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Abstract

We present new results for the likelihood-based analysis of the dynamic factor

model that possibly includes intercepts and explanatory variables. The latent factors

are modeled by stochastic processes. The idiosyncratic disturbances are specified as

autoregressive processes with mutually correlated innovations. The new results lead to

computationally efficient procedures for the estimation of the factors and parameter

estimation by (quasi-)maximum likelihood. An illustration is provided for the analysis

of a large panel of macroeconomic time series.
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1 Introduction

In this paper we consider the dynamic factor model given by

yit = µi + xitβ +

qΛ
∑

j=0

λ′ijft−j + uit, i = 1, . . . , N, t = 1, . . . , T, (1)

where yit denotes the observed value for the ith time series at time t, µi is a fixed and unknown

constant, xit is a 1×K vector of covariates, β is a K × 1 vector of regression coefficients, ft

is an r × 1 vector of common factors, λij is an r × 1 vector of loadings associated with the

common factors at lag j and uit is the idiosyncratic component. The factors are modeled

by linear dynamic processes and the idiosyncratic components by autoregressive processes

with mutually correlated zero mean innovations. We particularly focus on the case where a

high-dimensional panel of N time series depends on a relatively small number of r common

dynamic factors.

When the idiosyncratic components uit and the common factors ft are assumed Gaussian

we can evaluate the likelihood function efficiently by means of the Kalman filter. In case the

innovations are non-Gaussian, the Gaussian likelihood can be regarded as a quasi-likelihood.

The Gaussian likelihood function can be numerically maximized to obtain maximum likeli-

hood or quasi-maximum likelihood (QML) parameter estimates. This is the approach taken

by Engle and Watson (1981) for a Gaussian model with one common factor. Watson and

Engle (1983) use the expectation-maximization (EM) algorithm of Dempster, Laird, and

Rubin (1977) to find the optimum of the likelihood, see also Shumway and Stoffer (1982)

and Quah and Sargent (1993). However, in many of the recent applications of the dynamic

factor model, the high-dimensional panel of time series and the resulting large number of

parameters make such an approach infeasible.

In this paper we present new results that lead to computationally efficient methods

for a likelihood-based analysis of high-dimensional dynamic factor models. We cover both

signal extraction and likelihood evaluation. Finding the optimum of a likelihood function

is not straightforward if there is a large number of parameters. We present new devices

for an effective implementation of the optimization methods. We also derive an algorithm

to efficiently evaluate the marginal Gaussian loglikelihood for dynamic factor models of the

form (1). In case of time series models with regression effects, estimators based on the

marginal likelihood are found to perform better in small samples than the corresponding

maximum likelihood estimators, see, for example, Tunnicliffe-Wilson (1989) and Shephard

(1993).
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To demonstrate the applicability of our results we estimate a number of dynamic factor

models on a panel of 132 macroeconomic time series. The largest model that we estimate

includes seven dynamic factors and more than 1000 parameters. The new results presented

in this paper enable us to estimate these parameters in minutes.

The key insight for our results is that the observed time series can be split into a low-

dimensional vector series and a high-dimensional vector series. For the estimation of the

factors and the evaluation of the likelihood function, we need to apply the computationally

intensive Kalman filter methods to the low-dimensional series while simple regression-style

calculations suffice for the high-dimensional part. As a result, we are able to achieve large

computational gains.

Sargent and Sims (1977) and Geweke (1977) were the first to propose a dynamic factor

model. They obtain parameter estimates by maximizing the spectral likelihood function.

The increasing availability of high-dimensional vector series in economics and finance has

motivated work on alternative methods to estimate the common factors. Chamberlain and

Rothschild (1983) and Connor and Korajczyk (1986, 1988, 1993) show that if N goes to

infinity the factors are estimated consistently using the method of principal components.

More recent contributions have focused on extending the inferential theory of this method, see

e.g. Stock and Watson (2002a) and Bai (2003). Stock and Watson (2002b, 2006) demonstrate

the value of this approach for the purpose of constructing diffusion indexes that can be used

in forecasting macroeconomic time series. Forni, Hallin, Lippi, and Reichlin (2000) propose a

different estimation procedure, based on frequency domain methods, that provides consistent

estimates of the factors for a general class of dynamic factor models.

The likelihood-based approach has a number of advantages over the principal components

method. Since the factors are explicitly modeled and the estimation method takes account

of the model specification, the factors can represent aspects of economic theory. Hypothesis

tests can be formulated and tested. The techniques of this paper allow real-time estimation

of the underlying factors, estimation of past factors as well as prediction of factors and future

observations. The Kalman filter further produces mean squared errors of the factor estimates

without an extra computational effort. Unbalanced data-sets are also easily handled in this

framework. Finally, in case the data generating process can be represented as a Gaussian

dynamic factor model, the parameter estimators are asymptoticaly efficient. Moreover, Doz,

Giannone, and Reichlin (2006) show, under mild conditions, that the factor estimates from

the QML procedure are consistent for the true factors when T → ∞ and N → ∞, even

if the model is misspecified. They also present Monte Carlo evidence that the QML factor

estimates are often more precise than the principal component estimates.
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The remainder of the paper is organized as follows. The dynamic factor model and its

state space form are presented in Section 2. Parameter estimation is discussed in Section

3. The key results of this paper are presented in Section 4 with proofs and derivations

given in the Appendix. Section 5 discusses the new devices for parameter estimation using

quasi-maximum likelihood methods. An empirical illustration is provided in Section 6 while

Section 7 concludes.

2 Generalized dynamic factor model with covariates

We assume that the dynamic characteristics of a time series of observed N × 1 vectors

y1, . . . , yT can be described by the dynamic factor model (1). The vector form of model (1)

is given by

yt = µ̄+ X̄tβ + Λ(L)ft + ut, t = 1, . . . , T, (2)

where yt = (y1t, . . . , yNt)
′, ut = (u1t, . . . , uNt)

′, µ̄ = (µ1, . . . , µN)′, X̄t = (x′1t, . . . , x
′
Nt)

′ and

matrix lag polynomial Λ(L) = Λ0 +
∑qΛ

j=1 ΛjL
j with Λj = (λ1j, . . . , λNj)

′ for j = 0, . . . , qΛ,

lag-operator L and non-negative integer qΛ. The vector ft of common factors is modeled by

the vector autoregressive moving average (VARMA) process

Φ(L)ft = Θ(L)ζt, (3)

where ζt is a vector of innovations and the matrix lag polynomials are Φ(L) = I−
∑qΦ

j=1 ΦjL
j

and Θ(L) = I+
∑qΘ

j=1 ΘjL
j with r×r autoregressive coefficient matrices Φj for j = 1, . . . , qΦ

and r×r moving average coefficient matrices Θj for j = 1, . . . , qΘ. We model the idiosyncratic

component vector ut in (2) as the vector autoregressive (VAR) process

Ψ(L)ut = εt, (4)

where εt is a vector of innovations and the matrix lag polynomial is Ψ(L) = I −
∑qΨ

j=1 ΨjL
j

with N × N autoregressive coefficient matrix Ψj for j = 1, . . . , qΨ. Finally, we denote the

set of all parameters in the model by ψ. The set of parameters in ψ excluding µ̄ and β, are

denoted by θ, that is

ψ = (µ̄′ , β ′ , θ′)′.
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We adopt the following set of assumptions for model (2) – (4):

(i) The permissible parameter space Sψ is a compact sub-set of the Euclidean space. The

true parameter ψ0 is an interior point of Sψ.

(ii) For all ψ in Sψ and |z| ≤ 1, we have |Φ(z)| 6= 0 and |Ψ(z)| 6= 0.

(iii) Denote by Ft the σ-algebra generated by y1, . . . , yt, with F0 the trivial σ-algebra, then

E(εt|Ft−1) = 0, E(ζt|Ft−1) = 0, E(εtε
′
t|Ft−1) = Σε, E(ζtζ

′
t|Ft−1) = Σζ ,

for t = 1, . . . , T . We assume that Σε is a nonsingular matrix.

(iv) The vector sequences {εt} and {ζt} are uncorrelated and have finite fourth moments.

(v) The covariate sequence {X̄t} is independent of the innovation sequences {εt} and {ζt}.

(vi) Matrix limT→∞
1
T

∑T

t=1 X̄tX̄
′
t+j exists and is finite for every non-negative integer j.

(vii) Let Γy(h;ψ) = Covψ(yt, yt+h) for ψ ∈ Sψ, then for any ψ∗ ∈ Sψ such that ψ∗ 6= ψ0,

Γy(s;ψ) 6= Γy(s;ψ0) for at least one value of s ∈ Z+.

(viii) Denote µ̄0 and β0 as the true values of µ̄ and β, respectively. The process yt−µ̄0−X̄tβ0

can be written as a VAR process Π(L;ψ0)(yt− µ̄0 − X̄tβ0) = ũt, where Π(z;ψ0) = I −
∑∞

i=1 Πi(ψ0)z
i, E(ũt|Ft−1) = 0 and the elements of Π1,Π2 . . . are absolutely summable.

Assumption (ii) implies that the dynamic factor model is stationary for all admissable

parameter vectors. The assumption in (iii) of Σε nonsingular is not restrictive since any

dynamic factor model with a singular matrix Σε can be rewritten to satisfy assumption (iii).

Assumption (vii) is an identifiability assumption. In practice, for this assumption to hold,

we need to put restrictions on Λ0, Λ1, . . . ,ΛqΛ, Φ1, . . . ,ΦqΦ , Θ1, . . . ,ΘqΘ and Σζ . Parameter

restrictions are common in the literature on factor models, see e.g. Geweke and Zhou (1996)

for further discussions. Examples of the general model specification (2) – (4) are given in

Illustrations 1 and 2 below.

The dynamic factor model (2) with idiosyncratic component (4) can be expressed in

static form as follows

yt = µ+ dt +Xtβ + ΛFt + εt, t = qΨ + 1, . . . , T, (5)
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where µ = Ψ(I)µ̄, dt =
∑qΨ

j=1 Ψjyt−j, Xt = Ψ(L)X̄t, Ft = (f ′
t , f

′
t−1, . . . , f

′
t−s)

′ and Λ =

(Λ0,Λ
∗
1, . . . ,Λ

∗
s) with

Λ∗
k = Λ+

k −

k
∑

j=1

Ψ+
j Λ+

k−j, Λ+
i =

{

Λi, i ≤ qΛ,

0, otherwise,
Ψ+
i =

{

Ψi, i ≤ qΨ,

0, otherwise,

and s = qΛ+qΨ for i, k = 1, . . . , s. The number of static factors in Ft is given bym = r (s+1).

The VARMA process (3) for ft can be expressed as ft = Gαt for a suitable matrix G and

αt = Hαt−1 +Rζt, (6)

where p×1 state vector αt has mean E(αt) = 0 and variance matrix Var(αt) = Q. The system

matrices H and R are sparse matrices and contain the coefficient matrices in the polynomials

Φ(L) and Θ(L). Matrices H and R can be constructed such that G consists of rows of the

unity matrix and has full row rank. For more details on the state space specification of the

VARMA model, see e.g. Harvey (1989) and Durbin and Koopman (2001).

The dimension of the state αt is generally higher than the dimension of Ft when the

latent VARMA process (3) with non-zero orders qΦ and qΘ is specified in state space form.

Model (5) can be expressed in terms of the state vector αt via the observation equation

yt = µ+ dt +Xtβ + Zαt + εt, (7)

for t = qΨ + 1, . . . , T , with

Z = ΛG. (8)

To handle the initial stretch of observations y1, . . . , yqΨ explicitly, we need to consider the

observation equation (7) with different system matrices Z and Σε for t = 1, . . . , qΨ. We give

an example in Illustration 1 below. In the remainder of the paper, we assume for convenience

that all system matrices are time-invariant. However, all results hold for time-varying system

matrices subject to some minor modifications.

Illustration 1. Consider the dynamic factor model yt = Λ0ft+ut ( t = 1, . . . , T ) with N×r

factor loading matrix Λ0 and where the r × 1 vector ft follows a VAR(1) process, that is

equation (3) with qΦ = 1 and qΘ = 0, and the idiosyncratic components uit are modeled as

independent AR(1) processes, that is equation (4) with qΨ = 1 and both Ψ1 and Σε diagonal.

To ensure that all parameters are identified, we set Λ0 = (Λ̄′
1, Λ̄

′
2)

′ where Λ̄1 is an r× r lower

triangular matrix and Λ̄2 is an (N − r)× r full matrix. The diagonal elements of Λ̄1 are set

to one. Additionally, we restrict Σζ to a diagonal matrix.
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The state vector αt is specified as αt = Ft = (f ′
t , f

′
t−1)

′ so that G = I2p in (8). The

matrices H and R in (6) are given by

H =

[

Φ1 0

Ir 0

]

, R =

[

Ir

0

]

.

Further, we have E(α1) = 0 and Var(α1) = Q is set to the unconditional variance of the

stationary vector series (f ′
t , f

′
t−1)

′. The observation equation (7) for t = 2, . . . , T has µ = 0,

dt = Ψ1yt−1, β = 0 and Z = Λ = (Λ0 , −Ψ1Λ0). Since E(u1) = 0 and E(u1u
′
1) = (IN −

Ψ2
1)

−1Σε, observation equation (7) for t = 1 has d1 = 0, Z = (Λ0 , 0) and ε1 = u1.

Illustration 2. Suppose yt is modeled by the dynamic factor model yt = Λ0ft + ut ( t =

1, . . . , T ) with N × r factor loading vector Λ0 and the latent factor ft is modeled by the

VARMA(1,1) process defined as (3) with r = qΦ = qΘ = 1. We have

ft = Φft−1 + ζt + Θζt−1, E(ζt|Ft−1) = 0, E(ζ2
t |Ft−1) = Σζ ,

where Φ, Θ and Σζ are unknown matrices. Furthermore, we suppose that the idiosyncratic

components are independent disturbances, that is qΨ = 0 and ut = εt in (4). Identifiability

of parameters is guaranteed by restricting Λ0 and Σζ as in Illustration 1.

In case r = 1 and with Φ = φ, Θ = θ and Σζ = σ2
ζ , the state vector αt is specified as

αt = (ft , θζt)
′ and since Ft = ft we have Λ = Λ0 in (5) and G = (1 , 0) in (8). Then, µ = 0,

dt = 0, β = 0 and Z = ΛG in (7) for t = 1, . . . , T . The matrices H and R in (6) are then

given by

H =

[

φ 1

0 0

]

, R =

(

1

θ

)

,

with initial conditions E(α1) = 0 and Var(α1) = Q such that Q−HQH ′ = σ2
ζRR

′.

3 Parameter estimation

The state space model (6) and (7) can be written in the form

y = X̃(θ)γ + ξ, (9)

where y = [ (y1 − d1)
′, . . . , (yT − dT )′ ]′, γ = (µ′ , β ′)′, X̃(θ) is a NT ×(K+N) matrix valued

function of θ, E(ξ) = 0 and E(ξξ′) = Σ(θ) for a matrix valued function Σ(θ). The Gaussian
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loglikelihood function is defined as follows

ℓ(y;ψ) = c−
1

2
log |Σ(θ)| −

1

2
{y − X̃(θ)γ}′Σ(θ)−1{y − X̃(θ)γ}, (10)

where c is a constant independent of γ and θ. In case the disturbances εt and ζt in the dynamic

factor model (2) – (4) are Gaussian, equation (10) is the exact loglikelihood function. In other

cases, the loglikelihood function is generally intractable. If the Gaussian assumption does

not apply, the likelihood is designated as a quasi-likelihood. Quasi-maximum likelihood

(QML) estimators of the parameters are obtained by maximizing (10) with respect to ψ.

These QML estimators are strongly consistent as T → ∞ under the assumptions of Section

2. Additionally, the QML estimators are asymptotically Gaussian, see Hannan, Dunsmuir,

and Deistler (1980) for details and proofs.

For models where the Gaussian assumption for the initial factor f1 and the disturbances

εt and ζt holds, Tunnicliffe-Wilson (1989) and Shephard (1993) show that maximum likeli-

hood estimators of θ can be severely biased in small samples. Sample size can be small in

macroeconomic applications where the dynamic factor model is considered. For example,

Quah and Sargent (1993) analyze a data-set where T is as small as 42. In small samples, es-

timators obtained by maximizing the marginal Gaussian likelihood are known to have better

properties.

Suppose J1 is a (NT −N −K)×NT matrix, such that the distribution of J1y does not

depend on γ. Given a NT ×NT non-singular matrix of the form J = (J ′
1 , J

′
2)

′ with |J | = 1,

we define the marginal Gaussian loglikelihood function by

ℓd(y; θ) = ℓ(J1y; θ) = ℓ(y;ψ) − ℓ(J2y;ψ). (11)

It can be shown that the marginal likelihood is invariant to the choice of J , see Ansley

and Kohn (1985). This definition of the marginal Gaussian likelihood is equivalent to the

conditional likelihood of Cox and Reid (1987) and the modified profile likelihood of Barndorff-

Nielsen (1983), see also the discussion in Bellhouse (1990). In case of a small T we prefer to

estimate the parameters by maximizing (11).

Since the marginal likelihood does not depend on γ, we need to estimate these parameters

separately, for example by generalized least squares (GLS). The GLS estimator and its

variance are given by

γ̂(θ) = {X̃ ′Σ−1X̃}−1X̃ ′Σ−1y, Varθ(γ̂(θ)) = {X̃ ′Σ−1X̃}−1, (12)
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where we suppressed the dependence of X̃ and Σ on θ. Suppose θ̂ denotes the estimator of

θ obtained by maximizing ℓd(y; θ). We can then obtain an estimator of γ by substituting

θ̂ in (12). In case the QML estimators of γ and θ, γ̄ and θ̄, respectively, are obtained by

maximizing (10), we have γ̂(θ̄) = γ̄.

In the next section we present computationally efficient algorithms for evaluating the

Gaussian loglikelihood function (10), the marginal Gaussian loglikelihood function (11) and

the GLS estimator (12) for any value of θ.

4 Estimation of factors and likelihood evaluation

Since the dynamic factor model can be represented as the state space model (6) and (7), we

can use the Kalman filter to obtain the Gaussian loglikelihood function (10). Furthermore,

the Kalman filter and smoothing (KFS) methods of Appendix A.1 can be adopted to evaluate

at|s = P (αt|y1, . . . , ys;ψ), Qt|s = E
[

(αt − at|s)(αt − at|s)
′|y1, . . . , ys;ψ

]

, (13)

for s, t = 1, . . . , T , where P (αt|y1, . . . , ys;ψ) denotes the minimum mean squared error linear

estimator (MMSLE) of αt based on y1, . . . , ys for given ψ and Qt|s is its mean squared error

matrix. Here we have suppressed the dependence of at|s and Qt|s on the parameter vector

ψ. Detailed accounts of the state space methodology can be found in textbooks such as

Anderson and Moore (1979), Harvey (1989) and Durbin and Koopman (2001).

If the dimension N of yt is very large, the KFS methods are computationally infeasible,

even when the dimension p of the state vector αt is modest. Anderson and Moore (1979)

and Koopman and Durbin (2003) show that, for models with diagonal Σε, multivariate

KFS methods can be made computationally more efficient by processing the elements of

yt individually rather than the whole vector at once. This modification leads to substan-

tial computational gains, but they are not sufficient for the dimensions common in recent

applications of dynamic factor models.

In this section we present new results that allow for the computationally efficient evalua-

tion of the likelihood functions and GLS estimator of Section 3 as well as the state estimates

and mean squared errors in (13).

4.1 Transforming the observation equation

Consider the state space model (6) and (7) for a given parameter vector ψ. Define y+
t = Ayt,

for t = 1, . . . , T , for some non-singular matrix A. The MMSLEs of α1, . . . , αT in (13) are not
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affected if y1, . . . , ys is replaced with y+
1 , . . . , y

+
s . Furthermore, the loglikelihood functions

of y1, . . . , yT and y+
1 , . . . , y

+
T differ only by the Jacobian term log |A|T . We will show that

for certain choices of A, factor estimates and likelihood functions can be computed more

efficiently based on y+
1 , . . . , y

+
T rather than y1, . . . , yT .

Suppose we partition N ×N matrix A and N × 1 vector y∗t = A(yt − µ− dt −Xtβ) as

A =

[

AL

AH

]

, y∗t =

(

yLt

yHt

)

, (14)

where

yLt = AL(yt − µ− dt −Xtβ), yHt = AH(yt − µ− dt −Xtβ),

with m × N matrix AL and (N −m) × N matrix AH . The observation vectors yLt and yHt

have dimensions m×1 and (N −m)×1, respectively. We aim to choose A such that yLt and

yHt are uncorrelated and only yLt depends on αt. More specifically, the model for y∗t will be

of the form

yLt = ALZαt + eLt , yHt = eHt , (15)

where

E(eLt |Ft−1) = 0, E(eHt |Ft−1) = 0,

E(eLt e
L ′
t |Ft−1) = ΣL, E(eHt e

H ′
t |Ft−1) = ΣH , E(eHt e

L ′
t |Ft−1) = 0,

for t = 1, . . . , T , with ΣL = ALΣεA
L′ and ΣH = AHΣεA

H′. A suitable matrix A needs to

fulfill the following conditions:

(i) A is full rank,

(ii) AHΣεA
L′ = 0,

(iii) Row{AH} = Col{Z}⊥,

where Col{X} and Row{X} denote the row and column spaces of a matrix X, respectively,

and the superscript ⊥ denotes the orthogonal complement. Condition (i) prevents any loss

of information due to the transformation Ayt. Condition (ii) ensures that eLt and eHt in (15)

are uncorrelated and condition (iii) implies that the second equation does not depend on αt.

Condition (iii) is stronger than strictly necessary. The transformed model will still be of the

form (15) if condition (iii) is replaced with AHZ = 0. In its current form however, condition

(iii) ensures that the reduction in dimension is as large as possible, in the sense that the

dimension of yHt cannot be enlarged without comprimising the special form of (15). Finally,

we add the condition
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(iv) |ΣH | = 1.

Condition (iv) is not restrictive but it simplifies various calculations. For example, we can

express the determinant of A in terms of AL and Σε since

|A|2 = |Σε|
−1|AΣεA

′| = |Σε|
−1|ALΣεA

L ′||AHΣεA
H ′| = |Σε|

−1|ΣL|. (16)

The conditions (i)–(iii) imply a closed form for AL, which is given in the following lemma.

Lemma 1. Consider model (6) – (7). Suppose matrix A is of the form (14) and AH satisfies

(iii), then A satisfies (i)–(iii) if and only if

AL = Λ† ′Σ−1
ε , (17)

where the columns of the N × rΛ matrix Λ† form a basis for the column space of Λ.

Remarks

(a) The columns of Λ† also form a basis of the column space of Z, which follows from the

fact that Z = ΛG, for a full row rank matrix G. It is therefore easily verified that any

matrix A with AL given by (17) and AH satisfying (iii), fulfills conditions (i)–(iii). We

prove the necessity part of Lemma 1 in Appendix A.2.

(b) Since column rank deficiency of Λ is rare in practice, we can generally choose

Λ† = ΛC, (18)

for any rΛ × rΛ nonsingular matrix C. In case Λ does not have full column rank, it

is often straightforward to construct a suitable Λ†. An example of such a situation is

Illustration 1 if Ψ1 = ϕIN with scalar −1 < ϕ < 1.

(c) A closed form expression for AH is generally not available. For AH to satisfy (iii), we

need to choose AH such that its rows form a basis for the null space of Λ† ′. Condition

(iv) can then be satisfied by rescaling the rows. Finding a basis for the null space of

a matrix requires computationally intensive numerical methods. Fortunately, we will

show that matrix AH is not required for any of our computations.

(d) The results below are based on transformation (14) and model (15). Although our

results are more general and are developed for different purposes, a similar transfor-

mation as (14) for a different class of factor models is considered by Fiorentini, Sentana,

and Shephard (2004, section 2.4.1).
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Illustration 3. Consider the dynamic factor model yt = Λft + εt of Illustration 2. Apply

transformation (14) to yt where matrix AL is given by (17) and (18) with C = (Λ′Σ−1
ε Λ)

−1
.

For this choice of C, vector yLt is effectively the GLS estimator of ft in the “regression model”

yt = Λft + εt, for each t. We have

yLt =
(

Λ′Σ−1
ε Λ

)−1
Λ′Σ−1

ε yt, t = 1, . . . , T.

In case r = rΛ = 1, model (15) for the univariate time series yLt is then given by

yLt = Gαt + eLt , E(eLt e
L ′
t |Ft−1) = C, t = 1, . . . , T,

where vector G = (1, 0).

4.2 Estimation of factors

By considering a matrix A that satisfies the conditions (i)–(iv) in Section 4.1, we are able

to efficiently compute MMSLEs of the factors. Since matrix A has full rank, we have

P (αt|y1, . . . , ys;ψ) = P (αt|y
∗
1, . . . , y

∗
s ;ψ). Furthermore, from (15) it follows that yLt and

yHt are uncorrelated and that yHt does not depend on αt. Hence,

at|s = P (αt|y
∗
1, . . . , y

∗
s ;ψ) = P (αt|y

L
1 , . . . , y

L
s ;ψ),

for s, t = 1, . . . , T . The MMSLEs of the states can therefore be obtained by applying KFS

methods to the low-dimensional model

yLt = ALZαt + eLt , E(eLt |Ft−1) = 0, E(eLt e
L ′
t |Ft−1) = ΣL, t = 1, . . . , T. (19)

The high-dimensional matrix AH and vector yHt are not required for the estimation of αt. In

case of Illustration 3 with r = 1, the estimation of αt is simply carried out by univariate KFS

methods. The low-dimensional KFS also produces the correct mean squared error matrices

Qt|s in (13) for s, t = 1, . . . , T . The KFS methods provide solutions for prediction (s = t−1),

filtering (s = t), smoothing (s = T ) and forecasting (t > s) of observation and state vectors.

The procedures of this section can still be used if observed vectors yt do not all have the

same dimension due to, for example, missing values. In this case, a different matrix A must

be constructed for t = 1, . . . , T . This solution is also adopted in cases where the system

matrices of the state space form (6) – (7) vary over time.
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4.3 Evaluation of the Gaussian loglikelihood

Let vt denote the prediction error, vt = yt − P (yt|y1, . . . , yt−1;ψ), and Dt the mean squared

error matrix of vt, Dt = E(vtv
′
t|y1, . . . , yt−1;ψ). The Gaussian loglikelihood ℓ(y;ψ) defined

in (10) can be evaluated via the prediction error decomposition,

ℓ(y;ψ) = −
NT

2
log 2π −

1

2

T
∑

t=1

log |Dt| −
1

2

T
∑

t=1

v′tD
−1
t vt, (20)

see Schweppe (1965) and Harvey (1989, section 3.4). The quantities vt and Dt are obtained

from the Kalman filter of Appendix A.1 applied to the state space model (6) and (7).

A computationally more efficient way to evaluate (20) is to choose a matrix A that

satisfies the conditions (i)–(iv) in Section 4.1, to transform yt as in (14) and to consider

model (15). We then have

ℓ(y;ψ) = ℓ(yL;ψ) + ℓ(yH ;ψ) + T log |A|, (21)

where yL = (yL ′
1 , . . . , yL ′

T )′ and yH = (yH ′
1 , . . . , yH ′

T )′. The first term ℓ(yL;ψ) can be evaluated

by the Kalman filter applied to the low-dimensional model (19). The second term is

ℓ(yH ;ψ) = −
(N −m)T

2
log 2π −

1

2

T
∑

t=1

yH ′
t Σ−1

H yHt , (22)

since |ΣH | = 1. Lemma 2 shows that the last term in equation (22) can be calculated without

constructing AH . The proof is given in Appendix A.3.

Lemma 2. For the state space model (6) – (7), transformation (14) and resulting model

(15), with AL given by (17), we have the identity

yH ′
t Σ−1

H yHt = e′tΣ
−1
ε et, (23)

where et =
[

IN − Λ†
(

Λ† ′Σ−1
ε Λ†

)−1
Λ† ′Σ−1

ε

]

(yt − dt − µ−Xtβ).

Given the expression for |A|2 in (16), loglikelihood function (21) can be expressed as

ℓ(y;ψ) = c+ ℓ(yL;ψ) −
T

2
log

|Σε|

|ΣL|
−

1

2

T
∑

t=1

e′tΣ
−1
ε et, (24)

where c is a constant independent of both y and ψ. It follows that for the evaluation

of the loglikelihood, computation of matrix AH and vectors yHt , for t = 1, . . . , T , is not

13



required. Expression (24) is instrumental for a computationally feasible approach to the

quasi-likelihood based analysis of the dynamic factor model.

Remarks

(a) The vectors et in Lemma 2 have an intuitive interpretation as the residuals of a GLS

regression of yt − Xtβ − µ − dt on the columns of Λ† with variance matrix Σε. Since

the columns of Λ† also form a basis of the column space of Z, this is equivalent to

regressing yt −Xtβ − µ− dt on the columns of Z.

(b) The concluding remarks of Section 4.2 concerning missing values and time-varying

specifications of the dynamic factor model apply to the evaluation of the loglikelihood

via (21) as well.

Illustration 4. In the Illustration 3, the transformation (14) is based on the matrix AL

defined in (17) and (18) with C = (Λ† ′Σ−1
ε Λ†)−1. However, it can be more convenient

to choose C such that C ′C = (Λ† ′Σ−1
ε Λ†)−1 with C upper-triangular. For this choice, the

variance matrix ΣL in (19) is the identity matrix and the loading matrix in (19) is ALΛ† =

C−1 ′. We obtain the model

yLt = C−1 ′Gαt + eLt , E(eLt |Ft−1) = 0, E(eLt e
L ′
t |Ft−1) = I, t = 1, . . . , T.

Since ΣL = I, the fast KFS methods discussed in Koopman and Durbin (2003) can be applied

straightforwardly. Furthermore, the loglikelihood function (24) reduces to

ℓ(y;ψ) = c+ ℓ(yL;ψ) −
T

2
log |Σε| −

1

2

T
∑

t=1

e′tΣ
−1
ε et.

The computations for |Σε| and Σ−1
ε can exploit special structures in Σε such as the matrix

being diagonal or having Toeplitz, spatial or block structures.

4.4 Partial concentration of regression coefficients

Maximizing the Gaussian loglikelihood function ℓ(y;ψ) is computationally intensive, since

the dimension of ψ is generally very high. It is therefore attractive to concentrate the

regression coefficients out of the likelihood and maximize the resulting profile likelihood

function. In this section we show how the constant vector µ can be partially concentrated

out of the likelihood with minimum effort.
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Choose matrix A such that conditions (i)–(iii) in Section 4.1 are satisfied and define

ỹLt = AL(yt − dt −Xtβ), ỹHt = AH(yt − dt −Xtβ), t = 1, . . . , T, (25)

such that yLt = ỹLt −µ
L and yHt = ỹHt −µH where µL = ALµ and µH = AHµ, for t = 1, . . . , T .

In the likelihood function (21), ℓ(yL;ψ) does not depend on µH while µH only appears in

the second term of ℓ(yH;ψ) which can be expressed by

−
1

2

T
∑

t=1

(ỹHt − µH)′Σ−1
H (ỹHt − µH) = −

1

2

T
∑

t=1

(ẽt −MΛµ)′Σ−1
ε (ẽt −MΛµ), (26)

where MΛ = IN−Λ†(Λ† ′Σ−1
ε Λ†)−1Λ† ′Σ−1

ε and ẽt = MΛ(yt−dt−Xtβ) such that et = ẽt−MΛµ.

The equality in (26) is justified by Lemma 2. It follows from equation (43) in Appendix

A.3 that MΛµ is a linear function of µH . Concentrating out µH is therefore equivalent to

concentrating out MΛµ from the likelihood function. The GLS estimator of MΛµ, denoted

by µ̂⊥Λ(β, θ), is given by

µ̂⊥Λ(β, θ) =
1

T

T
∑

t=1

ẽt. (27)

The (partial) profile loglikelihood function is given by (24) where the last term is replaced

by −0.5
∑T

t=1 ẽ
m ′
t Σ−1

ε ẽmt where ẽmt = ẽt − µ̂⊥Λ(β, θ) for t = 1, . . . , T .

The QML estimator of µ can be obtained via the identity

µ = PΛµ
L +MΛµ, where PΛ = Λ†(Λ† ′Σ−1

ε Λ†)−1. (28)

The QML estimator of µ is then given by

µ̃ = µ̂⊥Λ(β̃, θ̃) + PΛµ̃
L, (29)

where θ̃, β̃ and µ̃L are the QML estimators of θ, β and µL, respectively, which we obtain by

maximizing the profile Gaussian loglikelihood function with respect to θ, β and µL.

4.5 Evaluation of the marginal Gaussian loglikelihood

Different algorithms have been proposed to evaluate the marginal Gaussian loglikelihood

function (11), see Ansley and Kohn (1985) and de Jong (1991). The algorithms, consisting

of the Kalman filter and smoother augmented by an additional set of N + K dimensional

recursions, implicitly carry out the transformation J1y in (11). The augmented KFS (AKFS)

15



methods also produce MMSLEs of regression coefficients together with their mean squared

errors as given by (12).

The number of time series in a dynamic factor model can be high and direct application

of such algorithms is often infeasible. We can use the earlier results to compute the marginal

likelihood based on a much smaller dimension. As a result, inference based on the marginal

likelihood becomes feasible for a high-dimensional dynamic factor model (6) – (7). For

this purpose, we choose matrix A such that conditions (i)–(iv) in Section 4.1 are satisfied.

Pre-multiplying the observations by A, we obtain the model

ȳLt = µL +XL
t β + ALZαt + eLt , ȳHt = µH +XH

t β + eHt , (30)

where ȳLt = AL(yt − dt), ȳ
H
t = AH(yt − dt), X

L
t = ALXt and XH

t = AHXt with µL and µH

defined below (25) and the disturbances eLt and eHt defined below (15). In the remainder

of this section we show that the evaluation of ℓd(y; θ) can be carried out in two steps: first

processing the original time series yt and second applying AKFS methods to the time series

ȳLt .

Since ȳL = (ȳL ′
1 , . . . , ȳL ′

T )′ and ȳH = (ȳH ′
1 , . . . , ȳH ′

T )′ both depend on coefficient vector

β, the marginal Gaussian likelihood function cannot be easily expressed in two independent

parts. However, we show in Appendix A.4 that for any given parameter vector θ

ℓd(y; θ) = Ld(ȳ
H ; θ) + Ld(ȳ

L; θ) −
T − 1

2
log

|Σε|

|ΣL|
, (31)

where Ld(ȳ
H; θ) and Ld(ȳ

L; θ) are obtained by the following two-step algorithm.

Step 1. Define

b = B−1
T
∑

t=1

X̄m ′
t Σ−1

ε ēmt , B =

T
∑

t=1

X̄m ′
t Σ−1

ε X̄m
t , (32)

where

ēmt = MΛ(yt − dt − ȳ), X̄m
t = MΛ(Xt − X̄), (33)

for t = 1, . . . , T , with ȳ = T−1
∑T

t=1 (yt − dt) and X̄ = T−1
∑T

t=1Xt. Then, compute

Ld(ȳ
H) = −

(N −m)

2
(T log 2π + logT ) −

1

2
log |B| −

1

2

T
∑

t=1

ē∗ ′t Σ−1
ε ē∗t , (34)

where ē∗t = ēmt − X̄m
t b.
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Step 2. Set Ld(ȳ
L; θ) equal to the marginal Gaussian loglikelihood for the model

ȳLt = µL +XL
t δ + ALZαt + eLt , (35)

where µL is treated as an unknown regression coefficient vector and δ is a random

effect with mean b and variance B−1. The evaluation of Ld(ȳ
L; θ), together with the

estimation of µL and δ, is carried out by the augmented Kalman filter.

4.6 Estimation of regression coefficients

For the dynamic factor model (6) – (7) define µ̂(θ) and β̂(θ) as the GLS estimators of µ and

β as functions of θ. Note that γ̂(θ) = [µ̂(θ)′ , β̂(θ)′]′ where the GLS estimator γ̂(θ) is given

by (12). The GLS estimators are based on the data-set y1, . . . , yT . The two-step algorithm of

the previous section is also instrumental for computing µ̂(θ) and β̂(θ) in a computationally

efficient way. The second step of the algorithm produces the MMSLEs of δ and µL, that is

P (δ|ȳL1 , . . . , ȳ
L
T ; θ) and P (µL|ȳL1 , . . . , ȳ

L
T ; θ), respectively, as well as their mean squared errors.

In Appendix A.5 we prove that for given θ

β̂(θ) = P (δ|ȳL1 , . . . , ȳ
L
T ; θ), µ̂L(θ) = P (µL|ȳL1 , . . . , ȳ

L
T ; θ), (36)

where µ̂L(θ) is defined as the GLS estimator of µL based on y1, . . . , yT as a function of θ.

The GLS estimator µ̂(θ) is follows from (28) and is given by

µ̂(θ) = PΛµ̂
L(θ) + µ̂⊥Λ(θ), (37)

where matrix PΛ is defined in (28) and µ̂⊥Λ(θ) denotes µ̂⊥Λ(β, θ), as given by (27), evaluated

in β = β̂. The variance matrix of µ̂(θ) is given by

Varθ(µ̂(θ)) = Varθ{µ̂⊥Λ(θ) + PΛµ̂
L(θ)}

= Varθ{µ̂⊥Λ(θ)} + PΛCovθ{µ̂⊥Λ(θ), µ̂L(θ)}′ + Covθ{µ̂⊥Λ(θ), µ̂L(θ)}P ′
Λ

+ PΛVarθ{µ̂
L(θ)}P ′

Λ,

where the dependence of variances and covariances on θ is made explicit in the notation

Varθ(·) and Covθ(·, ·). To evaluate Varθ{µ̂(θ)}, we require the expressions

Varθ{µ̂⊥Λ(θ)} = MΛ

[

X̄Varθ{β̂(θ)}X̄ ′ + T−1Σε

]

M ′
Λ,
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and

Covθ{µ̂⊥Λ(θ), µ̂L(θ)} = −MΛX̄Covθ{β̂(θ), µ̂L(θ)},

where MΛ and X̄ are defined below (26) and (33), respectively. The variance matrices

Varθ{β̂(θ)} and Varθ{µ̂
L(θ)} are equal to the mean squared error matrices of β̂(θ) and µ̂L(θ)

in (36), respectively. These two variance matrices, together with the covariance matrix

Covθ{β̂(θ), µ̂L(θ)}, are evaluated by the AKFS methods from Step 2 of the algorithm in

Section 4.5. Derivations and more details are given in Appendix A.5. Estimators of µ and β

can be obtained by substituting the QML estimator of θ, found by maximizing the Gaussian

marginal likelihood, in (36) and (37).

The AKFS methods applied to the low-dimensional model in step 2 of the algorithm

in Section 4.5 also produce the MMSLEs of the state vectors α1, . . . , αT and the mean

squared errors as defined in (13). The resulting estimates are identical to the estimates

obtained from the usual KFS with µ and β replaced by their GLS estimators β̂ and µ̂,

respectively. However, the mean squared errors of the state vector will not be identical. The

AKFS methods adjust the mean squared errors of the state vector for the uncertainty in the

estimates of the regression coefficients in µ and β.

4.7 Computational gains

The main purpose of the results of the previous sections is to obtain computationally efficient

inference procedures for the class of dynamic factor models discussed in Section 2. In this

section we report the gains in computing times that are achieved by our new methods based

on the transformed observations y+
1 , . . . , y

+
T with y+

t = Ayt for t = 1, . . . , T . The gains are

relative to the standard application of the Kalman filter based on y1, . . . , yT .

The computational gains depend primarily on the panel dimension N and state vector

dimension p. To obtain some insight in the size of these gains, we calculate the Gaussian

loglikelihood and marginal Gaussian loglikelihood functions for different values of N and

p. The calculations are performed using the Kalman filter and the methods described in

Sections 4.3 and 4.5 for the basic factor model given by

yit = µi + λ′ift + εit,

where ft is modeled by the VARMA process (3) with qΦ = 1 and qΘ = 0 while the innovations

εit are uncorrelated. For the different model representations in Section 2, we have αt = Ft =

ft and p = m = r. In the first panel of Table 1 we present the ratios of CPU times needed for

the evaluation of the two loglikelihood functions. The results are encouraging. If N = 250
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and p = 5, the Kalman filter computations for the loglikelihood are carried out 15 times

faster as a result of our new device. Furthermore, the computational savings are substantial

for moderate values of N and relatively small values of p, say, 5 or 10. If p is relatively large,

say, 25, the gains are less dramatic but still substantial by any means.

We achieve even more computational gains if we evaluate the marginal loglikelihood using

the method of Section 4.5. The reported ratios in the second panel of Table 1 are so high

because the Kalman filter based on y1, . . . , yT requires an N dimensional augmentation for

the constant vector µ. The Kalman filter used in Section 4.5 and based on the observation

equation (35) requires a limited p dimensional augmentation for the constant vector µL.

Table 1: Computational Gains

The two panels below present the gains in computing time when evaluating the Gaussian likelihood re-
spectively the marginal likelihood functions of a basic dynamic factor model. The model considered is
yit = µi + λ′

i
ft + εit, where ft is modeled as a VAR(1) process, εit ∼ IID(0, σ2), for some positive scalar σ

and µi is a scalar. The ratio d1/d2 is reported: d1 is the CPU time for the standard Kalman filter respec-
tively augmented Kalman filter and d2 is CPU time for the algorithms of Sections 4.3 and 4.5. The ratios
are reported for different panel dimensions N and different state vector dimensions p.

Gaussian likelihood Marginal Gaussian likelihood

N\p 1 5 10 25 50 1 5 10 25 50

10 2.0 1.3 – – – 10.4 2.3 – – –
50 5.7 4.7 3.1 1.5 – 50.6 40.0 18.0 3.4 –
100 6.7 7.5 5.6 2.5 1.5 55.0 62.0 47.2 13.5 3.2
250 8.7 14.8 12.4 5.5 3.0 79.0 82.2 82.9 63.6 22.6
500 12.5 15.9 21.2 10.2 5.4 107.5 108.9 109.5 108.7 69.7

5 Maximizing the quasi-likelihood function

In this section we discuss methods to maximize ℓ(y;ψ) and ℓd(y; θ) with respect to ψ and

θ, respectively. The number of parameters can be as high as 1, 000 or 2, 000. The results of

Sections 4.3 and 4.5 imply that the Gaussian loglikelihood and the marginal Gaussian log-

likelihood functions can be evaluated efficiently for high-dimensional dynamic factor models.

Numerical optimization procedures, such as the quasi-Newton BFGS algorithm described

in Nocedal and Wright (1999), can be adopted to maximize the loglikelihood function with

respect to ψ or θ. These methods require evaluation of the score vector. Since the number of

parameters is high, evaluating the score vector numerically is infeasible, even if the results of

Section 4.3 are used. Fortunately, we can show that the exact score vector can be obtained

by a single KFS or AKFS applied to the low-dimensional model (19) or (35). Alternatively,
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the EM algorithm can be used to obtain the QML estimates. In Section 5.2 we show that

each EM step relies on a single KFS or AKFS.

5.1 Calculating the analytical score

Koopman and Shephard (1992) develop analytical expressions for the score function of the

parameters in a state space model. They adopt the results in Louis (1982) and Ruud (1991)

and in particular the identity

∂ℓ(y;ψ)

∂ψ

⌋

ψ=ψ∗

=
Q(ψ∗|ψ)

∂ψ

⌋

ψ=ψ∗

, (38)

where Q(ψ∗|ψ) is the expected complete Gaussian loglikelihood function, given by

Q(ψ∗|ψ) = E (log p(y, α;ψ) |y;ψ∗ ) ,

and p(y, α;ψ) is the joint density of y and α1, . . . , αT . For the state space model (6) – (7),

with Gaussian innovations εt and ζt, Q(ψ∗|ψ) is given by

Q(ψ∗|ψ) = c−
T

2
log |Σε| −

1

2
trQε −

T − 1

2
log |Σζ | −

1

2
trQζ

−
1

2
log |P | −

1

2
tr[P−1{(a1|T − a)(a1|T − a)′ +Q1|T}], (39)

where a = E(α1), P = E{(α1 − a)(α1 − a)′} and c is a constant independent of ψ and

Qε = Σ−1
ε

T
∑

t=1

{ε̂tε̂
′
t + Var(εt|y)}, Qζ = Σ−1

ζ

T
∑

t=2

{ζ̂tζ̂
′
t + Var(ζt|y)}, (40)

where ε̂t = E(εt|y), Var(εt|y), ζ̂t = E(ζt|y) and Var(ζt|y) can be expressed in terms of aj|T and

Qj|T for j = 1, . . . , T , which can be evaluated using the KFS methods discussed in Appendix

A.1. Since the estimation of factors can be based on the low-dimensional model (19) while

matrix AH and time series yHt are not needed, the KFS computations are fast. Expressions

for the derivatives of (39) with respect to the system matrices, evaluated at ψ = ψ∗, are

given in Appendix A.6. The score vector with respect to ψ is then obtained using the chain

rule. The score vector of the marginal Gaussian loglikelihood function ℓd(y; θ) with respect

to θ and evaluated at θ = θ∗ can be obtained in the same way with the difference that

Q(θ∗|θ) is obtained by AKFS methods as described in Section 4.5, see Durbin and Koopman

(2001, section 7.3).
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5.2 The EM algorithm

The well-known EM algorithm, introduced by Dempster, Laird, and Rubin (1977), is an

iterative algorithm that repeatedly performs two types of calculations: (E)xpectation and

(M)aximization. For a given value of ψ = ψ∗, the E and M steps are given by

• E step: determine the expected complete loglikelihood function Q(ψ∗|ψ) in (39).

• M step: maximize Q(ψ∗|ψ) with respect to ψ.

The M step produces a vector ψ+ with the property ℓ(y;ψ+) ≥ ℓ(y;ψ∗). If the EM steps are

continuously repeated, convergence to a (local) optimum of ℓ(y;ψ) is guaranteed, see Wu

(1983) for a more detailed discussion. Shumway and Stoffer (1982) and Watson and Engle

(1983) have proposed the use of the EM algorithm in the context of state space models. A

feasible EM algorithm for high-dimensional dynamic factor models is obtained by applying

the methods of Sections 4.1 and 4.2 in the E step. The details of the EM algorithm are

specific to the particular specification of the dynamic factor model. In Appendix A.7 the

EM algorithm is reviewed for the model of Illustration 1. The EM algorithm can also be

adopted to find a (local) optimum of the marginal Gaussian loglikelihood function ℓd(y; θ).

The necessary modification is to adopt the two-step algorithm of Section 4.5 in the E step.

6 An empirical illustration

In this section we present an illustration of the likelihood-based treatment of the dynamic

factor model. We consider the data-set of Stock and Watson (2005). From this data-set we

construct a balanced panel of N = 132 monthly US macroeconomic time series from 1960:1

through 2003:12 (44 years, T = 528). The data is transformed and differenced to obtain a

stationary set of time series; the details of each series and its transformation are given in

Appendix A of Stock and Watson (2005). The 132 series are categorized into 15 sectors as

presented in Table 2. Each sector is indexed by a code (A. . .O). Table 2 also reports the

number of time series in each sector. For all series, observations larger than 6 times the

standard deviation of the series, σ, (in absolute value) are set to ±6σ. In total, 46 (out of

69, 696) observations are Winsorized in this way (0.066%). Finally, each time series is scaled

such that its sample variance equals one.

The empirical analyses below differ from Stock and Watson (2005) and the related study

in Stock and Watson (2002b) since their results are obtained from principal components

analyses (diffusion indexes). Our approach is closer in spirit to the likelihood-based analyses

of Bernanke, Boivin, and Eliasz (2005) and Boivin and Giannoni (2006). The estimation
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Table 2: List of sectors

This table lists the 15 sectors in the data-set that we consider in Section 6. For each sector, the code, a
short description and the number of series in the sector are given. More detailed descriptions of the 132 time
series can be found in Appendix A of Stock and Watson (2005).

Code Description Number of Time Series

A Real Output and Income 17
B Employment and Hours 30
C Real Retail 1
D Manufacturing and Trade Sales 1
E Consumption 1
F Housing Starts and Sales 10
G Real Inventories 3
H Orders 7
I Stock Prices 4
J Exchange Rates 5
K Interest Rates and Spreads 17
L Money and Credit Quantity Aggregates 11
M Price Indexes 21
N Average Hourly Earnings 3
O Miscellanea 1

of parameters is based on QML. The dynamic properties of the factors can be analyzed by

investigating the estimated coefficients that are associated with the factors. We further show

that diagnostic tests for model misspecification can be computed as part of a model-based

analysis.

We consider the dynamic factor model which is given by

yt = µ̄+ Λft + ut, ft = Φ1ft−1 + ζt, ut = Ψ1ut−1 + εt, (41)

for t = 1, . . . , T where yt is the N × 1 observation vector and ft is the r× 1 vector of factors

with T = 528 and N = 132. The intercept vector µ̄ is fixed and unknown. The factor loading

matrix Λ is unknown and its r top rows form a lower-triangular matrix with the diagonal

elements restricted to be one. The matrices Φ1 and Ψ1 are autoregressive coefficient matrices

and we assume that Ψ1 is a diagonal matrix. The innovation series ζt and εt are IID processes

with mean zero and variance matrices Σζ and Σε, respectively. We assume that both Σζ and

Σε are diagonal.

We adopt two model specifications: Model I has r = 7 and Ψ1 = 0 (such that ut = εt

is IID for all t) and Model II has r = 4 and a non-zero diagonal matrix Ψ1. Model I

is motivated by Stock and Watson (2005) where they adopt the procedure of Bai and Ng
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(2002) to conclude that seven static factors are present in this data-set. Model II is motivated

by an analysis of Bai and Ng (2007) based on the same data-set and where they advocate

4 dynamic factors which may span over 7 static factors. In Model II we therefore set r = 4

and obtain a set of m = 8 static factors by introducing autoregressive disturbances of order

1, that is qΨ = 1. Since the number of static factors in models I and II are comparable (7

and 8, respectively), it is interesting to compare the empirical findings for the two model

specifications. The dimensions of the different model specifications and the dimensions of

sub-vectors µ̄, β and θ of the parameter vector ψ are reported in Table 3.

Table 3: Dynamic factor model specifications

The table reports dimensions for two dynamic factor model specifications that we consider in the empirical
analyses as well the corresponding parameter vectors ψ and its components. The observed series, yt, are
modeled as yt = µ̄+ Λft + ut where ft is a VAR(1) process, see Section 2 for more details. The state space
formulation is discussed in Section 2. In model I, the innovation vector ut is an IID process with mean zero
and diagonal variance matrix Σε. In model II, the vector ut is modeled as a VAR(1) process with a diagonal
autoregressive coefficient matrix Ψ1 and a diagonal variance matrix Σε. The dimension of θ is the total of
all parameter dimensions excluding µ and β since ψ = (µ̄′ , β′ , θ′)′.

Model formulation §2 State Space Parameter vector ψ

r qΛ qΦ qΘ qΨ s m p µ̄ β Λ Φ Θ Ψ Σε θ

I 7 0 1 0 0 0 7 7 132 0 903 49 0 0 132 1084
II 4 0 1 0 1 1 8 8 132 0 522 16 0 132 132 802

6.1 Parameter estimation

We have estimated the parameters by numerically maximizing the Gaussian loglikelihood

function ℓ(y;ψ) with respect to ψ using the results of Sections 4 and 5. First we use the EM

algorithm to find a point in the neigbourhood of the optimum using the devices of Appendix

A.7. We then adopt the BFGS algorithm to maximize ℓ(y;ψ) with respect to ψ by starting

from the final iteration of the EM algorithm. The numerical maximization routine makes

use of the analytical score calculations of Appendix A.6. On a standard computer with 3

GB memory and a 2.2 GHz two-core processor, this took less than 15 minutes for Model I

and less than 10 minutes for Model II.
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Table 4: Quasi-maximum likelihood estimates of VAR coefficients

We report the QML estimates of the coefficients in the r × r matrix Φ1 for Models I (r = 7) and II (r = 4).
The eigenvalues of the estimates of Φ1 are reported in descending order. For complex eigenvalues we present
both the real and imaginary (img) components.

Model I

VAR coefficients Eigenvalues

Factor 1 2 3 4 5 6 7 real img

1 0.17 -0.15 0.18 -0.031 -0.14 0.062 -0.031 0.95 0
2 -0.36 0.84 -0.017 0.03 0.099 0.028 0.031 0.94 0.08
3 0.065 0.074 0.9 0.048 0.19 0.0069 0.034 0.94 -0.08
4 0.068 0.051 0.034 0.92 0.045 -0.031 -0.017 0.91 0
5 -0.075 0.025 0.014 -0.073 0.25 -0.1 0.043 0.28 0
6 0.003 -0.022 -0.029 0.036 0.003 -0.33 -0.012 0.042 0
7 -0.024 -0.027 -0.038 -0.0002 -0.049 -0.028 0.97 -0.33 0

Model II

VAR coefficients Eigenvalues

Factor 1 2 3 4 real img

1 0.29 -0.23 -0.12 -0.1 0.94 0.094
2 -0.38 0.44 0.031 0.13 0.94 -0.094
3 0.086 -0.43 0.96 0.17 0.33 0
4 -0.64 0.33 -0.019 0.56 0.046 0

The estimation process relies further on starting values for the parameters which for

Model I are given by

Λ = (Ir 0)′, Σζ = Ir, Σε = IN , Φ1 = 0.5Ir, µ̄ =
1

T

T
∑

t=1

yt,

with r = 7. For model II, the same starting values are adopted with r = 4 and with

Ψ1 = 0.5IN .

Table 4 presents the QML estimates of the VAR coefficients in Φ1 together with the

corresponding eigenvalues for Models I and II. The factors in the models are organized in

descending order of the eigenvalues of Φ1. We learn from Table 4 that the factors are

estimated as stationary and highly persistent processes given the largest eigenvalue of 0.95.

For both models, we find the presence of persistent cyclical behaviour in the factors since one

conjugate pair of complex eigenvalues is obtained where the real part is equal to 0.94. The

other eigenvalues range from large to small. As in any VAR analysis, it is hard to comment

on individual coefficients in Φ1.
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6.2 Factor estimates and factor loadings

The estimates of the factors are obtained by application of the low-dimensional KFS methods

and are based on all observations in the data-set (smoothed estimates). To facilitate a clear

interpretation of the factors we rotated the factors by means of the varimax method. The

varimax method tries to construct a rotation such that the resulting factors are as distinct

from each other as possible, see e.g. Lawley and Maxwell (1971) for details. To facilitate

comparisons, we have selected the Factors 1, 2, 3 and 5 of Model I and all factors of Model

II to be presented in Figure 1. The first two estimated factors of the two models are similar

although the amount of noise in the factors is somewhat different. It is expected that the

first factor is associated with the business cycle and is therefore displayed with the NBER

business cycle reference dates of peaks and throughs. The NBER dates do not coincide

perfectly with the peaks and throughs of the first factor but close enough to justify referring

to it as the “business cycle” factor. The same association of the first two estimated factors

for Model II with the business cycle applies as we can observe in the right panel of Figure

1. The Factors 3 of both models appear to pick up the first and second oil crisis periods in

the mid 1970’s and the early 1980’s. The turbulence of the interest rates in the early 1980’s

are present in the estimated Factor 5 of Model I and the estimated Factor 4 of Model II.

The actual estimates of Λ are not easy to interpret and therefore Stock and Watson

(2002b) propose to focus on the R2 goodness-of-fit statistics which are obtained by regressing

the univariate time series yit (for each i = 1, . . . , N) on a constant and a particular principal

component estimate (or diffusion index). The series of N regressions can be repeated for each

prinicipal component and the resulting N dimensional series of R2 statistics can be displayed

as an index plot for each principal component. We present the N series of R2 statistics for

the seven factors, estimated by KFS methods, of Model I in the left panel of Figure 2. The

clustering of high R2 statistics within one or more sectors is clearly visible. The first factor

is highly correlated with the real variables in sector (A) real output & income and weakly

correlated with the variables in the sectors (B) employment & hours and (H) orders. The

second factor is mostly associated with the sectors (G) real inventories and (H) orders but

also correlated with variables in the sectors (B) employment & hours and (F) housing starts

& sales. The two individual indices for production and unemployment in sectors (A) and

(B) are particularly highly correlated with Factor 2. The third and fifth factors are clearly

connected with interest rates and spreads, respectively, from sector (K). The fourth factor

does not contribute much to the analysis. Factors 6 and 7 can be interpreted as the price

index and the housing market index, respectively. The R2 statistics for the four factors

in Model II are presented in the right panel of Figure 2. The third and fourth factors in
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Figure 1: Estimated factors

We present a selection of estimated factors extracted from the observed series by applying the KFS methods as described in Section 4.6. In the left panel
the estimated Factors 1, 2, 3 and 5 for Model I are displayed and in the right panel all four estimated factors for Model II are presented.
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Model II are strongly connected with interest rates and spreads, respectively, from sector

(K). They are similar to Factors 3 and 5 of Model I. However, the first two factors of Model

II are not very distinctive and can be regarded as a mix of the first two factors of Model I.

In other words, they are associated with the “real” sectors (A) real output & income, (B)

employment & hours, (F) housing starts & sales, and (H) orders.

6.3 Diagnostic checking

An appealing feature of our model-based analysis is that model misspecification tests and

diagnostics concerning normality, heteroskedasticity and serial correlation can be considered

as an effective tool for model selection. In the practice of time series analysis, diagnostic

test statistics are applied to standardized one-step ahead prediction errors. If the model is

correctly specified these errors should be IID. We will not argue that a dynamic factor model

is the appropriate specification for a joint analysis of 132 time series. However, the model

misspecification diagnostics may indicate how far we are from a reasonable specification.

The Kalman filter allows us to compute the prediction errors for all 132 series in a few

seconds. More specifically, we have computed the generalized least squares residuals as

advocated by Harvey (1989, section 5.4) to allow for the intercept vector µ̄ in both model

specifications I and II. The residuals are standardized. To illustrate the effectiveness of

residual diagnostics in the context of dynamic factor analysis, we compute for each residual

series the serial correlation portmanteau χ2 test of Ljung and Box (1978). The Box-Ljung

Q(q) statistic is based on the first q sample autocorrelations r∗k, k = 1, . . . , q, of the residual

series and is computed by Q(q) =
∑q

k=1 r
∗2
k . The Box-Ljung statistics for the 132 time series

are graphically presented as index plots in Figure 3 for q = 5. The upper panel presents

the Q(q) statistics for the residuals of Model I while the lower panel presents those for

Model II. The displayed Box-Ljung values are truncated at 100. It is evident that for many

series the null hypothesis of no serial correlation in the residuals is rejected. The current

dynamic factor models are therefore not fully satisfactory for this panel of macroeconomic

time series. We can conclude however that Model II is more successful in capturing the

collective dynamics in the data-set compared to Model I.

7 Conclusions

We have presented a number of new results which are instrumental for an effective likelihood-

based analysis of dynamic factor models. We have shown that a high-dimensional dynamic

factor model can be reduced to a low-dimensional state space model. This insight leads to
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Figure 2: R2 statistics for the estimated factors against each variable

We present two panels of R2 statistics for each estimated factor against all N = 132 variables. The R2 presented in the left-panel are those for the seven
factors in Model I (with QML estimates for Λ̄, Φ1 and Σǫ) and in the right-panel for the four factors in Model II (with QML estimates for Λ̄, Φ1, Ψ1 and
Σǫ).
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Figure 3: Box-Ljung statistics

We present the Box-Ljung statistics Q(5) for the generalized least squares residuals of the dynamic factor
model specifications I and II.
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substantial computational savings when estimating the factors and evaluating the Gaussian

likelihood function. State space methods allow us to calculate model misspecification tests

and diagnostics from the one-step ahead prediction errors. An important motivation for

this research is macroeconomic forecasting. Stock and Watson (2002b) advocate a two-step

approach to the forecasting of macroeconomic time series: (i) extract a sufficient number

of principal components from the panel; (ii) include these factors as (lagged) explanatory

variables in a forecast model for a sub-set of the panel. The two steps can be integrated in a

model-based dynamic factor analysis. Likelihood-based methods become a viable alternative

to the principal component approach using the results of this paper. Future work must

establish whether this approach produces more accurate forecasts. This paper is based on a

fairly general modeling framework and we expect that the new results can be exploited in

other applications and for different purposes.

A Appendices

A.1 Kalman filter and backward smoothing recursions

Consider the state space model (6)– (7) where initial state vector α1 has mean E(α1) = a

and variance matrix Var(α1) = Q. The Kalman filter for a given time series yt and a given

parameter vector ψ is given by

vt = yt − dt − µ−Xtβ − Zat|t−1, Dt = ZQt|t−1Z
′ + Σε,

Kt = HQt|t−1Z
′D−1

t , (42)

at+1|t = Hat|t−1 +Ktvt, Qt+1|t = HQt|t−1H
′ −KtDtK

′
t +RΣζR

′,

for t = 1, . . . , T , with initialisations a1|0 = a and Q1|0 = Q, where vt is the one-step ahead

prediction error vector and Dt is its mean squared error, the one-step ahead predictor of the

state vector αt based on y1, . . . , yt−1 is at|t−1, its mean squared error matrix is Qt|t−1 and the

Kalman gain matrix is Kt. Vector at+1|t and matrix Qt+1|t are evaluated recursively within

the Kalman filter. A proof and more details are provided, amongst others, by Anderson and

Moore (1979) and Durbin and Koopman (2001). For a linear state space model, the state

predictor at|t−1 is the minimum mean squared error linear estimator (MMSLE) of αt based

on y1, . . . , yt−1; see Duncan and Horn (1972).

The smoothed estimators of the state vector can be obtained by the backward recursion

rt−1 = Z ′D−1
t vt + L′

trt, Nt−1 = Z ′D−1
t Z + L′

tNtLt, t = T, T − 1, . . . , 1,
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with definition Lt = H−KtZ and initializations rT = 0 and NT = 0. From these recursions,

the MMSLE of the state vector using y1, . . . , yT is computed by

at|T = at|t−1 +Qt|t−1rt−1, Qt|T = Qt|t−1 −Qt|t−1Nt−1Qt|t−1, t = T, T − 1, . . . , 1,

where at|T is the MMSLE of αt and Qt|T is its minimum mean squared error. Expressions

for predictors of the state vector αt and its mean squared error Qt|s based on y1, . . . , ys for

s = t, t + 1, . . . , T − 1 can be found in Durbin and Koopman (2001). An expression for

the covariance between αt and αt−1 given y1, . . . , yT and denoted by Qt,t−1|T is presented by

de Jong and MacKinnon (1988) and given by

Qt,t−1|T = (Qt|t−1Nt−1 − I)L′
t−1Qt−1|t−2, t = 2, . . . , T,

which can be evaluated using the earlier recursions.

Augmented KFS methods to calculate the marginal likelihood are developed in Ansley

and Kohn (1985), de Jong (1991) and Koopman (1997). These algorithms require an addi-

tional set of recursions with the same dimension as the regression coefficient vector (µ′, β ′)′.

A.2 Proof of Lemma 1

From Conditions (i), (ii) and (iii) in Section 4.1 and using the fact that ΣεA
L ′ has full column

rank, we obtain

Col{ΣεA
L ′} = Row{AH}⊥ = Col{Z}.

Define Λ† = ΣεA
L ′ then AL = Λ† ′Σ−1

ε and Col{Λ†} = Col{Z}. Since Z = ΛG, with G of

full row rank, we have Col{Λ†} = Col{Λ}. This proves the necessity part of Lemma 1.

A.3 Proof of Lemma 2

We have

yH′
t Σ−1

H yHt = (yt − dt −Xtβ − µ)′AH′(AHΣεA
H′)−1AH(yt − dt −Xtβ − µ)

= (yt − dt −Xtβ − µ)′JHΣ−1
ε (yt − dt −Xtβ − µ),

where JH
def.
= AH′(AHΣεA

H′)−1AHΣε is the projection matrix for a GLS with covariate

matrix AH′ and variance matrix Σ−1
ε . Similarly, define

JL
def.
= AL ′(ALΣεA

L ′)−1ALΣε,
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as the GLS projection matrix for covariate matrix AL′ and variance matrix Σ−1
ε . Since the

transformation matrix A = (AL′, AH′)′ is full rank and ALΣεA
H′ = 0, we must have

JH = I − JL.

The definition of AL implies that JH = I − Σ−1
ε Λ†(Λ† ′Σ−1

ε Λ†)−1Λ† ′ and

JH′ = ΣεA
H′(AHΣεA

H′)−1AH = I − Λ†(Λ† ′Σ−1
ε Λ†)−1Λ† ′Σ−1

ε

def.
= MΛ. (43)

The proof of (23) is completed by the identity JHΣ−1
ε = JHΣ−1

ε JH′ and the definition

et
def.
= MΛ(yt− dt−Xtβ−µ) as the GLS residual for data vector yt− dt−Xtβ−µ, covariate

Λ† and variance matrix Σε.

A.4 Proof of equation (31)

The following two lemmas are required for the main proof.

Lemma 3. Consider the regression model (9). The marginal Gaussian loglikelihood ℓd(y; θ)

is given by

ℓd(y; θ) = −
NT

2
log 2π −

1

2
log |Σ| −

1

2
log |X̃ ′Σ−1X̃| −

1

2
ex′Σ−1ex, (44)

where ex is the residual vector from a GLS regression on y with covariate matrix X̃ and

variance matrix Σ.

Proof. See e.g. Harville (1974).

Lemma 4. Consider the linear regression model

y1 = X1β + ε1, ε1 ∼ N(0,Ω1), (45)

y2 = X2β + ε2, ε2 ∼ N(0,Ω2), (46)

where ε1 and ε2 are independent, the GLS estimator β̂GLS of β is given by

β̂GLS = β̂2
GLS + V X ′

1F
−1(y1 −X1β̂

2
GLS), Var(β̂GLS) = V − V X ′

1F
−1X1V,

where F = X1V X
′
1 + Ω1, β̂

2
GLS is the GLS estimator of β based on y2 only and V is the

associated variance

β̂2
GLS = (X ′

2Ω
−1
2 X2)

−1X ′
2Ω

−1
2 y2, V = (X ′

2Ω
−1
2 X2)

−1.
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Furthermore,

(y1 −X1β̂GLS)
′Ω−1

1 (y1 −X1β̂GLS) + (y2 −X2β̂GLS)
′Ω−1

2 (y2 −X2β̂GLS) =

(y2 −X2β̂
2
GLS)

′Ω−1
2 (y2 −X2β̂

2
GLS) + (y1 −X1β̂

2
GLS)

′F−1(y1 −X1β̂
2
GLS).

(47)

Proof. The results follow from regression theory.

Proof of equation (31). It can be verified from (44) that

ℓd(y; θ) = ℓd(ȳ
L, ȳH; θ) + (T − 1) log |A| = ℓd(ȳ

L, ȳH; θ) −
T − 1

2
log

|Σε|

|ΣL|
,

Denote by β̂, µ̂L and µ̂H the GLS estimators of respectively β, µL and µH based on y then

ℓd(ȳ
L, ȳH ; θ) = −

NT

2
log 2π −

1

2
log |X̃ ′

AΣ−1
A X̃A| −

1

2
log |ΣA| −

1

2
RSS(β̂, µ̂L, µ̂H), (48)

where ΣA = (IT ⊗A)Σ(IT ⊗A′), X̃A = (IT ⊗A)X̃, suppressing the dependence on θ, and

RSS(β, µL, µH) = êL ′Σ−1
ȳL ê

L + êH ′Σ−1
ȳH ê

H , (49)

with êL = (ȳL − XLβ − E1µ
L) and êH = (ȳH − XHβ − E2µ

H), where E1 = iT ⊗ Im,

E2 = iT ⊗ IN−m, with iT = (1, . . . , 1)′, XL = (XL ′
1 , . . . , XL ′

T )′, XH = (XH ′
1 , . . . , XH ′

T )′ and

ΣȳL = Var(ȳL), ΣȳH = Var(ȳH).

Denote M⊥E2
= I−E2(E

′
2Σ

−1
ȳHE2)

−1E ′
2Σ

−1
ȳH , ȳH⊥E2

= M⊥E2
ȳH and XH

⊥E2
= M⊥E2

XH , we have

RSS(β, µL, µ̂H) = êL ′Σ−1
ȳL ê

L + (ȳL⊥E2
−XH

⊥E2
β)′Σ−1

ȳH (ȳL⊥E2
−XH

⊥E2
β). (50)

Using the result of equation (43) we have

XH ′
⊥E2

Σ−1
yHX

H
⊥E2

=
∑

t

(Xt − X̄)′AH ′
(

AHΣAH ′
)−1

AH(Xt − X̄)

=
∑

t

(Xt − X̄)′M ′
ΛΣ−1MΛ(Xt − X̄)

=
∑

t

X̃ ′
tΣ

−1X̃t = B, (51)

and similarly

XH ′
⊥E2

Σ−1
yH ŷ

H =
∑

t

X̃ ′
tΣ

−1ỹt = Bb.
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From (47) we have

RSS(β̂, µL, µ̂H) = (ȳL −E1µ
L −XLb)′F−1(ȳL −E1µ

L −XLb)+

(ȳH⊥E2
−XH

⊥E2
b)′Σ−1

ȳH (ȳH⊥E2
−XH

⊥E2
b), (52)

where F = XLB−1XL ′ + ΣȳL . Minimizing (52) with respect to µL, we find

µ̂L = (E ′
1F

−1E1)
−1E ′

1F
−1(ȳL −XLb). (53)

Note that µ̂L is identical to the GLS estimator of µL from model (35). It follows from the

definitions in section 4.5 and expression (44) that

NT

2
log 2π + C3 + C4 −

1

2
RSS(β̂, µ̂L, µ̂H) = Ld(ȳ

L; θ) + Ld(ȳ
H ; θ), (54)

where

C1 = −
N −m

2
log T −

1

2
log |B|,

C2 = −
1

2
log |XLB−1XL′

+ ΣȳL | −
1

2
log |E ′

1(X
LB−1XL′

+ ΣȳL)−1E1|.

Using a well known determinant identity we have

|XLB−1XL′

+ ΣȳL | = |B +XL′

ΣȳLXL||B−1||ΣȳL|, (55)

and with the Woodbury matrix identity and results on determinants of block matrices,

inverses of a block matrices and (43) we have

|E ′
1(X

LB−1XL ′ + ΣȳL)−1E1| = |E ′
1Σ

−1
ȳLE1 − E ′

1Σ
−1
ȳLX

L(B +XL ′Σ−1
ȳLX

L)−1XL ′Σ−1
ȳLE1| (56)

=
1

|D|

∣

∣

∣

∣

∣

∣

∣

∣

E ′
1Σ

−1
ȳLE1 0 E ′

1Σ
−1
ȳLX

L

0 TΣ−1
H

∑

t Σ
−1
H XH

t

XL ′Σ−1
ȳLE1

∑

tX
H ′
t Σ−1

H XL ′ΣȳLXL +
∑

tXtM
′
ΛΣ−1

ε MΛXt

∣

∣

∣

∣

∣

∣

∣

∣

=
|X̃ ′

AΣ−1
A X̃A|

|D|
, (57)

where

|D| =

∣

∣

∣

∣

∣

TΣ−1
H

∑

t Σ
−1
H XH

t
∑

tX
H ′
t Σ−1

H XL ′ΣȳLXL +
∑

tXtM
′
ΛΣ−1

ε MΛXt

∣

∣

∣

∣

∣

= |B +XL ′ΣȳLXL|TN−m.
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Finally, we have

|ΣȳL| = |ΣȳL ||ΣȳH | = |ΣA|, (58)

since |ΣȳH | = 1 and ΣA is block diagonal. Combining (48) and (54) with (55), (57) and (58)

we obtain

Ld(ȳ
L; θ) + Ld(ȳ

H; θ) = ℓd(ȳ
L, ȳH; θ),

which concludes the proof.

A.5 Proof of results in Section 4.6

We have proved in Appendix A.3 that the MMSLE of µL from model (35) equals the GLS

estimator of µL, see equation (53). Then,

P (δ|ȳL) = E(δ) + Cov(δ, ȳL)Var(ȳL)−1(yL − E1µGLS −XL
E(δ))

= b+B−1X ′
L(X

LB−1XL + ΣȳL)−1(yL − E1µGLS −XLb)

where E1 is defined below equation (49) and the variances and covariances are evaluated

assuming (35) is the true model. Consider the function RSS(β, µL, µ̂H) defined in (50). The

GLS estimators of β̂ and µ̂L can be obtained by minimizing RSS(β, µL, µ̂H) with respect to

β and µL. Substituting µ̂L in RSS(β, µL, µ̂H) and minimizing with respect to β, equation

(36) follows from Lemma 4.

Finally, we prove that the augmented Kalman filter produces the correct variances and

covariances for the GLS estimators β̂ and µ̂L. From (50) it follows that the GLS estimator

of γL = (µL ′, β ′) is given by C−1c where

C =

(

E ′
1Σ

−1
yLE1 E ′

1Σ
−1
yLX

L

XL ′Σ−1
yLE1 XL ′Σ−1

yLX
L +B

)

, c =

(

E ′
1Σ

−1
yL ȳ

L

XL ′Σ−1
yL ȳ

L +Bb.

)

,

Since the correct variance of the estimator is given by C−1 we need to prove that

E [(γ̂L − γL)(γ̂L − γL)
′] = C−1, (59)

where γ̂L = [P (µL|ȳL)′, P (δ|ȳL)′]′ and the expectation is computed under the assumption
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that (35) is the true model. Since we already showed that γ̂L = C−1c, we have

E((γ̂L − γL)(γ̂L − γL)
′) = C−1

E [(c− CγL)(c− CγL)
′]C−1.

It can now be shown that E [(c− CγL)(c− CγL)
′] = C, which proves (59).

A.6 The score function of Section 5.1

The derivatives of (39) with respect to the system matrices Z, H , Σε and Σζ of the linear

Gaussian state space model (7) – (6), with µ = 0, β = 0 and R = I, are given by

∂ℓ(y)

∂Z
= Σ−1

ε (

T
∑

t=1

{yt − dt}a
′
t|T − ZS

(0)
1:T ),

∂ℓ(y)

∂Σε

= Q∗
εΣ

−1
ε −

1

2
diag(Q∗

εΣ
−1
ε ),

∂ℓ(y)

∂H
= Σ−1

ζ (S
(1)
2:T −HS

(0)
1:T−1),

∂ℓ(y)

∂Σζ

= Q∗
ζΣ

−1
ζ −

1

2
diag(Q∗

ζΣ
−1
ζ ),

where Q∗
ε = Qε − T , Q∗

ζ = Qζ − T − 1, with Qε and Qζ defined in (40),

S
(0)
j:k =

k
∑

t=j

at|Ta
′
t|T +Qt|T , S

(1)
j:k =

k
∑

t=j

at|Ta
′
t−1|T +Qt,t−1|T , (60)

for j, k = 1, . . . , T (j ≤ k), where at|T , Qt|T and Qt−1,t|T = Q′
t,t−1|T are evaluated by the

KFS methods of Appendix A.1. Matrices Qε and Qζ depend on the smoothed disturbances

ε̂t = yt−dt−Zat|T and ζ̂t = at|T−Hat−1|T together with their variances which depend onQt|T ,

Qt,t−1|T and the system matrices. The derivatives given above are evaluated at ψ = ψ∗. The

system matrices are functions of coefficient vector ψ. For cases where µ 6= 0, β 6= 0 and/or

R 6= I, similar expressions can be obtained for the derivatives but the expressions are more

lengthy and more intricate, see Koopman and Shephard (1992) for a detailed discussion.

A.7 EM algorithm of Section 5.2

The details of the EM algorithm are specific to the model specification. We illustrate the EM

for model (2), (3) and (4) with qΘ = 0, qΨ = 1 and diagonal matrix Ψ1. The details are given

for the likelihood function conditional on observation y1. The treatment of initial conditions

is intricate in its detail and does not provide further insight. The model considered is also

discussed by Watson and Engle (1983, section 5). Given the definitions in the previous
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subsection, the M step provides new estimates of the system matrices and are given by

Z+
i = −

T
∑

t=2

(yit − Ψiiyi,t−1)(at|T − Ψiiat−1|T )′[Ψ2
iiS

(0)
1:T−1 − ΨiiS

(1)
2:T − ΨiiS

(1) ′
2:T + S

(0)
2:T ]−1,

H+ = S
(1)
2:TS

(0)−1
2:T , (61)

Ψ+
ii =

T
∑

t=2

ZiPt,t−1|TZ
′
i − ε̂itε̂i,t−1 / (ZiS

(0)
1:T−1Z

′
i +

T
∑

t=2

yit{ε̂it − Ziat|T}),

where Zi is the ith row of Z and Ψii is the ith diagonal element of Ψ1 for i = 1, . . . , N .

Expressions for Σ+
ε and Σ+

ζ are obtained as solutions of Qε = 0 and Qζ = 0, respectively.

The system matrices are evaluated at ψ = ψ∗. The new coefficients for λi are distilled from

Z+
i for i = 1, . . . , N while new coefficients for Φi (i = 1, . . . , qΦ) are distilled from H+.

The equations for Z+
i and Ψ+

ii in (61) can not be solved separately. Keeping S
(0)
jk , S

(1)
jk ,

at|T , Qt,t−1|T and ε̂it (i = 1, . . . , N , t = 2, . . . , T ) fixed, we obtain a solution by repeatingly

solving one equation separately and substituting its solution in the other equation. This

same scheme is also used in Watson and Engle (1983). Meng and Rubin (1993) show that

this algorithm retains the attractive properties of the EM algorithm. In particular, the

likelihood is monotonically increasing over the iterations and the algorithm converges to an

optimum.
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