
Measuring asymmetric stochastic cycle components

in U.S. macroeconomic time series

Siem Jan Koopman and Kai Ming Lee∗

Tinbergen Institute, Amsterdam

Department of Econometrics, Vrije Universiteit Amsterdam

26 July 2005

Abstract

To gain insights in the current status of the economy, macroeconomic time series

are often decomposed into trend, cycle and irregular components. This can be

done by nonparametric band-pass filtering methods in the frequency domain or

by model-based decompositions based on autoregressive moving average models or

unobserved components time series models. In this paper we consider the latter

and extend the model to allow for asymmetric cycles. In theoretical and empirical

studies, the asymmetry of cyclical behavior is often discussed and considered for

series such as unemployment and gross domestic product (GDP). The number of

attempts to model asymmetric cycles is limited and it is regarded as intricate and

nonstandard. In this paper we show that a limited modification of the standard

cycle component leads to a flexible device for asymmetric cycles. The presence

of asymmetry can be tested using classical likelihood based test statistics. The

trend-cycle decomposition model is applied to three key U.S. macroeconomic time

series. It is found that cyclical asymmetry is a prominent salient feature in the U.S.

economy.
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1 Introduction

Many aggregate economic time series exhibit cyclical fluctuations. Filters derived from

a frequency domain representation of the series are often used in cycle analysis. The

popular Hodrick and Prescott (1997) filter,1 despite criticism about its arbitrary nature,

remains widely used, alongside refinements and improvements such as the Baxter and

King (1999) and Christiano and Fitzgerald (1999) filters. These band-pass filters are

usually designed to isolate the fluctuating components in the series with periods between

six and thirty-two quarters. Slower moving components are classified as trend, while faster

fluctuations comprise the irregular and seasonal parts of the series. The extracted cycles

from band-pass filters are visually appealing, but their optimality characteristics typically

break down near the end-points of the series. Most applications of these filters are found in

historic cycle analysis, although some constructions for forecasting and confidence bounds

have been proposed, e.g. Johnson and Gallego (2003).

In traditional linear autoregressive integrated moving average (ARIMA) models, cycli-

cal behavior is usually implied by estimated model parameters rather than explicitly mod-

elled. The theory on estimation, testing, forecasting and building confidence intervals is

well established in ARIMA modelling, but a decomposition of the trend and cycle is not as

explicit as in the frequency domain. In ARIMA modelling, the trend is usually eliminated

by differencing, resulting in models on growth variables. Cyclical variation in the growth

can be inferred from the serial correlation structure. From a frequency domain point of

view, taking first differences can be regarded as a low-pass filter which does not seperate

the cyclical variation from the higher frequency components.

Structural time series or unobserved components (UC) models represent an attractive

alternative time domain modelling technique. Trend, cycles and higher frequency compo-

nents are explicitly modelled by stochastic processes and estimated from the data using

Kalman filter and smoothing algorithms. Similar to filters in the frequency domain, de-

compositions of separate components are immediately visible, while rigorous methods for

estimation, testing and forecasting are well developed. The common cycle specification

for macro-economic time series in UC models is constructed from stochastic trigonometric

functions, as described by Harvey and Jaeger (1993). A generalization of this specifica-

tion was studied by Harvey and Trimbur (2003). A higher integration order of the cycle

1The filter was widely implemented after its introduction in a working paper in 1980.
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was shown to result in a better approximation to the ideal band-pass filter. In our cur-

rent paper, we extend the basic stochastic trigonometric cycle specification to account for

asymmetries in the cycle.

It is widely believed that the cycle in many economic series are asymmetric in the

sense that the expansions and contractions do not occur with the same speed. An early

widely quoted quantitative study on the asymmetry in economic cycles was published

by Neftci (1984). Given a time series yt, a Markov process It is defined with states

representing increases and decreases in yt. Neftci derives likelihood-based asymmetry

tests and posterior odds ratios from the transition probabilities of It, but the series yt is

not explicitly modelled. In the empirical investigation significant evidence of asymmetry

is found in unemployment rate series of the U.S.

Most of the following work on asymmetric cycles concentrate on the U.S. gross national

product (GNP) series. Hamilton (1989) analysed the post-war U.S. GNP series in an in-

fluential article using a nonlinear parametric model, specifically, an ARIMA(r, 1, 0) model

augmented with a latent Markov switching trend process. The paper mainly focuses on

filtering the unobserved regime from the data, and presents evidence of the superiority of

the specification compared to linear ARIMA and UC models. Although Hamilton presents

his model as an extension of Neftci’s approach, the issue of asymmetry is hinted at but

not addressed explicitly. More recently, Clements and Krolzig (2003) developed rigorous

tests for asymmetry in the Markov switching framework, analysing GNP, investment and

consumption growth data from the U.S.

Alternative nonlinear autoregressive (AR) models used in modelling cycle asymmetry

are variations of of treshhold autoregression (TAR) models. Tiao and Tsay (1994) and

Potter (1995) model U.S. output series with self-exciting TAR models, while Beaudry and

Koop (1993) and Pesaran and Potter (1997) use constructed indicators as a treshhold and

found significant evidence of asymmetry.

State space models with asymmetric cycles have been employed by Kim and Nel-

son (1999), Luginbuhl and de Vos (1999), Jesus Crespo Cuaresma (2004), either in com-

bination with Markov switching, or using two regimes based on constructed variables or

deterministic functions of past observations. Another example of state space modelling

with two cycle regimes is given by Harvey (1989, section 6.5), who based the cycle fre-

quency on the sign of first difference of the filtered cycle. Acemoglu and Scott (1997)
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constructed a theoretical model to explain asymmetry based on internal intertemporal

increasing returns, and also used a state space model to obtain some empirical evidence.

The cycle model in our paper is based on stochastic trigonometric functions, where

asymmetry is modelled by specifying the period of the cycle as a function of the steepness.

Rather than abruptly switching between two regimes with two distinct cycle periods, the

period changes gradually through a continuous range of values. Since our asymmetric

cycle specification is a nonlinear State space model, basic linear Kalman filter methods

are inadequate for estimation. We base our inference on Monte Carlo likelihood estimation

and importance sampling techniques.

The remainder of our paper is organised as follows. In section 2 we define the asymmet-

ric UC cycle model, and discuss some of its properties. Section 3 contains the State space

form and elaborates on estimation methods. An empirical investigation on asymmetries

in U.S. macro-economic time series is presented in Section 4. Section 5 concludes.

2 Formulation of asymmetric stochastic cycle com-

ponents

The basic modelling framework employed in this paper is based on the unobserved com-

ponents (UC) time series model. Following Beveridge and Nelson (1981), Clark (1989)

and Harvey (1989), we assume that many macroeconomic time series can be decomposed

into a nonstationary trend µt, a stationary cycle ψt and an irregular component εt. The

observed yt is then modelled as

yt = µt + ψt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n. (1)

In this section, we focus on the specification of the cyclical component ψt.

2.1 Asymmetric deterministic cycles

A deterministic cycle with amplitude a, phase b and frequency λ can be expressed by

ψt = a cos(λt− b), a, b, λ, t ∈ R, a 6= 0, λ 6= 0. (2)
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The frequency λ is measured in radians and the period of the cycle is given by 2π/λ. The

cycle ψt is symmetric around its local extrema such that

ψτ+s = ψτ−s, ψτ+s = ψτ−s (3)

for all s ∈ R and all τ for which ψτ is a local minimum or maximum, that is ∂ψt/∂(λt)|t=τ =

0. Since

ψ̇t = ∂ψt/∂(λt) = −a sin(λt− b), (4)

it follows that λτ = b±kπ for k = 0, 1, 2, . . .. We note that the sign of ψ̇t indicates whether

the cycle ψt is ascending or descending, while its magnitude determines its steepness.

An asymmetric cycle can be obtained by varying the frequency λ for different values

of t. In the simplest case, the cycle can have different frequencies when ψt is ascending or

descending. More formally,

ψt = a cos(λtt− b), λt =





λa, ψ̇t > 0

λd, ψ̇t ≤ 0
. (5)

When λa 6= λd, condition (3) does not hold and we conclude that the resulting cycle is

asymmetric but still periodic.

Instead of using two distinct frequencies, we can allow the frequency to depend on a

continuous function of ψ̇t, for example,

ψt = a cos(λtt− b), λt = λ+ γψ̇t, (6)

specifying the frequency as an affine transformation of the cycle steepness. More generally

λt can be specified as a globally increasing or decreasing function f(ψ̇t) of the steepness.

However, it is unlikely that very specific forms can be inferred from sparse macro-economic

data. We will therefore only consider the simple specification (6), which captures the

asymmetry phenomenon in one parameter γ. For positive values of γ, the frequency of

the cycle is highest when the cycle ascends at its fastest rate, and lowest when it descends

at its fastest rate. Figure 1 illustrates the two asymmetric cycle specifications, together

with their derivatives. Notice that in the first specification the discontinuities in the two

regimes are not clearly visible in the cycle, but obvious in the derivative.

We note that our specification explicitly models asymmetry in the steepness of the

cycle. Sichel (1993) introduced asymmetry in the deepness, or amplitude of the cycle,

while McQueen and Thorley (1993) distinguished asymmetry in roundness, such that
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positive and negative turning points occur with different acuteness. In the stochastic

trigonometric specification, deepness and roundness asymmetry may be incorporated by

varying the damping factor and the variance of the disturbance. In our current paper, we

limit the asymmetry to steepness, following the earlier tradition of studies on asymmetry.

The deterministic cycles ψt in (2) and ψ̇t in (4) can be expressed as sine-cosine waves,

that is

ψt = α cos(λt) + β sin(λt), ψ̇t = β cos(λt) − α sin(λt), (7)

where α = a cos b and β = a sin b. The reverse transformation is a = α2 + β2 and

b = tan−1(β/α). The equivalence follows directly from the first of two trigonometric

identies

cos(x± y) = cosx cos y ∓ sin x sin y, sin(x± y) = cosx sin y ± sin x cos y, (8)

with x = λt, y = b. The cycle ψt and its partial derivative ψ̇t can be expressed via a

recursion which follows from repeatingly applying the trigonometric identities (8). This

recursive expression is given by


ψt+δ

ψ̇t+δ



 =



 cos(λδ) sin(λδ)

− sin(λδ) cos(λδ)







ψt

ψ̇t



 , δ > 0, t = 0, δ, 2δ, . . . , (9)

with ψ0 = α and ψ̇0 = β. The recursion is linear in ψt and ψ̇t. The recursive expression

(9) is elegant since ψt and ψ̇t are evaluated simultaneously.

The asymmetric cycle (6) can be expressed recursively by substituting λt for λ in (9).

Unlike the expression for the symmetric cycle, this recursion is nonlinear in ψt and ψ̇t due

to the dependence of λt on ψ̇t and the mutual dependence of ψt and ψ̇t for different values

of t.

2.2 Asymmetric stochastic cycles

A stochastic cycle can be based on (9) by including a damping term φ and white noise

disturbances, see Harvey (1989). Similarly we can obtain an asymmetric stochastic cycle

but with λ in (9) replaced by λt of (6) to obtain


ψt+δ

ψ̇t+δ



 = φ



 cos(δλt) sin(δλt)

− sin(δλt) cos(δλt)







ψt

ψ̇t



 +



κt

κ̇t



 , (10)

λt = λ+ γψ̇t, t = 0, δ, 2δ, . . . , (11)
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where |φ| < 1 is a damping factor, λt is the time-varying cycle frequency and the distur-

bance vectors are Gaussian noise:


κt

κ̇t



 ∼ NID
(
0, σ2

κI2
)
, t = 0, δ, 2δ, . . . (12)

The damping term φ ensures that the stochastic process ψt is stationary. We note that

the frequency λt is stochastic as a result since ψ̇t is a stochastic process. In the absence of

shocks and with φ = 1, ψt and ψ̇t reduces to the deterministic asymmetric cycle, while a

symmetric stochastic cycle is obtained when γ = 0. In the latter case λt = λ, the process

ψt follows the autoregressive moving average process ARMA(2,1) with the roots of the

autoregressive polynomial in the complex range. This property also holds for the process

(10) conditional on λt. The unconditional process ψt follows a nonlinear ARMA(2,1)

process with the autoregressive coefficients also depending on an ARMA processes.

The interpretation of ψ̇t as the partial derivative of ψt with respect to λt is not strictly

valid for the stochastic process (10). However, it can be taken as a local proxy for the

steepness of the cycle ψt.

3 Trend-cycle decomposition: estimation and mea-

surement

3.1 Trend-cycle decomposition model

For an observed macroeconomic time series yt, with t = 1, . . . , n, we consider the model

based decomposition given in equation (1). In contrast to ARIMA type models, the series

are modelled without differencing. Therefore the trend component µt usually requires a

nonstationary process.

In our empirical investigation, we employ a smooth trend specification defined by

µt+1 = µt + βt, (13)

βt+1 = βt + ζt, (14)

ζt ∼ NID(0, σ2
ζ ), t = 1, . . . , n, (15)

where the initial values β1 and µ1 are assumed unknown.2

2Estimation using the Kalman filter will require a diffuse initialization, see Koopman and Durbin

(2003).
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The slope of the trend βt follows a random walk, driven by the disturbance ζt. The

resulting model for the trend is also called an integrated random walk. To increase

smoothness, using higher integration orders is also possible, and can be considered as

model representations of Butterworth filters, see Gomez (2001).

The cyclical component ψt is modelled as an asymmetric stochastic trigonometric

process given by (10). The cycle is driven by the disturbances κt, κ̇t. Similar formulations

of asymmetric cycles may be considered for the generalised cycle components of Harvey

and Trimbur (2003).

The irregular term εt is taken as Gaussian noise, εt ∼ NID(0, σ2
ε). In many aggregated

macro economic series this term is vanishingly small. We assume that the disturbances of

the different components are mutually independent, and independent of the initial values

of the trend and cycle processes.

3.2 State space form

Many common linear time series and econometric models are special cases of the linear

state space model. It can be formulated through a state transition equation, which de-

scribes the evolution of the hidden state vector αt, and an observation equation, which

defines how the state is related to the scalar or vector valued observation yt:

αt+1 = Ttαt + ηt, ηt ∼ NID(0, Qt) (16)

yt = Ztαt + εt, εt ∼ NID(0, Gt), t = 1, . . . , n (17)

with initial state vector α1 ∼ N(a, P ). The observations yt are specified as a linear

transformation of a first order vector autoregressive (VAR(1)) process αt with additional

observation noise εt. The state space model can be described as a hidden Markov model,

although this terminology is mainly associated with processes with a discrete valued state.

Both theoretical arguments and experience suggest that the Markovian property holds for

many time series by including sufficient elements in the state vector. In particular, all

linear autoregressive moving average processes can be cast in state space form. The noise

processes εt and ηt in the state space equations are mutually and serially uncorrelated

Gaussian processes, and independent from the initial value of the state. The deterministic

system matrices Tt, Zt, Qt, Gt with appropriate dimensions define the structure of the

model. In many applications they are time-invariant. In practice, the system matrices
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contain unknown parameters that need to be estimated.

The Kalman filter is a recursive algorithm that calculates the optimal (minimum

mean square error) estimates of αt given past observations in a linear Gaussian state

space model. In addition, it provides a quick way to construct the likelihood function

of the model. The Kalman smoother provides optimal estimates of αt conditional on

the entire set of observations. If the assumption of Gaussianity of the noise processes

is dropped, the optimality of the Kalman filter is weakened to optimality in the class of

linear predictors, analogous to the Least Squares method in linear regression models. The

constructed likelihood is then used to obtain a Quasi Maximum Likelihood estimator. For

completeness, we include the filtering and smoothing recursions in the Appendix. More

details and proofs can be found in Harvey (1989) or Durbin and Koopman (2001, Part I).

The symmetric trend-cycle decomposition model can be cast in a linear Gaussian state

space form, with αt =
(
µt βt ψt ψ̇t

)
′

and ηt =
(
0 ζt κt κ̇t

)
′

. The system matrices

are given by

Tt =







1 1

0 1



 O

O φ



 cosλ sinλ

− sinλ cosλ








, Zt =

[
1 0 1 0

]
, (18)

Qt =







0 0

0 σ2
ζ



 O

O



σ
2
κ 0

0 σ2
κ








, Gt = σ2

ε , (19)

where O represents a conformant zero matrix. Since this is a linear Gaussian state space

model, state estimation and likelihood evaluation can be handled by standard Kalman

filter methods.

When considering the model with an asymmetric cycle with frequency λt = λ + γψ̇t

the model becomes nonlinear. Therefore, we need to consider the nonlinear state space

model, where (16) is replaced by

αt+1 = T (αt) + ηt (20)
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with

T (αt) =







1 1

0 1



 O

O φ



 cos(λt) sin(λt)

− sin(λt) cos(λt)








αt, (21)

λt = λ+
[
0 0 0 γ

]
αt. (22)

3.3 Importance sampling

In linear Gaussian state space models, parameter estimation is in principle straightfor-

ward, as the exact likelihood can be quickly calculated using the Kalman filter. For

nonlinear state space models, more elaborate methods are required. The most straight-

forward approach is the Extended Kalman filter, see Jazwinski (1970) or Harvey (1989).

The Extended Kalman filter is a basic first order approximation technique, from which

an approximating likelihood can be derived. The filter is relatively simple to implement,

and works well for small departures from linearity. However, if a better approximation is

required, the obvious approach of using higher order approximations involves quite some

effort. Moreover, while it has been widely applied for state estimation, the properties of

the likelihood approximation are not well understood.

The main alternatives to functional approximation approaches such as the Extended

Kalman filter are numerical integration (Kitagawa (1987)) and Monte Carlo methods, like

Markov chain Monte Carlo (Gamerman (1998)), rejection sampling (Tanizaki and Mariano

(1998)), particle filtering (Gordon, Salmond, and Smith (1993)), most of which require

a considerable amount of computation. In this section we describe a basic Maximum

Likelihood estimation derived from a Monte Carlo estimate with importance sampling

following ideas of Shephard and Pitt (1997) and Durbin and Koopman (1997).

In a state space model with dataset y, state α and parameters collected in the vector θ,

the likelihood function is given by L(θ) = pθ(y) =
∫
pθ(α, y)dα, where pθ(·) is a probablity

density function. In nonlinear state space models pθ(y) is usually unknown. The joint

density pθ(α, y) = pθ(y|α)pθ(α) can be obtained from the model definition, but direct

integration is normally infeasible due to the high dimension of α. A well-known solution

is Monte Carlo integration, which operates on the principle of formulating the integral as

an expectation and estimating it as the sample mean of simulated variables. In particular,
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L(θ) =
∫
pθ(y|α)pθ(α)dα could be estimated by drawing α(i) according to the distribution

pθ(α) and calculating the mean of pθ(y|α
(i)). However, this naive Monte Carlo likelihood

does not free us from the dimensionality problem. The majority of the generated α(i)’s

will diverge very much from the true α and therefore contribute a negligible amount to the

likelihood. In practice this means that a prohibitive amount of draws of α(i) is required

in order to obtain an accurate estimate. Ideally, α(i) should be simulated conditional on

the observations, i.e., from pθ(α|y), but for nonlinear models it is not immediately clear

how to accomplish this. In linear Gaussian state space models, algorithms to simulate

the conditional state, usually referred to as simulation smoothing, have been developed

by, amongst others, de Jong and Shephard (1995) and Durbin and Koopman (2002).

Importance sampling in nonlinear state space models can be implemented by using an

approximating linear Gaussian state space model. Writing the densities of the approxi-

mating model as gθ(·), the likelihood is rewritten as

L(θ) =

∫
pθ(α, y)dα (23)

=

∫
pθ(α, y)

gθ(α, y)
gθ(α, y)dα (24)

= gθ(y)

∫
pθ(α, y)

gθ(α, y)
gθ(α|y)dα. (25)

The first factor gθ(y) in the last expression is the likelihood of the approximating model;

the integral is the expectation of pθ(α, y)/gθ(α, y) under the distribution of gθ(α|y). Hence,

the log-likelihood is estimated by

log L̂(θ) = logLg(θ) + log w̄, (26)

w̄ =
1

N

∑
wi =

1

N

N∑

i=1

pθ(α
(i), y)

gθ(α(i), y)
, (27)

where Lg(θ) = gθ(y) is the likelihood from the approximating model and α(i) are drawn

from gθ(α|y) using a simulation smoothing algorithm. The ratios of the true model den-

sity and the approximating density wi = pθ(α
(i), y)/gθ(α

(i), y) are known as importance

weights.

3.4 Linear approximating model

The importance sampling procedure as described in the previous section requires a lin-

ear Gaussian state space model as an approximation to the nonlinear model. For the
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asymmetric cycle model, we employ a first order linear approximation of the transition

equation. For the asymmetric cycle model, the transition equation is partly nonlinear.

The function T (αt) needs to be linearised only with respect to ψ̇t. This implies that only

the third and fourth elements of vector T (αt) are affected, see (21). The third and fourth

elements are given by

T3(αt) = φ cos(λt)ψt + φ sin(λt)ψ̇t, T4(αt) = −φ sin(λt)ψt + φ cos(λt)ψ̇t, (28)

respectively. For some fixed value
(
ψ∗

t ψ̇∗

t

)
of

(
ψt ψ̇t

)
, the linearisation around

(
ψ∗

t ψ̇∗

t

)

is given by

Ti(αt) ≈ Ti(α
∗

t )+ ∂Ti(αt)/∂ψt|αt=α∗

t

(
ψt −ψ

∗

t

)
+ ∂Ti(αt)/∂ψ̇t

∣∣∣
αt=α∗

t

(
ψ̇t − ψ̇

∗

t

)
, i = 3, 4,

(29)

where α∗

t =
(
µt βt ψ∗

t ψ̇∗

t

)
′

and

∂



T3(αt)

T4(αt)





∂
(
ψt ψ̇t

) = R(αt) = φ



 cos(λt) sin(λt)

− sin(λt) cos(λt)



 +



0 T4(αt) · ∂λt/∂ψ̇t

0 −T3(αt) · ∂λt/∂ψ̇t



 .

For the simple affine transformation we have ∂λt/∂ψ̇t = γ. It follows that


T3(αt)

T4(αt)



 ≈



T3(α
∗

t )

T4(α
∗

t )



 −R(α∗

t )



ψ
∗

t

ψ̇∗

t



 +R(α∗

t )



ψt

ψ̇t



 (30)

≈ γ



−T4(α
∗

t )

T3(α
∗

t )



 ψ̇∗

t +R(α∗

t )



ψt

ψ̇t



 . (31)

This linearised approximation of T (αt) is used in the nonlinear state space model (20) to

obtain the linearised state space model

αt+1 = h∗t + T ∗

t αt + ηt, yt = Ztαt + εt, εt ∼ NID(0, σ2
ε), (32)

where

h∗t =





0

0

−γT4(α
∗

t )ψ̇
∗

t

γT3(α
∗

t )ψ̇
∗

t




, T ∗

t =







1 1

0 1



 0

0 R(α∗

t )




, t = 1, . . . , n, (33)

and Zt =
[
1 0 1 0

]
as before. Note that unlike the symmetric model, the linear

approximation of the asymmetric model has time-varying system matrices.
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Starting with a trial value for α∗

t , repeated evaluation of the first order approximation

will converge to the conditional mode of the state of the nonlinear model. The converged

model is used as the linear approximating model for the importance sampler. The pro-

cedure is described, though not implemented in Durbin and Koopman (2001, chapter

11), where examples are given for models with a nonlinear observation equation or with

non-Gaussian disturbances. The likelihood based treatment of a nonlinear state equation

using importance sampling is as far a we are aware a novelty in econometrics.

3.5 Importance weights

In the asymmetric cycle model, the nonlinearity only occurs in the transition equation,

therefore the observation density gθ(y|α) is equal to pθ(y|α). The importance weights (26)

simplify to

wi =
pθ(α

(i), y)

gθ(α(i), y)
=
pθ(α

(i))

gθ(α(i))
(34)

The parts of the densities associated with µt and βt cancel out, since they are identical in

the true and approximating model and independent of the cycle. The log-density of the

cycle process in the true model, derived from (10), (12) , is given by

log pθ(ψ, ψ̇) =
∑

t

log pθ(ψt+1, ψ̇t+1|ψt, ψ̇t) (35)

= C −
1

2σ2
κ

∑

t

((
ψt+1 − T3(ψt, ψ̇t)

)2
+

(
ψ̇t+1 − T4(ψt, ψ̇t)

)2
)

(36)

while the log-density of the approximating model for the cycle is given by:

log gθ(ψ, ψ̇) = C −
1

2σ2
κ

∑

t

((
ψt+1 − γ(ψ̇t − ψ̇∗

t )T4(α
∗

t ) − ψtφ cosλ∗t − ψ̇tφ sinλ∗t
)2

(37)

+
(
ψ̇t+1 + γ(ψ̇t − ψ̇∗

t )T3(α
∗

t ) + ψtφ sinλ∗t − ψ̇tφ cosλ∗t
)2

)

(38)

The constant term C will cancel in the evaluation of the importance weights.

The simulated likelihood can be optimised using numerical maximisation routines.

When using a quasi-Newton method, care must be taken to ensure that the simulated

likelihood has a smooth surface. In particular, the same set of random draws for the

disturbances must be used when evaluating the likelihood for different values of θ.
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4 Empirical evidence from U.S. economic time series

4.1 Data description

The empirical relevance of asymmetric cycles is considered for three key time series from

the U.S. economy: unemployment (Un), gross domestic product (GDP) and gross private

domestic investment (Inv). The series are obtained from the publicly available database

from the Federal Reserve Bank of St. Louis.3 The unemployment rate in percentage is a

monthly series of civilian unemployment compiled by the Bureau of Labor Statistics. The

GDP and investment series are the quarterly chain linked series provided by the Bureau

of Economic Analysis. The database-codes of unemployment, GDP and investment are

UNRATE, GDP and GDPI, respectively. All three series are seasonally adjusted at the

source.

We analysed the three series between 1960 and 2004, using 528 observation for the

monthly series and 176 observations for the two quarterly series. The data are plotted

in the first panels of figures 2, 3 and 4, together with a smoothed trend estimate. The

GDP and investment series can be characterised by a strong trend for the long term while

cyclical fluctuations from the trend can be observed. The time series of unemployment

is most affected by its cyclical behaviour. It should be noted that both quarterly time

series are more cyclical in the 1970s and 1980s than in other years. From the end of the

1980s, the amplitude of the cyclical fluctuations is smaller than in the earlier years. These

characteristics in macroeconomic time series have been discussed by Stock and Watson

(1993). The monthly time series of unemployment does not have a strong trend and is

more subject to typical cyclical dynamics.

4.2 Parameter estimation for symmetric decomposition model

The trend-cycle decomposition model (1) with a symmetric cycle is considered first for

the quarterly time series GDP and Inv and for the monthly time series Un. This so-called

structural time series model is linear and Gaussian and therefore the Kalman filter can be

used to compute the likelihood function for a given value of the parameter vector θ. The

likelihood function is maximised with respect to θ using numerical optimisation methods.

Based on the resulting maximum likelihood estimates, the unobservable trend µt and

3http://research.stlouisfed.org/fred2/
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cycle ψt can be estimated for t = 1, . . . , n (signal extraction) using the Kalman filter

and smoother. These calculations are implemented in the Ox programming language of

Doornik (2001) using the library of state space function SsfPack of Koopman, Shephard,

and Doornik (1999).

The parameter vector θ contains the unknown log-variances associated with the irregu-

lar, trend and cycle components, log σ2
ε , log σ2

ζ and log σ2
κ, respectively. The log-variances

are estimated so that variances are always positive. The coefficients 0 < ρ < 1 and

ω = 2π/λ > 2 in the cycle model are also included in the parameter vector but trans-

formed by Φ(ρ) and log(ω − 2) where Φ(·) is a cumulative density function from, for

example, the normal or the logistic distributions. The estimates of θ for the trend plus

symmetric cycle model are presented in Table 1. In the cases of GDP and Inv, the ir-

regular variances are estimated as zero while the trend innovation variance estimates are

small. Such estimates are typical for macroeconomic time series, with GDP and Inv as

examples. These time series have minor irregular changes and are subject to slowly vary-

ing (smooth) trends. For the monthly Un series, the irregular does exist while the trend

is kept smooth.4 The cycle properties of the three series are quite similar. The persis-

tence is in all cases estimated to be close to unity. The length of the cycle ω, does differ

somewhat. The cycle length for GDP is approximately 6 years while for Inv and Un the

length is longer, closer to 9 and 12 years, respectively.

4.3 Parameter estimation for asymmetric decomposition model

The trend plus asymmetric cycle decomposition model is considered next. The parameter

vector θ for the previous model is extended with coefficient γ that needs no transformation.

The computation of the likelihood function for a given θ is carried out by the methods

described in the previous section. A linear Gaussian approximating model is constructed

and samples for the unobservable state vector (with trend µt and cycle ψt) are generated

by the simulation smoothing algorithm. From these samples, the Monte Carlo likelihood

function can be evaluated and maximised with respect to θ. Table 1 presents the estima-

tion results of the trend-cycle model for the asymmetric cycles specification, next to the

results of the symmetric trend-cycle model. Discussions of the empirical results are given

4A unrestricted estimate of σζ for unemployment results in an overly flexible trend, which obscures

the cyclical component.
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in the next subsection.

The importance sampling techniques employed for the evaluation of the likelihood

function can be justified on the basis of the central limit theorem (CLT). Although the

consistency property L̂(ψ) → L(ψ) as N → ∞ always applies, the CLT is only valid

when the second moment of the importance ratio pθ(α, y)/gθ(α, y) exists, see Geweke

(1989). Koopman and Shephard (2004) suggest to carry out test procedures based on

the existence of a variance in the importance sampling procedure. The test statistics

arise from extreme value theory. For example, importance weights that are larger than

a certain threshold value are assumed to come from a generalised Pareto distribution.

After calculating a large number of weights, the existence of the second moment can

then be formally tested using standard likelihood based tests on the parameters of the

Pareto distribution. Under the null hypothesis of a finite second moment, the Wald and

Lagrange Multiplier (LM) tests have a standard Normal distribution, while the likelihood

ratio (LR) test is distributed as 0.5(χ2
0 + χ2

1). An alternative test based on the largest

order statistics of the weights was developed by Monahan (1993). This statistic has a

negative value under the null.

In table 2 the test results are reported for the importance weights for the three series.

The tests are calculated for weights generated from 100.000 replications of the state. The

tests do not indicate a problem for Inv and GDP series. However, for the unemployment

series the existence of a second moment is questionable. This is also evident from the

plots of the weights shown in figure 5. Model misspecification is usually the main source

of unsatisfactory diagnostics for the importance weights, see the discussion below.

4.4 Empirical evidence of asymmetric cycles

First, we note that all three series exhibit asymmetry in the cycle, as is evident from the

significant estimate of the γ parameter. The symmetric model is a special case of the

asymmetric model, with restriction γ = 0. The LR, Wald and LM test of the validity

of the restriction is given in table 1. All the statistics indicate that there is significant

asymmetry at least at the 5% level. The Unemployment series shows a very large increases

in the log-likelihood values. The smallest increase in the log-likelihood is 2.4 points, in

the GDP series.

Comparing the symmetric and asymmetric specifications, we observe that in general
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the cycle disturbances decrease a little, while there is some increase in persistence. For the

GDP and Investment series the parameter λ changes little between the two specifications.

In the Unemployment series, the extracted cycle is quite different in the asymmetric

estimates. It is evident that the increased flexibility of the model leads to a different

decomposition.

The estimated asymmetry parameter γ is positive for Unemployment, which implies

short upswings and long downturns. For GDP and Investment the parameter is negative,

indicating that periods of growth last longer than that of decline. For Unemployment

this result is in line with expectations. In particular, our findings agree with believes of

classical economists like Mitchell (1927) and Keynes (1936). However, for output and

investment there is less consensus in the literature than for unemployment. For example,

Falk (1986)’s application of Nefti’s non-parametric tests of unemployment series did not

produce significant results for the U.S. GNP. Clements and Krolzig (2003)’s parametric

tests found evidence of asymmetry in the GNP and investment series with a three-regime

model, while in a two regime specification the asymmetry was insignificant.

Table 1 also includes residual diagnostic tests for serial correlation up to twenty lags

(Q(20)) and Normality (N). The Q tests for Investment and GDP are generally satis-

factory. The asymmetric specification appears to reduce serial correlation, either the

symmetric nor the asymmetric specification show no significance at the 10% level. Nor-

mality is rejected for both series, although the asymmetric specification for Investment is

a considerable improvement on the symmetric specification. The Normality statistics for

the Unemployment series are very large, and Normality is clearly not a good assumption.

The asymmetric trend-cycle model does give slightly better results for the residual serial

correlation, but this statistic remains significant. The model for unemploment appears to

be inadequate and requires a more complete specification for the dynamics.

The last panels of the figures 2, 3 and 4 show that the periods are cyclical, and vary

between plausible ranges, generally between five and eleven years. It can also be seen that

especially for Investment, the variation in the cyclical component is quite small, especially

towards the end. This may account for some difficulties in estimating the likelihood using

Monte Carlo methods. It is also evident from the plots that the Unemployment series is

quite different in character from the other series: there is no clear direction in it’s trend,

and the period of its cycle is large. The magnitude of the cycle is also considerably larger
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than the those of the other series.

5 Conclusion

In this paper we extend the standard stochastic trigonometric cycle component in UC

models to account for asymmetries in the period. Replacing the fixed cycle frequency

parameter by an affine transformation of the derivative of the cycle results in a model

that can capture the degree of asymmetry by one additional parameter. In contrast to

common regime switching specifications, the period varies through a continuous range of

values.

The trend plus asymmetric model is presented and estimated in a nonlinear state space

form. Parameters estimation in nonlinear state space models is not a trivial problem;

we use a Monte Carlo likelihood approach, where the likelihood is interpreted as an

expectation of ratio of densities and estimated by averaging the densities evaluated in

simulated values of the unobserved components. In order to obtain a estimate with a

reasonable number of simulations, importance sampling techniques are used.

The empirical application focuses on three U.S. macro economic time series, unem-

ployment, investment and GDP. We find significant evidence of asymmetry in the three

series. The unemployment cycle tends to last longer during declines, while the investment

and GDP cycles fall faster than they rise.

Appendix

A linear Gaussian state space model is a general modelling framework that encompasses

many commonly used econometric models, such as linear regression, ARIMAX and Un-

observed Components. The model is defined by a state equation

αt+1 = Ttαt +Rtηt, ηt ∼ NID(0, Qt), (39)

and an observation equation

yt = Ztαt + εt, εt ∼ NID(0, Gt) (40)

for t = 1, . . . , n. The initial state α1 is assumed to have a known distribution N(a1, P1)

up to some fixed parameters, or having diffuse elements, while the system matrices Tt,

Zt, Gt, Qt are non-stochastic.
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Both the observations yt and the unobserved state vector αt are Gaussian processes.

The Kalman filter is a recursive algorithm that estimates the mean and variance of αt

conditional on y1, . . . , yt. Starting with a1, P1, the estimates are updated through

vt = yt − Ztat, Ft = ZtPtZ
′

t +Gt, Kt = TtPtZ
′

tF
−1
t ,

at+1 = Ttat +Ktvt, Pt+1 = TtPtT
′

t +RtQtR
′

t −KtFtK
′

t,

where at+1 = E(αt+1|y1, . . . , yt) and Pt+1 = Var(αt+1|y1, . . . , yt).

In econometric applications, the state space model usually depends on unknown para-

meters in the system matrices. The likelihood function of the Gaussian state space model

can be quickly evaluated using the Prediction Error Decomposition

logL(θ) = −
np

2
log 2π −

1

2

n∑

t=1

(
log |Ft| + v′tF

−1
t vt

)
, (41)

where p is the dimension of the vector yt and θ is the vector of parameters. The quantities

vt and Ft follow from the Kalman filter recursion.

The Kalman filter predicts αt conditional on past observations, that is, y1, .., yt−1.

Given the filter output, the Kalman smoother estimates αt conditional on the full sample

y = (y1, . . . , yn)′ using the backward recursion:

Lt = Tt −KtZt, rt−1 = Z ′

tF
−1
t vt + L′

trt, Nt−1 = Z ′

tF
−1
t Zt + L′

tNtLt,

α̂t = at + Ptrt−1 Vt = Pt − PtNt−1Pt,

and starting with rn = 0, Nn = 0. The smoothed state α̂t = E(αt|y) provides the minimum

mean square error estimates of the latent state, with variance Vt = Var(αt|y). For detailed

discussions of the state space methodology we refer to Anderson and Moore (1979) and

Durbin and Koopman (2001).

State simulation smoothing algorithms generate draws of the state α = (α1, . . . , αn)′,

conditional on observed data y. A simple algorithm developed by Durbin and Koopman

(2002) proceeds by generating unconditional draws α+ of the state and the associated

observations y+ according to the model (39), (40). The Kalman smoother is applied to

both the observed y and the generated series y+, yielding α̂ and α̂+ respectively. The

series α̃ = α̂+ α̂+ − α+ are realisations of the conditional distribution α|y.
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Table 1: Trend cycle decomposition model estimation results.

Maximum likelihood estimates are reported for the trend plus symmetric cycle and
trend plus asymmetric cycle (as) model for U.S. unemployment, inventment and
GDP. Square brackets contain 95% confidence intervals. Jarque-Bera Normality
(N) and Box-Ljung (Q(20)) serial correlation test are also reported, together with
log-likelihood values. The likelihood based Wald, LM, LR are asymptotically χ

2
1

distributed.

Un Un (as) Inv Inv (as) GDP GDP (as)

σ2
ε 7.70 × 10−4 1.67 × 10−3 – – – –
σ2

ζ 1.13 × 10−7 1.13 × 10−7 1.23 × 10−5 1.21 × 10−6 8.29 × 10−8 7.91 × 10−8

σ2
κ 2.77 × 10−2 2.48 × 10−2 2.53 × 10−4 2.44 × 10−4 5.60 × 10−5 5.45 × 10−5

φ 0.988
[0.977; 0,993]

0.989
[0.979; 0.994]

0.963
[0.904; 0.986]

0.968
[0.900; 0.990]

0.950
[0.898; 0.976]

0.953
[0.901; 0.978]

ω 124.9
[96.0; 161.2]

102.9
[82.4; 127.8]

24.0
[19.2; 29.9]

24.0
[19.3; 29.9]

36.2
[26.1; 49.9]

34.8
[25.8; 46.7]

γ – 0.00738
[0.00448; 0.0103]

– −0.36
[−0.64; −0.079]

– −0.91
[−1.70; −0.12]

N 146.1 164.6 12.0 8.0 7.8 7.9
Q(20) 73.5 69.4 28.3 23.8 24.5 23.4
Log-Lik 153.8 163.6 428.5 432.3 584.5 586.9
Wald 24.9 7.6 5.0
LM 26.2 6.3 5.3
LR 19.6 8.6 4.8

Table 2: Testing the existence of the second moment of importance weights.

Based on the largest of 100.000 generated importance weights, a Pareto distribution
is fitted by maximum likelihood. Under the null of finite variance, the asymptotic
distributions of the Wald and LM statistics are standard Normal, LR is 0.5(χ2

0+χ
2
1),

and the Monahan (M) statistic is negative, and the Pareto parameter ν̂ is less than
0.5. The sample variance of the weights is reported as WgtVar.

M Wald LM LR WgtVar ν̂

Un 0.174 2.177 1.299 6.432 159.7 0.619
Inv -0.060 -1.691 -0.867 3.803 8.487 0.407
GDP -0.048 -0.715 -0.418 0.752 14.65 0.461
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Figure 1: Stylised asymmetric business cycles with derivatives.

The first plot shows a regime switching cycle, based on one frequency during ascend
and one during descend. The second plot shows a smooth frequency evolution,
where the frequency is an affine transformation of the cycle slope. The solid line
depicts the cycle while the dashed line represents a proxy of its steepness.
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Figure 2: Trend-cycle decomposition of Unemployment.

The first plot shows the data and smoothed trend, the second plot shows the
smoothed asymmetric cycle component, the third plot shows the cycle period.
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Figure 3: Trend-cycle decomposition of Investment.

The first plot shows the data and smoothed trend, the second plot shows the
smoothed asymmetric cycle component, the third plot shows the cycle period.
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Figure 4: Trend-cycle decomposition of GDP.

The first plot shows the data and smoothed trend, the second plot shows the
smoothed asymmetric cycle component, the third plot shows the cycle period.
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Figure 5: 1.000 largest importance weights in 100.000 simulation draws.

Importance weights are ratios of true and approximating densities and used as
correction factors to the likelihood of an approximating model. A finite variance of
the weights justifies the use of the importance sampling likelihood estimator as the
central limit theorem applies.
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