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Abstract

In this paper we present an exact maximum likelihood treatment for the estimation of a Stochas-
tic Volatility in Mean (SVM) model based on Monte Carlo simulation methods. The SVM model
incorporates the unobserved volatility as an explanatory variable in the mean equation. The same
extension is developed elsewhere for Autoregressive Conditional Heteroskedastic (ARCH) models,
known as the ARCH in Mean (ARCH-M) model. The estimation of ARCH models is relatively
easy compared with that of the Stochastic Volatility (SV) model. However, eÆcient Monte Carlo
simulation methods for SV models have been developed to overcome some of these problems. The
details of modi�cations required for estimating the volatility-in-mean e�ect are presented in this
paper together with a Monte Carlo study to investigate the �nite sample properties of the SVM
estimators. Taking these developments of estimation methods into account, we regard SV and
SVM models as practical alternatives to their ARCH counterparts and therefore it is of interest to
study and compare the two classes of volatility models. We present an empirical study about the
intertemporal relationship between stock index returns and their volatility for the United Kingdom,
United States and Japan. This phenomenon has been discussed in the �nancial economic literature
but has proved hard to �nd empirically. We �nd evidence of a negative but weak relationship be-
tween returns and contemporaneous volatility which provides indirect evidence of a positive relation
between the expected components of the return and the volatility process.

1 Introduction

It is generally acknowledged that the volatility of many �nancial return series is not constant over
time and that these series exhibit prolonged periods of high and low volatility, often referred to as
volatility clustering. Over the past two decades two prominent classes of models have been developed
which capture this time-varying autocorrelated volatility process: the Generalised Autoregressive
Conditional Heteroscedasticity (GARCH) and the Stochastic Volatility (SV) model. GARCH models
de�ne the time-varying variance as a deterministic function of past squared innovations and lagged
conditional variances whereas the variance in the SV model is modelled as an unobserved component
that follows some stochastic process1. The most popular version of the SV model de�nes volatility
as a logarithmic �rst order autoregressive process, which is a discrete-time approximation of the
continuous-time Ornstein-Uhlenbeck di�usion process used in the option pricing literature2.

�Correspondence to: Siem Jan Koopman, Department of Econometrics, Free University, De Boelelaan 1105, NL-1081
HV Amsterdam. Email s.j.koopman@feweb.vu.nl.

1For surveys on the extensive GARCH literature we refer to Bollerslev, Chou and Kroner (1992), Bera and Higgins
(1993), Bollerslev, Engle and Nelson (1994) and Diebold and Lopez (1995). SV models are reviewed in, for example,
Taylor (1994), Ghysels, Harvey and Renault (1996) and Shephard (1996).

2See Hull and White (1987), Scott (1987), Wiggins (1987) and Chesney and Scott (1989).
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Although SV models are seen as a competitive alternative to GARCH models their empirical
application has been limited. This can mainly be attributed to the diÆculties that arise as a result
of the intractability of the likelihood function which prohibits its direct evaluation. However, in
recent years considerable advances have been made in this area. The estimation techniques that have
been proposed for SV models can be divided into two groups: those that seek to construct the full
likelihood function and those that approximate it or avoid the issue altogether. The methods originally
suggested by Taylor (1986) and Harvey, Ruiz and Shephard (1994) belong to the latter category.
Recently attention has moved towards the development of techniques that attempt to evaluate the
full likelihood function3. For recent reviews on these full likelihood methods we refer to Fridman
and Harris (1998), Sandmann and Koopman (1998) and Pitt and Shephard (1999), amongst others.
The estimation method we adopt here is based on the Monte Carlo likelihood approach developed by
Shephard and Pitt (1997) and Durbin and Koopman (1997) where the likelihood function is evaluated
using importance sampling. These new techniques enable us to include explanatory variables in the
mean equation and estimate their coeÆcients simultaneously with the parameters of the volatility
process4. One of the explanatory variables in our model is the variance process itself, hence its name:
Stochastic Volatility in Mean (SVM). The estimation of such an intricate model is not straightforward
since volatility now appears in both the mean and the variance equation. This requires modi�cation
of the simulation maximum likelihood estimation method, details of which are given in section 3.

The SV models we present are a practical alternative to the GARCH type models that have been
used so widely in empirical �nancial research and which have relied on simultaneous modeling of the
�rst and second moment. For certain �nancial time series such as stock index returns, which have been
shown to display high positive �rst order autocorrelations, this constitutes an improvement in terms
of eÆciency; see Campbell, Lo and MacKinlay (1997, Chapter 2). The volatility of daily stock index
returns has been estimated with SV models but usually results have relied on extensive pre-modelling
of these series, thus avoiding the problem of simultaneous estimation of the mean and variance5. The
fact that we are able to estimate an SV model that includes volatility as one of the determinants of
the mean makes our model suitable for empirical applications in which returns are partially dependent
on volatility, such as studies that investigate the relationship between the mean and variance of stock
returns. The SVM model can therefore be viewed as the SV counterpart of the ARCH-M model of
Engle, Lilien and Robins (1987). The main di�erence between the two classes of models is that the
ARCH-M model intends to estimate the relationship between expected returns and expected volatility,
whereas the aim of the SVM model is to simultaneously estimate the ex ante relation between returns
and volatility and the volatility feedback e�ect. This is further discussed in section 4.1.

The remainder of this paper is organised as follows. The speci�cation of time-varying variance
models in general and the SVM model in particular are discussed in section 2. In section 3 we develop
the simulated maximum likelihood estimation method for the SVM model. Further, a Monte Carlo
study is carried out to investigate the �nite sample properties of the estimated parameters. Section
4 discusses the �nancial economic theory, describes the stock index data and reports on parameter
estimation results. In the �nal section we present a summary and some conclusions.

3See, for example, Jacquier, Polson and Rossi (1994), Kim, Shephard and Chib (1998), Sandmann and Koopman
(1998) and Fridman and Harris (1998).

4Also see Fridman and Harris (1998) and Chib, Nardari and Shephard (1998).
5The same seasonally adjusted S&P Composite stock index series (Gallant, Rossi and Tauchen, 1992) has been used

in a number of studies, see for example: Jacquier et al. (1994), Danielsson (1994), Sandmann and Koopman (1998),
Fridman and Harris (1998) and Chib et al. (1998).
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2 Modelling Volatility

2.1 Basic model

The aim is to simultaneously model the mean and variance of a series of returns on an asset denoted
by yt. Both the SV and GARCH model are de�ned by their �rst and second moment which can be
referred to as the mean and variance equation. The most general form of the mean equation for both
models is then de�ned as

yt = �t + �t"t; "t � NID(0; 1); (1)

�t = a+
kX

i=1

bixi;t; (2)

where the mean �t depends on a constant a and regression coeÆcients b1; : : : ; bk. The explanatory
variables x1;t; : : : ; xk;t may also contain lagged exogeneous and dependent variables. The disturbance
term "t is independently and identically distributed with zero mean and unit variance. Usually, the
assumption of a normal distribution for "t is added. The positive volatility process is denoted by �t
which remains to be speci�ed in section 2.2 for GARCH and section 2.3 for SV models. The mean
adjusted series is therefore de�ned as white noise with unit variance multiplied by the volatility proces
�t.

2.2 GARCH model

The general form of the GARCH(p; q) model is

�2t = ! +
pX

i=1

�i(yt�i � �t�i)
2 +

qX
i=1

�i�
2

t�i;

= ! +
pX

i=1

�i(�t�i"t�i)
2 +

qX
i=1

�i�
2

t�i; (3)

where the parameters to be estimated are !, �1; : : : ; �p and �1; : : : �q. An unanticipated shock to the
return process at time t is therefore not incorporated into the volatility process until time t+ 1.

The most commonly used model in applied �nancial studies is the GARCH(1,1) model which is
given by

�2t = ! + �(yt�1 � �t�1)
2 + ��2t�1; (4)

with parameter values restricted to ! > 0, � � 0 and � � 0. Provided that the sum of � and � is less
than one, the unconditional expectation of the conditional variance is constant and �nite and given
by

!

1� �� �
:

In empirical �nancial research with high frequency data, � + � is often estimated as being close to
unity, which implies a high degree of volatility persistence. Apart from volatility clustering GARCH
models also capture part of the excess kurtosis observed in �nancial time series. Under the assumption
of normality, existence of the fourth order moment for the GARCH(1,1) model is ensured if �2+2��+
3�2 < 1. Subject to this restriction it can be shown that the fourth moment will exhibit excess kurtosis

�y =
�" E(�

4
t )

E(�2t )
2

= 3 +
6�2

1� �2 � 2�� � 3�2
;

and therefore �y > �"; see Bollerslev (1986). For a further discussion on the features of GARCH
models we refer to a number of surveys such as the ones given in note 1 and to the comprehensive
selection of inuential (G)ARCH papers in Engle (1995).

3



2.3 SV model

In the case of the SV model the variance equation is speci�ed in logarithmic form, that is

�2t = ��2 exp(ht) (5)

with positive scaling factor ��. It follows that ht = ln(�2t =�
�2) where the stochastic process for ht is

ht = �ht�1 + ���t; �t � NID(0; 1); (6)

with persistence parameter � which is restricted to a positive value less than one to ensure station-
arity. The disturbances "t and �t are mutually uncorrelated, contemporaneously and at all lags. The
unconditional variance implied by the SV model is given by

��2 exp

 
0:5

�2�
1 � �2

!
;

and it can be shown that this model also captures part of the excess kurtosis as

�y =
�" E(�

4
t )

E(�2t )
2

= 3 exp

 
�2�

1� �2

!
;

which also implies that �y > �". Alternative speci�cations for the SV model can be deduced from

ln�2t = ln��2 + ht

= ln��2 + �(ln�2t�1 � ln��2) + ���t

= (1� �) ln��2 + � ln�2t�1 + ���t:

The main distinction between GARCH and SV models is that the latter has seperate disturbance
terms in the mean and variance equation, "t and �t, respectively, which precludes direct observation of
the variance process �2t . GARCH models are deterministic in the sense that only the mean equation
has a disturbance term and that its variance is modelled conditionally on the information up to and
including time t � 1. Therefore, the variance can be observed at time t. For the SV model, the
deviation of yt from the mean is captured by a function of the two disturbance terms whereas in the
GARCH model this deviation is accounted for by a single disturbance term. For the GARCH model
this point is evident but to clarify this for the SV model, we rewrite the model as follows:

yt = �t + �t"t

= �t + �� exp(0:5ht)"t

= �t + �� exp(0:5�ht�1) exp(0:5�t)"t:

The overall innovation term of the SV model is the error term exp(0:5�t)"t with a zero mean but with
a non-Gaussian density. References to SV models can be found in note 1.

2.4 Volatility in mean

The SV model with volatility included in the mean is given by (1) and (5) where the mean equation
(2) is rewritten as

�t = a+
kX

i=1

bixi;t + d��2 exp(ht); (7)

with d as the regression coeÆcient measuring the volatility-in-mean e�ect. In particular, we will use
the mean speci�cation

�t = a+ byt�1 + d��2 exp(ht): (8)
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This SVM model has six parameters which are to be estimated simultaneously using simulation meth-
ods which will be discussed in the next section. Inclusion of the variance as one of the determinants
of the mean facilitates the examination of the relationship between returns and volatility. It enables
us to perform studies in the vein of French, Schwert and Stambaugh (1987) but now in the context of
SV models. The relative ease with which they were able to conduct their research, i.e. without prior
manipulation of the original data series, is now also feasible for SV models.

The equivalent in-mean speci�cation for the GARCH model is

�t = a+ byt�1 + df! + �(�t�1"t�1)
2 + ��2t�1g: (9)

3 Estimation of the SVM model

In this section we show how the parameters of the SVM model are estimated by simulated maximum
likelihood. Further, we show how to compute the conditional mean and variance of the volatility
process ht.

3.1 Model

To simplify the exposition we initially consider the model

yt = d��2 exp(ht) + �� exp(0:5ht)"t;

ht = �ht�1 + ���t; (10)

where yt denotes the underlying series of interest, in our case these are stock index returns. The dis-
turbances "t and �t are standard normally distributed and they are mutually and serially uncorrelated.
The latent variable ht is modelled as a stationary Gaussian autoregressive process of order 1 and with
0 < � < 1. The unknown parameters are collected in the vector

 = (�; �� ; �
�2; d)0:

The nature of the model is conditionally Gaussian but we deal with a nonlinear model since the variance
of the overall disturbance term in yt is given by ��2 exp(ht) which is stochastic. The Gaussian density
for "t can be replaced by other continuous distributions. We note that the conditional Gaussian density
function p(yj�;  ) of the SVM model with

� = (h1; : : : ; hT )
0;

is log-concave in ht. This property is useful when employing importance sampling.
The techniques presented in the subsections below for model (10) can be adjusted straighforwardly

to deal with the full model (1), where �t is given by equations (5) and (6) and �t is given by (8), since
the extensions do not interact directly with the stochastic variance �2t . However it will be indicated
in the following sections where details are di�erent for the full model.

3.2 Likelihood evaluation using importance sampling

The construction of the likelihood for the SVM model is complicated because the latent variable ht
appears in both the mean and the variance of the SVM model. We adopt the Monte Carlo likelihood
approach developed by Shephard and Pitt (1997) and Durbin and Koopman (1997). This simulation
method of computing the loglikelihood function can be derived as follows.

De�ne the likelihood as

L( ) = p(yj ) =

Z
p(y; �j )d� =

Z
p(yj�;  )p(�j )d�: (11)
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An eÆcient way of evaluating this likelihood is by using Monte Carlo integration and, in particular,
importance sampling; see Ripley (1987, Chapter 5). We require a simulation device for sampling
from an importance density ~p(�jy;  ) which relates to the true densitity p(�jy;  ). We follow standard
practice in developing a Gaussian approximating model for y with the assumption of given values for
� and  and with the density denoted by g(yj�;  ). The approximating model is constructed in such
a way that the �rst two moments of p(yj�;  ) and g(yj�;  ) are equal. Since g(yj�;  ) is Gaussian, it
will be relatively straightforward to sample from ~p(�jy;  ) = g(�jy;  ). The conditions under which
this approximation converges almost surely to the true value as the number of simulations from the
importance density increases are given by Geweke (1989, Theorem 1). An approximating Gaussian
model for the SVM model is developed in section 3.3. Simulation smoothers such as the ones of de Jong
and Shephard (1995) and Durbin and Koopman (2001b) can be used to sample from the importance
density g(�jy;  ) in the case of SV models.

The likelihood function (11) is rewritten as

L( ) =

Z
p(yj�;  )

p(�j )

g(�jy;  )
g(�jy;  )d� = ~Efp(yj�;  )

p(�j )

g(�jy;  )
g; (12)

where ~E denotes expectation with respect to the importance density g(�jy;  ). Expression (12) can
be simpli�ed using a suggestion of Durbin and Koopman (1997). The likelihood function associated
with the importance density is given by

Lg( ) = g(yj ) =
g(y; �j )

g(�jy;  )
=
g(yj�;  )p(�j )

g(�jy;  )
; (13)

and it follows that
p(�j )

g(�jy;  )
=

Lg( )

g(yj�;  )
:

This ratio also appears in (12) and substitution leads to

L( ) = Lg( ) ~Ef
p(yj�;  )

g(yj�;  )
g; (14)

which is the convenient expression we will use in our calculations. The likelihood function of the ap-
proximating Gaussian model can be calculated via the Kalman �lter and the two conditional densities
are easy to compute given a value for �. It follows that the likelihood function of the SVM model is
equivalent to the likelihood function of an approximating Gaussian model, multiplied by a correction
term. This correction term only needs to be evaluated via simulation.

An obvious estimator for the likelihood of the SVM model is

L̂( ) = Lg( ) �w; (15)

where

�w =
1

M

MX
i=1

wi; wi =
p(yj�i;  )

g(yj�i;  )
; (16)

and �i denotes a draw from the importance density g(�jy;  ). The accuracy of this estimator depends
on the properties of the so-called weights wi; see Geweke (1989). Since the simulation samples are
independent of each other, it follows immediately that the variance due to simulation decreases as M
increases. In practice, we usually work with the log of the likelihood function to manage the magnitude
of density values. The log transformation of L̂( ) introduces bias for which we can correct up to order
O(M�3=2); see Shephard and Pitt (1997) and Durbin and Koopman (1997). We obtain

ln L̂( ) = lnLg( ) + ln �w +
s2w

2M �w2
; (17)

with s2w = (M � 1)�1
PM

i=1(wi � �w)2.
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3.3 Approximating Gaussian model used for importance sampling

The approximating model is based on a linear Gaussian model with mean E(yt) = ht+ct and variance

V(yt) = Ht, that is
yt = ht + ut; ut � N(ct;Ht); t = 1; : : : ; n; (18)

where ct and Ht are determined in such a way that the mean and variance of yt implied by the
approximating model (18) and by the true model, under consideration, (10) are as close as possible6.

We achieve this by equalising the �rst and second derivatives of p(yj�;  ) and g(yj�;  ) with respect
to � at �̂ = ~E(�) =

R
�g(�jy;  ). Note that p(�) refers to a density for the true model and g(�) refers to

a density for the approximating Gaussian model. Further, it follows that �̂ can simply be obtained via
the Kalman �lter and smoother applied to the approximating model (18). The conditional densities
are given by

p(yj�;  ) =
nY

t=1

pt; g(yj�;  ) =
nY

t=1

gt; (19)

with

pt = p(ytjht;  ) = �0:5[ln 2��2 + ht + exp(�ht)�
�2fyt � d exp(ht)g

2];

gt = g(ytjht;  ) = �0:5fln 2� + lnHt +H�1
t (yt � ct � ht)

2g: (20)

Di�erentiating both densities twice with respect to ht gives

_pt = �0:5[1 + ��2fd2��2 exp(ht)� y2t exp(�ht)g];

�pt = �0:5��2[d2��2 exp(ht) + y2t exp(�ht)];

_gt = H�1
t (yt � ct � ht);

�gt = �H�1
t :

Equalising the �rst and second derivatives, that is _pt = _gt and �pt = �gt for t = 1; : : : ; n, leads to

ct = yt � ht + 0:5Ht[1 + ��2fd2��2 exp(ht)� y2t exp(�ht)g];

Ht = 2��2=[d2��2 exp(ht) + y2t �
��2 exp(�ht)]:

The resulting model for ~yt = yt � ct is equivalent to

~yt = ht + ~ut; ~ut � N(0;Ht); t = 1; : : : ; n;

with

~yt = ht �
��2 + d2��2 exp(ht)� y2t �

��2 exp(�ht)

d2��2 exp(ht) + y2t �
��2 exp(�ht)

; Ht =
2�2

d2��2 exp(ht) + y2t �
��2 exp(�ht)

:

It should be noted that Ht > 0 for any value of ht. We cannot solve out for ~yt and Ht at ĥt = ~E(ht)
because ~E refers to expectation with respect to the approximating model which depend on ht. However,
such complicated but linear system of equations is usually solved iteratively by starting with a trial
value ht = h�t . Computing ~yt and Ht based on h�t and applying the Kalman �lter smoother to model
(18) leads to a smoothed estimate for ht which can be used as a new trial value for ht. Recomputing
~yt and Ht based on this new trial value leads to an iterative procedure which converges to ĥt. Note
that the �rst and second derivatives of the true and approximating densities are equal at ht = ĥt.

6Note that the true model describes a nonlinear relationship between yt and ht; the approximating (linear) model
is e�ectively a second-order Taylor expansion of the true model around ht. Further, the multivariate Gaussian density
g(�jy;  ) can be regarded as a Laplace approximation to the true density p(�jy;  ).
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More details are given by Durbin and Koopman (1997). It is worth mentioning that ĥt is equal to the
mode of p(htjy;  ) which can be of interest.

When we consider the full model (1), with �t given by equations (5) and (6) and �t given by (8),
the likelihood function is only a�ected in the squared error term. The last term of the de�nition of pt
in (20) is replaced by the term

exp(�ht)�
�2fyt � a� byt�1 � d exp(ht)g

2:

We observe that the extensions do not change the stochastic process for ht. Therefore, the simulation
scheme for computing the Monte Carlo likelihood remains the same. However, the approximating
model changes slightly; that is, _pt changes but �pt does not change. In other words, the de�nition for
ct changes but the de�nition for Ht does not. Finally, numerical maximisation of the Monte Carlo
likelihood is now also with respect to the parameters a and b.

3.4 Monte Carlo evidence of estimation procedure

In this section we present some results of a Monte Carlo study which is carried out to investigate the
small sample performance of the estimation procedure presented in section 3.2. In short, we generate
K simulated SVM series for the model presented in section 3.1 and for some given 'true' parameter
vector  . Subsequently, we treat  as unknown and estimate it for each series using the maximum
likelihood method described in section 3.2. We compute the sample mean and standard deviation
together with a histogram for each element in  and compare it with the 'true' parameter value.

2.5 3 3.5 4 4.5

.5

1

1.5

2
(i)

-2.5 -2.25 -2 -1.75

1

2

3

4
(ii)

-.45 -.4 -.35 -.3 -.25 -.2 -.15

5

10

15
(iii)

Figure 1: Monte Carlo results for standard SV model.
Histograms and estimated densities (solid lines) of the maximum likelihood parameter estimates are presented for the
SV model with (i)  �1 = 3:5, (ii)  �2 = �2 and (iii)  �3 = �0:3. The Monte Carlo experiment is based on K = 500
iterations and sample size n = 5000.

The details of the likelihood estimation procedure are as follows. For a given parameter vector  ,
we obtain the approximating Gaussian model as described in section 3.3. The Gaussian loglikelihood
function of the approximating model lnLg( ) can be computed using the standard Kalman �lter; see,
for example, Durbin and Koopman (2001a). We have used the simulation smoothing method of de
Jong and Shephard (1995) to generate the importance samples �i (i = 1; : : : ;M) but recently a more
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simpler method has been developed by Durbin and Koopman (2001b) which can also be used for this
purpose. The polar method as implemented in Ox by Doornik (1998) is used for generating standard
normal deviates which are required as input for the simulation smoother to obtain samples �i from
g(�jy;  ). The random number generator needs to be initialised by some �xed value. The importance
samples �i allow us to compute weight wi using (16) for i = 1; : : : ;M where M is set equal to 200 for
all our calculations. For each sample �i, three antithetic variables are computed in the way described
by Durbin and Koopman (1997). This leads to a total of 800 weights for each likelihood evaluation.
The mean �w and variance s2w of these weights are then used to compute the importance sampling
estimate of the loglikelihood value (17). For the purpose of estimating the parameter vector  , this
likelihood estimation procedure is used repeatedly for di�erent values of vector  . It is noted that the
random number generator is initialised by the same �xed value for each loglikelihood computation so
that the numerical search procedure for the maximum likelihood is not a�ected by randomness. The
BFGS maximisation method is used to maximize the simulated likelihood function with respect to  ;
the BFGS method is documented by, among others, Fletcher (1987) and it is implemented in Ox by
Doornik (1998). This estimation procedure worked satisfactorily in our simulation study below as well
as in our empirical study of section 4. In our implementation, a single likelihood evaluation of an SVM
model with 5000 observations took 0:7 seconds on a Pentium III 800 Mhz when employing M = 200
importance samples. Maximum likelihood estimation of parameters was on average completed in 20
seconds7.

Parameter estimation is not with respect to vector  as de�ned in section 3.1, but with respect
to transformed parameter vector  �. The autoregressive parameter � is restricted to have a value
between zero and one; therefore we estimate  �1 where

� =  1 =
exp( �1)

1 + exp( �
1
)
;  �1 = ln

�

1� �
:

Further, we estimate the log variance ��2 and the log standard deviation ��. The mean parameter d
is estimated without transformation.

We start by considering the standard SV model, that is the SVM model of section 3.1 with d = 0.
Therefore, the last element of  is omitted. For generating Monte Carlo samples, the 'true' parameter
values are set to

  �

 1 = � 0:97 3:5
 2 = �� :135 �2
 3 = ��2 :549 �0:3

which are typical values found in our empirical study of section 4.
The Monte Carlo results for the basic SV model are similar but slightly better compared to results

presented in similar studies of Jacquier et al. (1994) and Sandmann and Koopman (1998). Note
that in these studies the parameter values were not transformed and that the estimation procedures
used were di�erent from ours. The results given in �gure 1 are for the typical sample size n = 5000
with the number of iterations set to K = 500. The graphical output includes a histogram of the
estimated parameter values and an estimated density function which is computed using a standard
non-parametric Gaussian kernel method.

7The estimation procedure is implemented using the object-oriented matrix programming language Ox 2.1 of
Doornik (1998, www.nuff.ox.ac.uk/Users/Doornik/) and the SsfPack 2.2 procedures of Koopman, Shephard and
Doornik (1999, www.ssfpack.com). Relevant programs for the estimation of the SVM model can be downloaded from
www.feweb.vu.nl/koopman/sv/.
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The sample mean and standard deviation of the K estimated coeÆcients are given by

`true' mean stand.dev mean asym.stand.err

 �
1

3:5 3:490 0:215 0:225
 �2 �2:0 �2:020 0:112 0:111
 �
3

�0:3 �0:301 0:0338 0:0337

The last column contains the averages of the asymptotic standard errors of the estimates and they are
conveniently close to the sample standard deviations of the estimates. The Monte Carlo results can
also be presented in terms of vector  ; we note that the resulting con�dence intervals are asymmetric
due to the nonlinear transformations. We obtain

mean LHS "95% CI" RHS "95% CI"

 1 = � = 0:97 0:970 0:955 0:981
 2 = �� = 0:135 0:133 0:107 0:165
 3 = ��2 = 0:549 0:547 0:480 0:625

where LHS is the lefthand side border and RHS is the righthand side border of the 95% con�dence
interval. These results will be used as a benchmark for the Monte Carlo results of the SVM model.
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Figure 2: Monte Carlo results for the SVM model.
Histograms and estimated densities (solid lines) of the maximum likelihood parameter estimates are presented for the
SVM model with (i)  �1 = 3:5, (ii)  �2 = �2, (iii)  �3 = �0:3 and (iv)  �4 = 0:1. The Monte Carlo experiment is based on
K = 500 iterations and sample size n = 5000.

We now turn our attention towards the Monte Carlo evidence for the SVM model. We keep the
'true' parameters of the SV model and look at the results for a typical value of d, that is d = 0:1. The
Monte Carlo experiments are again based on n = 5000 and K = 500. The results for the SVM model
with 'true' d = 0:1 are given in �gure 2 and the sample statistics are given by

`true' mean stand.dev mean asym.stand.err

 �1 3:5 3:537 0:210 0:213
 �2 �2:0 �2:059 0:108 0:103
 �3 �0:3 �0:299 0:0341 0:0338
 �4 0:1 0:0960 0:0113 0:0115
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The standard deviation of the estimates for  � obtained from the Monte Carlo samples are very close
to the averages of the asymptotic standard errors of the estimates. This indicates that asymptotic
standard errors can be used for estimates obtained from the methods of section 3.2. The results in
terms of  are given by

mean LHS "95% CI" RHS "95% CI"

 1 = � = 0:97 0:972 0:958 0:981
 2 = �� = 0:135 0:128 0:104 0:156
 3 = ��2 = 0:549 0:550 0:481 0:628
 4 = d = 0:1 0:0960 0:0733 0:119

Comparing the results for the standard SV model, we conclude that the con�dence intervals for  1,
 2 and  3 are very similar and that the in-mean parameter d can be accurately estimated with a
relatively small standard deviation8.

Finally, we have assessed the variability of the importance sampling estimator due to the choice
of di�erent random numbers. This variability depends on the number of simulations M in (16) and
by setting this value to 200 we obtained results which only varied marginally when di�erent random
numbers were used. By repeating the Monte Carlo experiment for di�erent values of n we found that
the variability of the estimator increases when n gets larger but not dramatically.

4 Empirical evidence from international stock markets

4.1 Some theory on the relationship between returns and volatility

The relation between expected stock index returns and conditional volatility has received much atten-
tion in the �nancial economic literature. Although a positive relationship between expected returns
and expected volatility is consistent with the Capital Asset Pricing Model (CAPM) and intuitively
appealing, as rational risk-averse investors require higher expected returns during more volatile pe-
riods, empirical research has been unable to establish a convincing positive relationship between the
expected risk premium and conditional volatility using GARCH-M models9. Instead, there appears
to be stronger evidence of a negative relationship between unexpected returns and innovations to the
volatility process which French et al. (1987) interpret as indirect evidence of a positive correlation
between the expected risk premium and ex ante volatility. They reason that unanticipated large
shocks to the return process, which can be caused by either good or bad news, induce higher expected
volatility for future time periods. If expected volatility and expected returns are positively related and
future cash ows are una�ected, the current stock index price should fall. Conversely, small shocks to
the return process lead to an increase in contemporaneous stock index prices. This theory, known as
the volatility feedback theory, therefore hinges on two assumptions. Firstly, the existence of a posi-
tive relation between the expected components of the return and the volatility process and secondly,
volatility persistence. An alternative explanation for asymmetric volatility where causality runs in
the opposite direction is the leverage e�ect put forward by Black (1976) who asserts that a negative
(positive) return shock leads to an increase (decrease) in the �rm's �nancial leverage ratio which has
an upward (downward) e�ect on the volatility of the stock returns. However, it has been argued by
Black (1976), Christie (1982), French et al. (1987) and Schwert (1989) that leverage alone can not

8We repeated this experiment with various values for d and the outcome only changed marginally. Similar overall
results were obtained for simulations based on the smaller sample size n = 500; these can be found in Koopman and Hol
Uspensky (2000).

9See, e.g., for the US stock market French et al. (1987) and Campbell and Hentschel (1992) who observe a positive
relation, whereas Glosten, Jagannathan and Runkle (1993) who develop a much richer asymmetric GARCH-M model
present evidence of a negative relation, as does Nelson (1991) with his EGARCH model. Poon and Taylor (1992) who
study the UK stock market report a weak positive relationship.
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account for the magnitude of the negative relationship10. If both volatility feedback and leverage
e�ects are present then large pieces of bad news are associated with an increase in volatility, whereas
the net impact of large pieces of good news is unclear. The reverse then holds for small shocks to the
return process as small positive shocks are associated with a decrease in volatility and the net e�ect
of small negative shocks is unknown.

In the GARCH literature the leverage e�ect has been empirically established with the EGARCH
model of Nelson (1991) and the GJR-GARCH model developed by Glosten et al. (1993). In these
models the conditional volatility at time t+ 1 is allowed to respond asymmetrically to unanticipated
rises and falls in the stock price that occured at time t. SV models, unlike GARCH models, de�ne
volatility as truly contemporaneous and hence its volatility measure includes not only expected but
also unexpected volatility. The correlation between unexpected shocks to the return and the volatility
process, which can both be observed at time t, could then be measured by estimating corr("t; �t) as
an additional parameter in the SV model11.

The general mean equation with time-varying variance we consider for estimation is

yt = a+ byt�1 + d�2t + �t"t; (21)

where yt denotes the excess returns on the stock index at time t and �2t is the variance which is
contemporaneous for the SV model and conditional for the GARCH model. For GARCH models the
d parameter therefore measures the relation between expected returns and expected volatility, whereas
in the case of SV models the d parameter estimate contains information about the relation between
returns on the one hand and expected and unexpected, or ex post, volatility on the other. For the
GARCH(1,1)-M model the conditional mean is de�ned as

E t�1(yt) = a+ byt�1 + df! + �(�t�1"t�1)
2 + ��2t�1g (22)

and for the SVM model the equivalent notation is given by

E t�1(yt) = a+ byt�1 + df��2 exp(�ht�1) exp(E t�1(�t))g

= a+ byt�1 + df��2 exp(�ht�1)g: (23)

It is evident from equations (22) and (23) that all the explanatory variables in the conditional mean
of the GARCH-M(1,1) are known at time t � 1, whereas the shock to the volatility process at time
t, denoted by �t, prevents observation of the �2t term in the SVM model at time t � 1. The mean
equation for the SVM model can then be written as

yt = E t�1(yt) + df��2 exp(�ht�1)[exp(�t)� exp(E t�1(�t))]g+ �t"t

= E t�1(yt) + df��2 exp(�ht�1)[exp(�t)� 1]g + �t"t; (24)

where the second term on the right hand side is d multiplied by the unexpected volatility at time t.
The d coeÆcient in the SVM model therefore not only measures the relation between the expected
components of the return and the volatility process, but also between the unexpected components as
equations (23) and (24) can be combined and written as

yt = a+ byt�1 + d�2tjt�1 + df�2t � �2tjt�1g+ �t"t; (25)

10Campbell and Hentschel (1992) �nd evidence of both volatility feedback and leverage e�ects, whereas Bekaert and
Wu (2000) present results which strongly favour the volatility feedback hypothesis.

11Jacquier, Polson and Rossi (2001) estimate corr("t; �t) and report a negative relationship between contemporaneous
unexpected stock index returns and unexpected volatility. Harvey and Shephard (1996), on the other hand, estimate
corr("t; �t+1) and Watanabe (1999) develops an SV model which includes the lagged shock to the return process as
an explanatory variable in the variance equation allowing for an asymmetric response. Both studies report negative
coeÆcients for the relation between current unexpected returns and future volatility.
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where �2tjt�1 denotes the conditional variance at time t given the information available at time t� 1,

or the expected volatility, and �2t the contemporaneous volatility measure at time t. The f�2t �
�2tjt�1g term denotes the unexpected shock to the volatility process which should not be related to
the predictable components. The volatility feedback e�ect is then measured by the d parameter
preceeding the f�2t ��

2

tjt�1g term which is expected to be negative as large (small) shocks to the return

process raise (lower) contemporaneous volatility through �t, presumably irrespective of the sign of "t,
inducing a drop (increase) in the current stock index price in the case of initial large negative (small
positive) return shocks which are ampli�ed, whereas initial large positive and small negative shocks
are dampened. As deterministic GARCH models do not contain an unexpected volatility component,
that is �2t = �2tjt�1, the issue does not arise for this class of volatility models and the d parameter only
measures the relation between the expected returns and the expected volatility.

4.2 Data

Table 1: Summary statistics of daily excess returns

Period 1975{1998 1988{1998
Number of observations T 6261 2869
Stock index FT All S&P FT All S&P Topix

Mean 0.033 0.028 0.017 0.042 -0.025
Variance 0.943 0.874 0.584 0.747 1.357
Skewness -0.194 -2.562 -0.022 -0.664 0.343
Excess Kurtosis 11.828 62.758 3.491 7.954 6.107
N 36536 1034312 1458 7774 4516

Excess Returns

�̂1 0.167 0.054 0.115 0.004 0.100
�̂2 0.008 -0.024 -0.002 -0.013 -0.062
�̂3 0.037 -0.021 -0.005 -0.041 -0.009
�̂4 0.046 -0.024 0.041 -0.016 0.027
�̂5 0.019 0.032 0.009 0.006 -0.030
Q(12) 262.08 41.94 61.32 29.86 64.86

Squared Excess Returns

�̂1 0.478 0.112 0.163 0.176 0.163
�̂2 0.281 0.149 0.155 0.087 0.161
�̂3 0.238 0.077 0.136 0.049 0.118
�̂4 0.290 0.020 0.111 0.087 0.173
�̂5 0.202 0.137 0.109 0.097 0.179
Q(12) 4543.79 404.14 560.52 286.52 527.91

N is the �2 normality test statistic with 2 degrees of freedom; �̂` is the sample autocorrelation coeÆcient at lag ` with
asymptotic standard error 1=

p
T and Q(`) is the Box-Ljung portmanteau statistic based on ` squared autocorrelations.

The data we analyse includes daily stock index returns from three international stock markets: the
United Kingdom, the United States and Japan. The UK Financial Times All Share Index and the US
Standard and Poor's Composite stock index series cover the period 1 January 1975 to 31 December

13



1975 1980 1985 1990 19951988

-20

-10

0

10

(i)

1975 1980 1985 1990 19951988

-20

-10

0

10

(ii)

1975 1980 1985 1990 19951988

-20

-10

0

10

(iii)

Figure 3: Excess returns for the (i) FT All Share Index (UK) and (ii) S&P Composite Stock Index
(US) between 02/01/75 and 31/12/98 and for the (iii) Topix Stock Index (Japan) between 04/01/88
and 31/12/98.

1998 whereas the Japanese Topix series starts on 1 January 1988 and ends at 31 December 1998. The
stock data was obtained from Datastream. From the same data source we also collected daily UK and
Japanese 1 month Treasury bill rates; the US 3 month Treasury bill rate data was extracted from the
on-line Federal Reserve Bank of Chicago Statistical Release H.15 database. These interest rate series
are used as proxies for the risk free rate of return. The stock index prices are in local currencies and
not adjusted for dividends following studies of French et al. (1987) and Poon and Taylor (1992) who
found that inclusion of dividends a�ected estimation results only marginally. Returns are calculated
on a continuously compounded basis and expressed in percentages, they are therefore calculated as
Rt = 100(lnPt� lnPt�1) where Pt is the price of the stock market index at time t. From these returns
we subtract the daily risk free rate multiplied by 100, denoted by Rft, in order to obtain the excess
returns which are therefore de�ned as yt = Rt �Rft.

In this section we model the behaviour of �ve series: we consider daily excess return series on
the UK and US index that cover a period of 24 years ending in 1998, as well as 11 year sub-samples
of these two series together with excess returns on the Japanese stock market index. These shorter
series start in 1988 and therefore exclude the extreme negative observations relating to the 1987 stock
market crash. Figure 3 contains graphs of the excess return series and the accompanying summary
statistics are presented in table 1.

We observe that the e�ects of the October 1987 crash are especially pronounced for the US stock
market where excess returns on the Standard & Poor's Composite index fell by nearly 23% on one
single trading day. This one observation contributes to a great extend to the large excess kurtosis
value of 62:758 and the high negative skewness coeÆcient of �2:562. The most volatile series of the
�ve is the Topix series which can not be attributed to one extreme movement, as can be seen in �gure
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3, but to several prolonged periods of market turbulence initiated in the early nineties by the collapse
of the Japanese asset market. The Topix series is further characterised by a negative mean and is
positively skewed, which are features not typically found in a stock index (excess) return series. We
further observe that the UK excess returns and squared excess returns for the period starting in 1975
are highly autocorrelated at lag 1 but that these values are much lower and comparable with those of
the Topix stock index for the subsample period 1988{1998. First-order serial correlation coeÆcients
for the Standard & Poor's Composite Index excess returns on the other hand are relatively low for
both the full and the sub-sample period. In the case of excess returns high �rst-order autocorrelation
reects the e�ects of non-synchronous or thin trading, whereas highly correlated squared returns can
be seen as an indication of volatility clustering. The Q(12) test statistic, which is a joint test for
the hypothesis that the �rst twelve autocorrelation coeÆcients are equal to zero, indicates that this
hypothesis has to be rejected at the 1% signi�cance level for all excess return and squared excess
return series.

4.3 Estimation results for the SVM model and some diagnostics

Our main objective in this empirical section is to estimate the contemporaneous relationship between
excess returns on stock market indices and their volatility with our SVM model, which we already
de�ned in equations (1), (5), (6) and (8) as

yt = a+ byt�1 + d�2t + �t"t; "t � NID(0; 1);

�2t = ��2 exp(ht);

ht = �ht�1 + ���t; �t � NID(0; 1);

and from equation (25) we recall that yt = a+ byt�1 + d�2tjt�1 + df�2t � �2tjt�1g+ �t"t.
Table 2 reports the SVM model estimation results for the stock index series over the full sample

period 1975-1998 and the subsample period 1988-1998. Volatility persistence estimates for the �ve
series are all highly signi�cant and quite similar with values for � ranging from 0:966 for the post crash
Topix to 0:984 for the full sample Financial Times All Share Index, the series which displayed the
highest degree of sample autocorrelation in the squared returns. This near unity volatility persistence
for high frequency data is consistent with �ndings from both the SV and the GARCH literature.
The two remaining volatility process parameters cover a much wider range. The highest values for
the scaling parameter and the parameter which measures the variation in the volatility process are
observed for the Topix series with ��2 = 0:832 and �2� = 0:058. The SVM model therefore captures
the more erratic behaviour of the Topix quite well through a combination of parameters: the high
scaling parameter indicates a higher level of volatility whereas the relative small value for � and the
large value for �2� imply that its volatility process is less predictable than that of the other four series.

The three parameters which govern the mean process are reported in the �rst three rows together
with their 95% con�dence intervals. We observe that the mean parameter a is always positive and
statistically signi�cant for all series with the exception of the Topix series which has a negative sample
mean; see table 1. We note however that we have simultaneously estimated the constant a and the
in-mean coeÆcient d where the latter is associated with a regressor which is strictly positive at all
times. The estimates of b are statistically signi�cant for all series and very similar to the �rst-order
autocorrelation coeÆcients reported in table 1. The d parameter which measures both the ex ante

relationship between returns and volatility and the volatility feedback e�ect is negative for all series,
although the hypothesis of d equal to zero can never be rejected at the conventional 5% signi�cance
level. For some of the series d is however very close to being statistically signi�cant. A similar SVM
model was estimated by Fridman and Harris (1998), who studied daily returns on the Standard &
Poor's index over the period 1980 to 1987, and Watanabe (1999), who examined the daily Topix
series over the eight year period 1990-1997. Both studies reported signi�cant positive values for the
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Table 2: Estimation results for the SVM model

Period 1975{1998 1988{1998
No. of obs. 6261 2869
Stock Index FT All S&P FT All S&P Topix

a 0:038 0:045 0:061 0:074 0:019
0:014 0:063 0:017 0:073 0:016 0:106 0:038 0:111 �0:014 0:052

b 0:146 0:074 0:100 0:024 0:099
0:123 0:172 0:054 0:101 0:068 0:144 0:009 0:062 0:067 0:143

d �0:011 �0:023 �0:085 �0:046 �0:031
�0:049 0:028 �0:065 0:019 �0:176 0:006 �0:103 0:011 �0:066 0:005

��2 0:615 0:597 0:458 0:539 0:832
0:498 0:758 0:508 0:701 0:358 0:587 0:427 0:682 0:642 1:077

� 0:984 0:979 0:976 0:970 0:966
0:977 0:990 0:969 0:986 0:958 0:986 0:954 0:981 0:947 0:978

�2� 0:018 0:021 0:019 0:035 0:058
0:014 0:025 0:015 0:029 0:012 0:032 0:025 0:050 0:041 0:082

AIC 15075.6 15005.6 6090.7 6610.7 7988.7
Q(12) 24.45 20.06 7.44 21.79 10.30
N 16.265 18.578 2.326 9.969 11.643
�21 0.825 0.760 0.560 0.727 1.277

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are asymmetric for b,
��2, � and �2�; AIC is the Akaike Information Criterion which is calculated as -2(lnL) + 2p and Q(`) is the Box-Ljung
portmanteau statistic for the estimated observation errors which is asymptotically �2 distributed with `� p degrees of
freedom where p is the total number of estimated parameters; N is the �2 normality test statistic for "t with 2 degrees
of freedom; �2

1
denotes the unconditional variance as implied by the volatility process.

contemporaneous relationship12. Our �ndings here are more in line with those of French et al. (1987)
who regress monthly excess returns of a US stock portfolio against expected and unexpected volatility
obtained with ARIMA models based on daily data. For the regression which excludes unexpected
volatility they observe a weak positive relation between expected returns and volatility. Inclusion of
both volatility measures however results not only in a highly signi�cant negative relation between the
unexpected components but also turns the sign for the ex ante relationship which becomes weakly
negative. The negative relation between the unexpected components therefore dominates the weaker,
presumably positive, relation between the expected components. We further observe that the largest
negative values for d are found for the shorter samples where they are also closest to being statistically
signi�cant. A possible explanation is that the positive ex ante relation is more pronounced for the
period following the stock market crash inducing a stronger volatility feedback e�ect which forces the
d parameter further downward. Such an interpretation is also supported by the �ndings of Campbell
and Hentschell (1992) who incorporate volatility feedback into a GARCH-M model where the volatility
feedback parameter is restricted so that a large positive value for the ex ante relation implies a large
volatility feedback e�ect13. In their study of the US stock market they �nd that estimates of the
unrestricted volatility feedback parameter are very similar to those of the restricted version. French et

12Fridman and Harris (1998) did however not allow for a constant in the mean and the likelihood ratio test for d = 0
amounted to a value of 0:14. We also estimated the SVM model with constant a restricted to zero and found that
estimates for d were forced upward to a positive value except for the Topix series which has a negative sample mean; see
table 1.

13Also see Campbell et al. (1997, pp. 497-498).
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al. (1987) further point out that the volatility feedback e�ect would be especially strong and dominant
when volatilities are highly autocorrelated. As a consequence, rational risk-averse investors require
even higher expected returns when unanticipated increases in future volatility are highly persistent.
This would be consistent with our �ndings for the post crash samples where higher values for �
are combined with larger negative values for the in-mean parameter. The relatively large negative
estimates for the d parameter we therefore interpret as evidence of the existence of convincing negative
feedback e�ects which appear especially strong when volatility is persistent. This then provides indirect
evidence of a positive intertemporal relation between expected excess market returns and its volatility
as this is one of the assumptions underlying the volatility feedback hypothesis. Therefore, in the SVM
model a negative in-mean parameter indicates that when investors expect higher persistent levels of
volatility in the future they require compensation for this in the form of higher expected returns.

With regard to the distributional assumptions we observe that the standardised error term "t
abides the normality assumption only for the Financial Times post crash period and the Q(12) statistic
indicates that little serial correlation remains in the standardised error term. The hypothesis that the
�rst twelve autocorrelation coeÆcients of "t are equal to zero can also not be rejected for the Topix
series as the critical value at the 5% signi�cance level is 12:6. Eventhough the remaining values for the
Q(12) and normality statistics exceed their critical values, they are much smaller than those observed
in table 1, especially the values for the normality statistic are substantially reduced.

In addition to the SVM model we also estimated a number of restriced versions of our model which
were obtained by restricting one or more of the mean parameters to be equal zero14. The likelihood
ratio tests for the hypothesis H0 : d = 0 never exceeded the critical �21 5% signi�cance value of 3:84,
con�rming the insigni�cance of the d parameter. The estimates of the remaining parameters for this
restricted model only changed marginally with the exception of the estimates of the a parameter
which decreased in value for all series. More importantly, however, the likelihood ratio tests for the
null hypothesis H0 : a = b = d = 0 were all signi�cant at the 1% signi�cance level. This was con�rmed
by the values of the AIC statistic, which is a goodness-of-�t statistic that allows for comparison
between di�erent models with di�erent numbers of parameters. Therefore we conclude that the SVM
model is a useful empirical model for the modelling of the relation between current returns and
returns of the previous period together with the feedback e�ect of current volatility. An additional
advantage of modelling the mean is that "t behaved better, especially in terms of the assumption of
zero autocorrelation.

4.4 Some comparisons with GARCH-M estimation results

The GARCH model we estimate is the GARCH-M(1,1) model de�ned in equations (1), (4) and (9) as

yt = a+ byt�1 + d�2t + �t"t; "t � NID(0; 1);

�2t = ! + �(�t�1"t�1)
2 + ��2t�1:

As research in the empirical GARCH literature has shown that the assumption of normally distributed
error terms is often violated we estimate the GARCH-M(1,1) model in this section with "t following
a Student-t instead of a Gaussian distribution15. Given our results in the previous section the need
to impose an alternative error distribution for the SV class of volatility models is less evident and
attributable to the fact that SV models are by de�nition better suited to incorporate extreme values.

The estimation results for the GARCH-M model are given in table 3 where we observe estimates
for the b parameter that are very similar to those obtained with the SVM model and that near zero

14For the estimation results of d = 0 and a = b = d = 0 we refer to the JAE website http://jae.wiley.com/jae/ or
to the original discussion paper of Koopman and Hol Uspensky (2000).

15In our original discussion paper we estimated the GARCH-M model with normally distributed error terms and
observed relatively high values for the �2 normality test statistic N compared to the ones reported in table 2.
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Table 3: Estimation results for the GARCH-M model with t-distribution

Period 1975{1998 1988{1998
No. of obs. 6261 2869
Stock Index FT All S&P FT All S&P Topix

a 0:023 0:007 0:000 0:024 �0:032
�0:006 0:053 �0:026 0:041 �0:052 0:051 �0:021 0:070 �0:079 0:015

b 0:145 0:061 0:094 0:021 0:085
0:120 0:170 0:037 0:086 0:057 0:132 �0:032 0:037 0:047 0:122

d 0:017 0:038 0:062 0:049 0:028
�0:024 0:058 �0:010 0:086 �0:039 0:162 �0:021 0:120 �0:017 0:072

! 0:014 0:008 0:009 0:004 0:028
0:009 0:019 0:005 0:011 0:003 0:015 0:001 0:007 0:015 0:041

� 0:084 0:043 0:055 0:034 0:108
0:070 0:099 0:034 0:052 0:037 0:074 0:022 0:046 0:080 0:135

� 0:897 0:947 0:928 0:962 0:876
0:880 0:914 0:936 0:958 0:903 0:953 0:950 0:975 0:848 0:904

� 11:914 6:046 8:704 4:572 4:955
10:342 14:049 5:360 6:933 6:987 11:538 3:919 5:487 4:152 6:142

�+ � 0:982 0:990 0:984 0:996 0:983

Q(12) 38.53 16.16 11.81 19.53 14.42
�21 0.792 0.775 0.561 0.985 1.689

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are all symmetric with
the exception of those of the � parameter; Q(`) is the Box-Ljung portmanteau statistic for the estimated observation
errors which is asymptotically �2 distributed with ` � p degrees of freedom where p is the total number of estimated
parameters; �2

1
denotes the unconditional variance as implied by the volatility process.

estimates for a are combined with positive values for the d parameter. The null hypothesis of a zero
ex ante relationship between excess returns and volatility can however never be rejected at the 5%
signi�cance level, although in some cases only by a small margin. With regard to our estimation
results we further observe that for the post crash samples the relationship is strongest. In fact, the
magnitude of the estimates for d are quite similar to those obtained with the SVM model in absolute
terms, so a large negative contemporaneous relationship in the SVM model is accompanied by a large
positive ex ante relationship in the GARCH-M model. This could be interpreted as con�rmation of
our hypothesis that a stronger ex ante relationship between the return and volatility process induces
a more convincing volatility feedback e�ect which dominates the relation between expected returns
and expected volatility.

The volatility persistence parameters are comparable to those found for the SVM model with near
unity values for the sum of � and �, although we observe that the persistence values for the Topix
and the Standard & Poor's sample starting in 1988 are considerably higher when modelled with the
GARCH-M model. They are in fact so high that they exceed those of the 1975�1998 Financial Times
All Share Index series which exhibits very high autorcorrelated squared returns as shown in table 1.
We �nd that the GARCH-M model also captures the volatility in the variance equation of the Topix
series as the � parameter, which measures the extent to which volatility at time t is inuenced by a
shock to the return process at time t� 1, is highest for this series.

Imposing restrictions of the form d = 0 and a = b = d = 0 were also carried out for the GARCH-M
model16. Again the estimates of the remaining parameters only changed marginally, with the exception

16These estimation results can be downloaded from the JAE website http://jae.wiley.com/jae/.
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of the a parameter which increased when we set d equal to zero. The likelihood ratio statistic indicated
that the in-mean e�ect had little explanatory value as the hypothesis of d = 0 could not be rejected
at the 5% signi�cance level for any of the �ve samples. The hypothesis a = b = d = 0 on the other
hand had to be rejected for all series, which was consistent with our �ndings for the SVM model.

5 Summary and Conclusions

In this paper we have presented a Stochastic Volatility model where the mean is modelled simultane-
ously with the variance equation. When one of the variables in the mean is the volatility process itself,
we obtain the Stochastic Volatility in Mean (SVM) model with which we are able to investigate the
contemporaneous relationship between excess returns on a stock market index and its time-varying
volatility. We estimate the parameters in our model using a special simulation based maximum like-
lihood method and we also present results of a Monte Carlo experiment to show that if such an
interdependence is present the SVM model is capable of detecting it.

For the empirical application we examined stock indices from the United Kingdom, the United
States and Japan over two time periods. The results were then compared with the estimation results
obtained for their GARCH counterparts. The conclusions of our empirical study can be summarised
as follows. Firstly, with our SVM model we �nd evidence of a weak negative relationship for all
stock index series, whereas estimation with the GARCH-M model produces statistically insigni�cant
positive estimates for the in-mean parameter. The di�erence in the sign for d is directly attributable
to the fact that the SVM model, unlike the GARCH-M model, not only measures the relation between
expected returns and expected volatility but also the volatility feedback e�ect where the latter appears
to dominate the former. The largest negative values are then observed for those series which have
a larger positive d estimate in the GARCH-M models and we assert that a strong ex ante positive
relation induces a more convincing volatility feedback e�ect which then provides indirect evidence of
the positive ex ante relationship between the return and the volatility process as this is one of the
main assumptions underlying the volatility feedback hypothesis. Secondly, we �nd that simultaneous
modelling of the mean and the variance equations lead to a better �t of the volatility series. The
�rst-order autoregressive term b in the mean equation appears robust across model speci�cations and
classes of volatility models. Although it is possible to model the original series prior to estimation with
a volatility model, simultaneous estimation is more eÆcient. Finally, we observe that the volatility
persistence parameter � in the SV models, which is an indication of volatility clustering, is comparable
with the persistence measure (� + �) of GARCH models. An advantage of SV models over GARCH
models is that the distributional assumptions of the error term in the mean "t are much less violated.
This makes the case for alternative error distributions and hence the estimation of an additional
parameter less strong for the SV class of volatility models. On the basis of the above we therefore
feel that SV models can be regarded as a competitive alternative to GARCH models, not only in
theoretical terms but also in empirical research.
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