () = v (3) - 2By () - sin[2n(e()+v ()] ¥ E +

n+1
+ B[wn(J+1)+wn(J—1)]. (5.1)
This last term can be rewritten in the form
B[wn(J+l)+wn(J—l)] = 2By_(J), (5.2)
if we introduce a mean neighbour influence variable

. bo(g+1L)+v (§-1)
v(§) = . (5.3)

Versteeg!® calculated the variance w2 for the assumed Gaussian
distribution of wn(j) in the absence of an applied field. Its de-

pendence on B is shown in fig.(5.1).

This implies for ﬁn(j) a Gaussian distribution with mean value
0 and standard deviation o=w/v2. In this way we will treat the last
term in eq.(5.1) as an independently fluctuating Gaussian variable,
thereby reducing the N coupled one dimensional maps to one effect-
ively one dimensionél map with additional noise.

The theorem following eq.(4.18) can be extended!’ to a map with
noise
boq =Vt Klbnz + A+ O(lpn3) + oE (5.4)

n+

where En is a random term, distributed according to a Gaussian with
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Fig.(5.1) Standard deviation w of wn(j) {(reproduced from 16).

mean value 0 and variance 02. Eckmann et al. proved that the time

spent in the laminar region is proportional to

~ -%

T(¢j) « T(k, X, o) |A] %, (5.5)
where the effect of the stochastic term in eq.(5.4) is contained

in the coefficient T(k, A, o), depending on the variance of the

noise. Notice that T(x, A, ¢)+1 as o+0.

5.2 The distribution of waiting times

Once we are looking at a certain phase point j, ¢j is a well-
defined constant, although varying randomly from site to site. ¢n(j)
fluctuates presumably according to a Gaussian during each iteration
of the map for the site j. Therefore, we would like to treat %j’
the waiting time at this site, in a way similar to the method of
section (4.4), and-only after having obtained ¥j integrate over ¢j.

Using eq.(5.5) we have

PR = le %= e (0] 7 (5.6)
J - J cJ c ] ! ’

Il

with



and

C++E

t —
jtr = -2B’

the sign depending on whether €§O.

Ecj can be written in the form

Ecj = a¢+b.
Having thus taken care of the stochastic term. in eq.(5.1), we
would now like to be able to take an average of the waiting times
over the whole chain. For the distribution of waiting times, P(¥j),

we find

F %
5 (f)d¢j P(¢J.) s(cpj - T (ap+b) ) =

"d
A2
i

2
2 -3, (5.7)

a

5.3 The relaxation law

For an event which sets on at time t=T, we have a rise in the

current of the form
exp[(t-7)/1,1,

and then a decay characterized by the same relaxation rate, t,. Ap-

proximating a step-function by

1 - exp[-t/7],

we have for the average polarization, seen as a linear superposi-

tion of such events (cf. chapter 3) with a distribution of waiting
times T,

fe-)

v(t) = exp(~t/t,)[dTP(T)(1-exp(~-t/T))exp((t-T)/1,),
0
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or

p(t) « Const[dTP(T)expl[-(t/T)-(T/1,)] (5.8)
0

Introducing x=1/7, and using eq.(5.7), this is equivalent to

(=]

P(t) « fdx exp[-tx-1/(Tt,x)] =
0
= -2 Jax expl-tx-1/(7,%)]. (5.9)

0]
This last integral  is related to the modified Bessel function Kl by
fax expl-8/(4x) - vx] = /(2) K (V(B1)). (5.10)
0
Here y=t and B=4/t,. "
Eq.(5.9) is now equal to

d 2
P(t) = —EE{7TE¥:7 Kl(2/(t/T°))}. (5.11)

Using the expansion for large x

L _ 3
Kl(x) = /2x exp(-x) (l+8x+...),

we write this in the form

b(e) = 2t Yexpl-2v(t/7,)]} =
o (BT L2 5 -2/ (6/7,) ] (5.12)
= 2 /To P 0l e .

In this expression, the exponential factor dominates the behaviour,
as is easily seen by considering log(d¥/dt), the logarithm of the

current, as we considered most of the time in chapter 3:

log(h(t)) = —2v/(t/T,) —%log(t), (5.13)

and consequently eq.(5.12) means a stretched exponential law with
a=Y%, as it was approximately observed in the simulations. There we
found for very large times a pure exponential decay, but that is

due to the finite size of the system, where there will always be a

finite maximum value of T.
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In conclusion, with our assumptions, a Gaussian distribution of
$n(j) and the form of the relaxation (5.8), we are able to deduce

the WWK law exp(—(t/r)a] with exponent azl.

-~ o

(5-5)




6 Conclusions

6.1 Review of the results

Our starting point was a charge density wave on a one dimension-
al substrate with damping and pinning-potentials. We derived an
equation of motion for the phase of the CDW at location xj, the
impurity sites where the CDW is pinned, with an applied field, less

than the threshold field Eth'

Numerical simulations gave us a stretched exponential with a=)f
for the approach to the equilibrium value of the polarization upon

application of a field E<E and a detailed investigation guided

us towards a study of the EZlaxation of single points.

It appeared that for B=l (i.e. elastic coupling of the same or-
der as the pinning-potential), the polarization or current can be
approximately seen as a linear superposition of contributions from
diffent sites, these contributions consisting of the so-called
'events'.

Just as the simulations were performed by an iteration process,
we could approximate the dynamics of the system by a set of N cou-
pled one dimensional non—linear.iterated mabs, whiqh are represen-
tations of N diécrete recursion relations.

By regarding the coupling of the maps (the neighbour interaction)
as a stochastic variable, we.were able to approximate the N coupled
one dimensional maps by one single one dimensional map. This allows
us to identify two distinct regimes for the approach to equilibrium
of the phase wj at individual impurity sites j, namely, a laminar
region of duration Tj’ and then a burst with an exponential rise
and subsequent Debye-like decay in wj, characterized by the same
relaxation time t_, determined only by the derivative at the fixed
point. The time ;j spent in the laminar region is referred to as
the 'waiting time', while the burst corresponds to an event.

The time dependence of the polarization obtained as an average
over all sites of events, occurring after the elapsing of waiting
times for which we are able to derive a distribution, is proven

to be of the WWK form w(t)=exp[-(t/1)%] with a=}.




6.2 Outlines for future research

There are several points we have raised which could be pursued
further.

The most promising .feature we neglected is taking a large neigh-
bour coupling, B>m, where the effective one particle approximation
breakes down. As was shown in fig.(3.8b), more complicated relaxa-
tion is exhibited which we have not been able to analyze yet. Since
a movement of a phase point does affect its neighbours very much,
the ideas of Palmer et al.? (see section (1.2)) can become useful.

Another point of interest is preparing the system in non-zero
field and then turning the field off. With our treatment this is
completely symmetric to the case we have treated in detail, where-
as the simulations show a considerable discrepancy (see fig.(3.9)).
Why these differ so much is not yet understood in the light of
the analytical results, but it could probably arise from the coupling

with the system which is neglected in the effective one particle ap-~

proach.
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Appendix

In section (1.2) we dealt with the superiority of the Debey law
in favour of the WWK law, and, related with this, the efforts to
build a non-linear mechanism out of a linear one.

The German language has a kind of tradition of expressing things
in a beautiful though clear manner, and indeed the following quo-
tation is a nice example of this ability, and gives a better moti-

vation for the advantage of linear equations than we did.

'Linearit&dt bedeutet in der physikalischen Interpretation Super-

ponierbarkeit, und daB viele wichtige physikalische Erscheinungen,

z.B. die elektromagnetischen Wellen in Vakuum, superponierbar sind,
ist eine Naturgegebenheit, ein Gliicklicher Zufall vielleicht, aber
keine Folge der menschlichen Unzulinglichkeit bei der Behandlung
nichtlinearer Gleichungen. Nun, die Wahrheit dirfte wohl weniger
zwischen, als vielmehr lber diesen vereinfachenden Standpunkten
schweben. Die grofe Bedeutung der linearen Gleichungen in der ma-
thematischen Physik ist weder ein bloBes Naturgeschenk noch eine
Schwdche der Physiker, sondern ein Verdienst der Physiker, die n&m-
lich imstande waren, aus der Fiille der MeBSbaren GrdBen aller Art
diejenigen herauszufinden, die als Grundgrbseh weifreichender The-
oriebildung in Frage kommen konnten. Das sind Informationen, die
das Chaos der Erscheinungen keinesWegs an jeden neugierigen Beob-

achter gratis Austeilt; von "der Natur'" zur Wellenfunktion der Quan-

tenmechanik ist ein weiter Weg.''?®
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