
Multivariate nonlinear time series modelling

of exposure and risk in road safety research

Frits Bijleveld(a), Jacques Commandeur(a),

Siem Jan Koopman(b) and Kees van Montfort(b)∗

(a) SWOV Institute for Road Safety Research, Leidschendam, Netherlands
(b) Department of Econometrics, Vrije Universiteit Amsterdam, Netherlands

Abstract

In this paper we consider a multivariate nonlinear time series model for the analysis of
traffic volumes and road casualties inside and outside urban areas. The model consists of
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and outside urban areas. The analysis is based on the extended Kalman filter. Quasi-
maximum likelihood methods are utilised for the estimation of unknown parameters. The
latent factors are estimated by extended smoothing methods. We present a case study
of yearly time series of numbers of fatal accidents (inside and outside urban areas) and
numbers of driven kilometers by motor vehicles in the Netherlands between 1961 and
2000. The analysis accounts for missing entries in the disaggregated numbers of driven
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the salient features of the observed time series are captured by the model in a satisfactory
way.

Keywords: Extended Kalman filter; Quasi-maximum likelihood; Nonlinear dynamic fac-
tor analysis; Road casualties; State space model; Unobserved components.

∗Corresponding author: Dr. K. van Montfort, Department of Econometrics, Vrije Universiteit, De Boelelaan
1105, 1081 HV Amsterdam, Netherlands. Email: kvmontfort@feweb.vu.nl. This version: November 28, 2005.

1



1 Introduction

This paper considers a multivariate nonlinear time series model for the analysis of traffic volume

and road accident data. The model is based on the class of multivariate unobserved components

time series models and is modified to allow for nonlinear relationships between components.

The analysis relies on disaggregated and aggregated data and can account for missing entries in

the data set. Missing observations are quite usual in road safety analysis where disaggregated

data is not available throughout the sample period but data at the aggregated level is available

for a longer period. The nonlinear nature of the model arises from the fact that the expected

number of fatal accidents equals risk times exposure. This multiplicative relationship can be

made additive by taking logarithms in the usual way. However since the analysis is based on

aggregated and disaggregated data, summing constraints need to be considered as well. This

mixture of multiplicative and additive relations in the model calls for a nonlinear analysis.

Furthermore, the analysis is for a vector of time series and the model consists of multiple latent

variables. Therefore, we adopt multivariate nonlinear state space methods for the analysis of

road accidents.

The empirical motivation is to analyse the development of road safety inside and outside

urban areas in the Netherlands between 1961 and 2000. The expected annual number of fatal

accidents is defined by risk times exposure. Both risk and exposure are treated simultaneously

as latent or unobserved components. The expected number of vehicle kilometres driven (traffic

volume) is set equal to the latent exposure component. The observed traffic volume and the

observed number of fatal accidents are available for inside and outside urban areas in the

Netherlands. However, for some periods only the total number of vehicle kilometres driven (the

sum of numbers for inside and outside urban areas) is available. For these periods, the expected

total number of vehicle kilometres is set equal to the sum of the latent exposure components

for inside and outside urban areas.

Since the seminal paper of Smeed (1949), time ordered accident data is analysed in many

studies in road safety. In Smeed (1949) it is argued that the annual number of fatalities per

registered motor vehicle can be explained by means of the motorization, measured by the

number of registered motor vehicles per capita. The availability of more detailed time series

data have led to advanced and interesting statistical studies on road safety. An example is the

introduction of the use of traffic volume data. Traffic volume (e.g. vehicle kilometres driven,

sometimes travel kilometres) is currently assumed to be one of the most important factors

available for the explanation of accident counts. Appel (1982) found an exponentially decaying

risk when he decomposed the (expected) number of accidents in a risk component (accidents per

kilometres driven) and exposure (kilometres driven). Similar approaches have been adopted by

Broughton (1991) and Oppe (1989, 1991). These models are univariate (one dependent variable)
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and some consist of just one explanatory variable measuring traffic volume. Time-dependencies

in the error structure are ignored and estimation is based on classical methods.

Various time series analysis techniques, on the other hand, do take time-dependencies in the

error structure into account. For example, autoregressive integrated moving average (ARIMA)

techniques with explanatory variables (ARIMAX) as developed by Box and Jenkins (1976) are

used in the DRAG (Demand for Road use, Accidents and their Gravity) analyses of Gaudry

(1984) and Gaudry and Lassarre (2000). A DRAG analysis consists of three stages: first the

traffic volume is modelled, next the accidents using the estimated traffic volume, and then the

number of victims per accident (severity). Such a DRAG analysis is focussed on explaining

the underlying factors of road safety while earlier studies were more focussed on forecasting.

The DRAG approach allows for a non-linear transformation of the data by means of Box-Cox

transforms. The time series structure however is linear. The model in this paper disentangles

exposure and risk by unobserved components that are estimated simultaneously rather than

estimated by separate stages.

An alternative method to analysing road safety data was proposed by Harvey and Durbin

(1986) and is based on a structural time series model with interventions. This approach has

been applied in road safety analysis by a number of authors. Ernst and Brüning (1990), for

example, used a structural time series model to assess the effect of a German seat belt law while

Lassarre (2001) applied structural time series models to compare the road safety developments

in a number of countries. The method of Harvey and Durbin (1986) can also be extended to the

simultaneous modelling of traffic volume, road safety and severity, see Bijleveld, Commandeur,

Gould, and Koopman (2005). In these approaches linear Gaussian time series techniques such

as the Kalman filter are used for estimation, analysis and forecasting. In the present paper

we need to adopt a nonlinear equivalent of a structural time series model. Linear estimation

techniques can not be used as a result and therefore we rely on extended (nonlinear) Kalman

filter techniques. Related approaches based on univariate counts and with latent factors were

discussed by Johansson (1996).

In road safety analysis, the use of disaggregated data is useful when the separate series

can be modelled more effectively than the original aggregated time series. For instance, the

composition of transport modes inside urban areas is usually different from that outside urban

areas. Therefore, traffic volume and safety are different in these two parts of the traffic system.

The present paper implements a model-based simultaneous treatment of traffic volume and

fatal accidents for inside and outside urban areas. An important feature of the method is that

it can handle the temporal unavailability of traffic volume data at the disaggregated level, while

still providing estimates of the disaggregated exposure and risk for the full sample.

The paper is organised as follows. Section 2 presents the data used in the application part

of the paper. The relation between observed and unobserved factors within a multivariate

3



1960 1970 1980 1990 2000
0

20
40
60
80

100
120

          

1960 1970 1980 1990 2000

500
750

1000
1250
1500

          

Figure 1: Traffic volume in billions of motor vehicle kilometres (left panel) and the number of

fatal accidents (right panel) for inside urban areas (solid line) and outside urban areas (dashed

line). The total traffic volume in the left panel is marked by a dashed line over the whole

period.

nonlinear time series model is described in detail in Section 3, by first introducing the model

and then providing a state space formulation of the model. A description of the estimation

methods is given in Section 4. The main empirical results are presented in Section 5, and in

Section 6 implications for road safety research are discussed. Section 7 concludes.

2 Data description

In the empirical study we analyse annual road traffic statistics from the Netherlands consisting

of numbers of fatal accidents and traffic volume, defined as kilometres driven by motor vehicles,

in the period 1961 up to and including 2000, both separated into inside and outside urban areas.

This yields the following five annual time series:

y1t the traffic volume inside urban areas

y2t the traffic volume outside urban areas

y3t the total traffic volume in the Netherlands

x1t the number of fatal accidents inside urban areas

x2t the number of fatal accidents outside urban areas

where time index t = 1, . . . , n represents the range of years from 1961 up to and including 2000.

The total number of time points is therefore n = 40 in each series. All data were obtained from

the Dutch Ministry of Transport and Statistics Netherlands while the accident information

originated from police records.

The five time series are presented in Figure 1 with two displays. The left hand display shows

the development of the motor vehicle kilometres in the Netherlands. Disaggregated figures of
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Figure 2: Traffic intensity index (left panel) and total length in kilometers of main roads outside

urban areas (right panel).

traffic volume y1t and y2t are missing for the periods 1961 up to and including 1983 and 1997

up to and including 2000. For these years only the total traffic volume y3t is available. Only

modest deviations from an almost linear increase can be noticed from the traffic volume figures.

These deviations are most likely caused by economic factors. The right hand display in Figure 1

shows the development of the number of fatal accidents in the Netherlands, both for inside and

outside urban areas. The total number of fatal accidents has increased since the second world

war. From the early 1970s the two series are decreasing but seem to level off near the end of

the series.

The results of the empirical analysis in Section 5 will be validated against an alternative

estimate of the traffic volume outside urban areas. This estimate is composed of indexed

figures on traffic intensity on main roads multiplied by the length of the road system outside

urban areas as obtained from a survey of municipalities. These two time series are presented

in Figure 2. The data of the last years are considered to be inconsistent due to changes in

registration. The product of the latter two series should be roughly equal to the development

of motor vehicle kilometres outside urban areas when it is assumed that the development of

the traffic intensity outside urban areas is approximately proportional to the intensity on the

main roads.

3 The multivariate nonlinear time series model

3.1 Specification of model and assumptions

The multivariate nonlinear time series model is based on two unobserved components: a com-

ponent for exposure (traffic volume) and a component for risk. Each component is bivariate to

disentangle the effects for inside and outside urban areas. The statistical specification of the

components is based on linear dynamic processes. It is assumed that the observed time series

of fatal accidents and driven motor vehicle kilometres depend on these factors in the following

ways:
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1. The number of fatal accidents depends on the product of risk and exposure.

2. The number of driven motor vehicle kilometres in an area is proportional to the un-

observed factor exposure. The proportionality can not be uniquely identified. As a

consequence, the proportionality of the exposure is fixed at one.

3. The total number of driven motor vehicle kilometres is proportional to the sum of the

unobserved factors of exposure inside and outside urban areas.

Disaggregated time series data for inside and outside urban areas is available for fatal

accidents and driven kilometres although for the latter series this data is not available for

the full sample. However the yearly series of total number of driven kilometres is available

for the full sample. The five time series (partially missing for a number of years) are modelled

simultaneously. A log-linear model can be considered to handle the multiplicative dependencies.

However, it cannot at the same time handle the additive part for the missing disaggregated

data. Therefore we adopt a multivariate nonlinear time series model.

The dynamic specification of the unobserved components is based on the following assump-

tions:

1. The unobservables are smooth functions of time, jumps and outliers are captured by

interventions.

2. The exposure factors are trending (positive growth).

3. The risk factors decay exponentially over time. The log-risk factors are therefore trending

(negative growth).

The latter item introduces a further nonlinear aspect of the model. The assumptions are partly

motivated by the fact that both log-risk (see Appel, 1982) and exposure behave approximately

linearly. This specification is well suited to fit the development of the number of fatal accidents

inside and outside urban areas in Figure 1. Assume that exposure is the linear function of time

a · t+ b and risk is the exponential function of time exp(c · t+d) for fixed scalars a > 0, b, c < 0

and d where t is the time-index. In a deterministic setting, the number of accidents is given by

(a · t + b) exp(c · t + d) which implies that it is a function of (a∗ · t + b∗) exp(−t), where a∗ and

b∗ are functions of a, b, c and d. The latter curve has a maximum at time t∗ = (a∗ − b∗)/a∗

if a∗ > 0. Thus if the mobility is rising and the risk is decaying exponentially, the predicted

number of fatal accidents has a maximum at some point in time. In our case the number of

fatal accidents has a maximum in the early 1970s. In Figure 3 this relationship is shown for

a = 1 and b = 0.
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Figure 3: Graph of t exp(−t), (approximately) resembling the development of exposure times

risk when exposure develops linearly over time and risk develops as an exponential transform

of a linear development.

3.2 Unobserved stochastic linear trend factors

The deterministic trend specifications for exposure and log-risk are too rigid in practice because

trends will not be constant over time in a long period of forty years. A time-varying trend is

more flexible. A possible stochastic specification for a time-varying trend µt is the local linear

trend model that is given by

µt+1 = µt + βt + ηt, βt+1 = βt + ζt, t = 1, . . . , n, (1)

where the disturbances ηt and ζt are normally distributed with mean zero and variances σ2
η

and σ2
ζ , respectively. The disturbances ηt and ζs are mutually and serially independent of each

other at all time points t, s = 1, . . . , n. The initial values of µ1 and β1 can be regarded as

realisations from a diffuse distribution or as fixed unknown coefficients, see the discussion in

Durbin and Koopman (2001). The special case of σ2
η = σ2

ζ = 0 is the deterministic linear

trend µt = µ1 + β1 · t while the case of σ2
η > 0 and σ2

ζ = 0 is the random walk plus fixed drift

∆µt = β1 + ηt−1 for t = 2, . . . , n. Further it is established that a smooth stochastic function of

time µt is obtained by σ2
η = 0 and σ2

ζ > 0, see Harvey (1989).

The observed time series yt can be modelled with a time-varying trend as in

yt = µt + εt, t = 1, . . . , n, (2)

where observation disturbance εt is normally distributed with mean zero and variance σ2
ε . The

disturbance εt is serially independent and mutually independent of the other disturbances ηs

and ζs at all time points t, s = 1, . . . , n. The linear trend-noise decomposition model in short-

hand notation is then given by

yt = µt + εt, µt ∼ LLT, εt ∼ WN, (3)
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where LLT refers to the local linear trend component (1) and WN to a Gaussian white noise

sequence.

The unobserved exposure factors for inside and outside urban areas are indicated by µ1t

and µ2t, respectively. The log-risk factors for inside and outside urban areas are indicated by

δ1t and δ2t, respectively. Given the discussion in the previous section and to gain flexibility in

modelling, we consider local linear trend specifications for the unobserved factors, that is

µit ∼ LLT, δit ∼ LLT, i = 1, 2, t = 1, . . . , n.

All disturbance sequences driving the four unobserved factors are mutually independent of each

other.

3.3 Observation equation

The dynamic mutual dependencies of the five observed time series are specified solely through

the four unobserved and independent factors. This leads to a relatively simple model specifica-

tion for the observed time series. Given the discussion of the model in section 3.1, the model

equations for the observed traffic volume for inside and outside urban areas are given by

yit = µit + εit, εit ∼ WN, i = 1, 2, t = 1, . . . , n, (4)

whereas for the total traffic volume we have

y3t = y1t + y2t = µ1t + µ2t + ε1t + ε2t.

These observation equations are linear and can be regarded as a special trivariate common

trends model with two independent stochastic trends. It should be noted that when no obser-

vations are available for y1t and y2t, the disturbances ε1t and ε2t can not be identified separately.

The sum ε1t + ε2t can be identified when only y3t is observed. Therefore, in this case we take

ε1t + ε2t as a Gaussian white noise sequence with mean zero and variance σ2
ε,1 + σ2

ε,2 where σ2
ε,i

is the variance of εit for i = 1, 2.

The statistical model specification for the number of fatal accidents in and outside urban

areas is given by

xit = µit · exp(δit) + ξit, ξit ∼ WN, i = 1, 2, t = 1, . . . , n. (5)

This relationship is nonlinear in both µit and δit. There is no need to assume that all unobserved

factors are independent of each other. Correlation between risk inside and outside urban areas

can be estimated. This also applies to exposure.
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3.4 State space model formulation

The local linear trend model (1) can be formulated in state space form by(
µt+1

βt+1

)
=

[
1 1

0 1

](
µt

βt

)
+

(
ηt

ζt

)
,

and the observation equation (2) can be specified as

yt =
(

1 0
)( µt

βt

)
+ εt.

The general linear state space model is given by

αt+1 = Tαt + Hut, yt = Zαt + Gut, ut ∼ WN, (6)

where αt is the state vector and ut is the disturbance vector with mean zero and variance matrix

V . The matrices and vectors T , H , Z and G are system matrices. The local linear trend model

in the general setting is given by

αt = (µt, βt)
′, ut = (ηt, ζt, εt)

′,

with system matrices

T =

[
1 1

0 1

]
, H =

[
1 0 0

0 1 0

]
, Z =

[
1 0

]
, G =

[
0 0 1

]
.

The initial state vector is taken as a realisation from a diffuse density but can also be regarded

as fixed and unknown coefficients.

The local linear trend models for exposure and log-risk, inside and outside urban areas,

can be simultaneously put in state space form by placing the trends µit and δit with their

associating slope terms, for i = 1, 2, in the state vector αt. The disturbance terms are put in

ut. The system matrices for the state equation are given by

T = I4 ⊗
[

1 1

0 1

]
, H = I4 ⊗

[
1 0 0

0 1 0

]
,

where I4 is the 4 × 4 identity matrix.

The multivariate observation equation for traffic volume is linear. In terms of the observation

vector yt = (y1t, y2t, y3t)
′ and the state vector αt it follows that

yt =




1 0 0 0

0 1 0 0

1 1 0 0


⊗

(
1 0

)
αt +




1 0 0 0

0 1 0 0

1 1 0 0


⊗

(
0 0 1

)
ut. (7)
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When observations y1t and y2t are missing, the system does not need to be adjusted since the

necessary adjustments are made within the estimation methods that are going to be employed.

The observation equation for the number of fatal accidents, inside and outside urban areas,

can also be formulated in terms of the state vector αt but it requires a nonlinear specification.

Define xt = (x1t, x2t)
′ and consider the nonlinear observation equation(

yt

xt

)
= Z(αt) + Gut, t = 1, . . . , n, (8)

where Z(·) is a continuous 5×1 vector function. The observation equation for yt remains linear

and is as given by (7). The observation equation for xt is given by

xt =

(
µ1t exp δ1t

µ2t exp δ2t

)
+

[
0 0 1 0

0 0 0 1

]
⊗
(

0 0 1
)

ut, (9)

where(
µ1t

µ2t

)
=

[
1 0 0 0

0 1 0 0

]
⊗
(

1 0
)

αt,

(
δ1t

δ2t

)
=

[
0 0 1 0

0 0 0 1

]
⊗
(

1 0
)

αt.

This completes the state space formulation of the multivariate nonlinear model that is the basis

of the empirical study discussed in Section 5.

4 Estimation of parameters and latent factors

The linear Gaussian state space model may contain unknown parameters such as the variances

of the disturbances σ2
η , σ2

ζ and σ2
ε in the local linear trend model of section 3.2. These unknown

parameters can be estimated by the method of maximum likelihood. For a linear model, the

Gaussian log-likelihood function is evaluated by the Kalman filter and is maximised numerically,

see Harvey (1989) and Durbin and Koopman (2001) for recent discussions on the maximum

likelihood approach of estimating state space models.

The Kalman filter recursively evaluates the estimator of the state vector conditional on past

observations Yt−1 = {y1, x1, . . . , yt−1, xt−1}. The conditional estimator of the state vector is

denoted by at|t−1 = E(αt|Yt−1) and its conditional variance matrix Pt|t−1 = var(αt|Yt−1). The

Kalman filter is given by the set of vector and matrix equations

vt = yt − Zat|t−1, Ft = ZPt|t−1Z
′ + GG′,

Kt = (TPt|t−1Z
′ + HG′)F−1

t ,

at+1|t = Tat|t−1 + Ktvt, Pt+1|t = TPt|t−1T
′ − KtF

−1
t K ′

t + HH ′,

(10)

for t = 1, . . . , n and where a1|0 and P1|0 are the unconditional mean and variance of the initial

state vector, respectively. When an initial state element is taken as a realisation from a diffuse
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density, we can take its mean as zero and its variance as a very large value. Exact treatments

of diffuse initialisations are discussed in Durbin and Koopman (2001). The vector vt is the

one-step ahead prediction error with variance matrix Ft. The optimal weighting for filtering

is determined by the Kalman gain matrix Kt. The joint density of the observations can be

expressed as a product of predictive densities via the prediction error decomposition. As a

result, the log-likelihood function can be constructed via the Kalman filter and is given by

	 = −n

2
log 2π − 1

2

n∑
t=1

log |Ft| − 1

2

n∑
t=1

v′
tF

−1
t vt. (11)

With diffuse state elements, the log-likelihood function requires some modifications. For a

linear Gaussian state space model, the log-likelihood function 	 is exact.

When a value for yt is not available, it is taken as a missing value. The Kalman filter can

handle missing values in a straightforward way. A direct consequence of a missing value yt is

that innovation vt can not be computed and is unknown. This can be reflected by taking vt = 0

and variance matrix Ft → ∞I such that F−1
t → 0 and Kt → 0. It follows that the state update

equations become

at+1|t = Tat|t−1, Pt+1|t = TPt|t−1T
′ + HH ′,

when yt is missing. These computations are repeated for different time indices t when a number

of (consecutive) observations are missing. This solution also applies to out-of-sample forecasting

or back-casting computations. A missing value does not enter the log-likelihood expression of

(11). In a multivariate context, when an element of yt is missing, the same element of vt is

taken as zero and the associating rows and columns of F−1
t and Kt are taken as zero vectors.

The nonlinearities in the multivariate model are treated by the extended Kalman filter that

is based on a first-order Taylor expansion of the nonlinear relation. Since the nonlinearity is

limited to the observation vector, we only require the linearisation of µit exp δit around some

known values (µ∗
it, δ

∗
it), that is

µit exp δit ≈ µ∗
it exp δ∗it + (∂µit exp δit/∂µit)|(µit=µ∗

it,δit=δ∗it)(µit − µ∗
it) +

(∂µit exp δit/∂δit)|(µit=µ∗
it,δit=δ∗it)(δit − δ∗it)

≈ µ∗
it exp δ∗it + exp δ∗it(µit − µ∗

it) + µ∗
it exp δ∗it(δit − δ∗it)

≈ exp δ∗it(−µ∗
itδ

∗
it + µit + µ∗

itδit),

for i = 1, 2 and t = 1, . . . , n. The linearisation is more accurate when the value of (µ∗
it, δ

∗
it) is

close to (µit, δit). Within the Kalman filter, the nonlinear function Z(·) is linearised in this way

with an expansion around the filtered state vector. It implies that µ∗
it and δ∗it are taken from the

appropriate elements in at|t−1. The necessary amendments of the Kalman filter lead to matrix

Z becoming time-varying, Zt, and requires the replacement of the first three equations of the

Kalman filter by

vt = yt − ct − Ztat|t−1, Ft = ZtPt|t−1Z
′
t + GG′, Kt = (TPt|t−1Z

′
t + HG′)F−1

t ,
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where

ct =




0

0

0

−µ∗
1tδ

∗
1t exp δ∗1t

−µ∗
2tδ

∗
2t exp δ∗2t




, Zt =




1 0 0 0

0 1 0 0

1 1 0 0

exp δ∗1t 0 µ∗
1t exp δ∗1t 0

0 exp δ∗2t 0 µ∗
2t exp δ∗2t



⊗
(

1 0
)

,

and with(
µ∗

1t

µ∗
2t

)
=

[
1 0 0 0

0 1 0 0

]
⊗
(

1 0
)

at|t−1,

(
δ∗1t

δ∗2t

)
=

[
0 0 1 0

0 0 0 1

]
⊗
(

1 0
)

at|t−1.

The extended Kalman filter approximates the nonlinear features of the model. The prediction

error is therefore not evaluated exactly and the log-likelihood function (11) is an approxi-

mation. Parameter estimation via the maximisation of this log-likelihood is referred to as

quasi-maximum likelihood.

The smoothed estimate of a latent factor is the conditional mean given all available obser-

vations in the sample. The smoothed estimate of the state vector is denoted by α̂t = E(αt|Yn)

with its variance matrix Vt = var(αt|Yn). Once the Kalman filter is carried out, the smoothed

estimates can be computed via the backward recursions

rt−1 = Z ′
tF

−1
t vt + L′

trt−1, Nt−1 = Z ′
tF

−1
t Zt + L′

tNt−1Lt,

α̂t = at|t−1 + Pt|t−1rt−1, Vt = Pt|t−1 − Pt|t−1Nt−1Pt|t−1,
(12)

where Lt = T −KtZt and with initialisations rn = 0 and Nn = 0. The algorithm is a variation

of the fixed interval smoothing method of Anderson and Moore (1979) and is developed by

de Jong (1989) and Kohn and Ansley (1989). The smoothing recursions apply to the linear

Gaussian state space model. However, since we have explicitly used a time-varying Zt, the

computations can also be carried out in conjunction with the extended Kalman filter. We note

that smoothing requires the storage of all Kalman filter quantities, including the time-varying

values of ct and Zt, for t = 1, . . . , n.

5 Empirical results: estimation and model selection

We consider the five time series described in Section 2 for the years 1961–2000. The disaggre-

gated time series of traffic volume is only observed for the sample 1984–1996 and therefore we

need to deal with many missing values in the data set. The traffic volume series yt are modelled

by local linear trend models while the number of fatal accidents xt are subject to a nonlinear

relation, that is

yit = µit + εit, xit = µit exp(δit) + ξit, i = 1, 2,
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for t = 1, . . . , n with µit, δit
i.i.d.∼ LLT and εit, ξit

i.i.d.∼ WN. Note that i = 1 refers to outside urban

areas and i = 2 refers to inside urban areas. The total traffic volume is simply considered as

y3t = y1t + y2t. Each local linear trend model requires the estimation of two variances while the

observation disturbances also have unknown variances.

The Poisson counts of number of yearly accidents are approximated by a normal distribution.

To some extent we can account for this by taking the variance of the observation disturbances

for xit equal to the mean for which we take xit as a proxy, with i = 1, 2. This leads to a

time-varying sequence for matrix G in (6). To deal with the overdispersion of count data when

a Gaussian approximation is used, the observation variance for xit is scaled by a factor larger

than 1. The variance of the observation disturbances for xit is given by xit(1 + exp θ) where θ

is estimated as part of the maximum likelihood procedure.

After obtaining the first estimation results, diagnostic tests based on the so-called auxiliary

residuals (see Durbin and Koopman, 2001) indicated that several trend breaks can be identified.

By including dummy intervention variables for trend breaks in the model and re-estimating the

model with the intervention variables, a satisfactory multivariate nonlinear model for the time

series was obtained. The estimation results of the latter model are discussed below.

5.1 Parameter estimation results

Table 1 presents the estimates of the parameters in the final model. Together with the estimates

of variances and regression coefficients for the intervention variables, the table reports the 95%

lower and upper limits of the confidence intervals. The confidence intervals are based on the

approximation discussed in Harvey (1989, page 142). Since variance parameters are restricted

to be non-negative, the logged variances are estimated and related confidence intervals are

therefore asymmetric.

The overdispersion of Poisson counts in Gaussian approximation does not appear to be

significant since the maximum likelihood estimate of parameter θ defined in the previous section

is found to be a very negative number. Since the dispersion is modelled by (1 + exp θ) and

exp θ ≈ 0 when θ is very negative, this parameter was removed from the model.

The estimates of the variances of the level disturbances of the exposure components µit,

for i = 1, 2, are also found not to deviate from zero. This leads to a so-called smooth trend

specification for the µit. As indicated by the maximum likelihood estimates of the variances

corresponding to the slope components of the exposures in Table 1, the variation in the growth

of exposure is estimated to be larger for outside urban areas (≈ 1.70) than for inside urban

areas (≈ 0.03). These estimates rely on the limited sample period 1984–1996. The time series

plots in Figure 1 confirm that the traffic volume inside urban areas is almost constant over these

years while the growth of traffic volume outside urban areas has increased more rapidly in the
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Figure 4: Time series plots of estimated trends of the log-risk component δit for inside (left

panel) and outside (right panel) urban areas. Disaggregated traffic volume data is available in

the period within vertical lines. The shaded areas indicate 95% confidence intervals.

period before 1990 than the period after 1990. The variances of the observation disturbances

appear to be smaller for traffic volume outside urban areas (≈ 0.08) than for inside urban areas

(≈ 0.75).

The slope variances of the log-risk components δit for i = 1, 2, are estimated as zero which

reduces the log-risk trends to random walk processes with fixed growth terms. Since the level

variances are estimated to be small (≈ 0.001) for both inside and outside urban areas, the

log-risks are close to a fixed trend. However, it should be emphasised that although these

estimated variances are small they still appear to deviate from zero significantly.

The maximum likelihood estimates of the regression coefficients for the intervention variables

in Table 1 imply, significant breaks in the log-risk trends for the years 1974 and 1975. They can

partly be attributed to the global ‘oil crisis’ in 1974 and the introduction of alcohol legislation in

the Netherlands. This legislation was officially introduced in November 1974. In the following

year legislation on wearing moped helmets (February 1975) and seat belt legislation (June

1975) was introduced. To disentangle the effects of these measures, more detailed accident and

mobility data is required. For example, the availability of time series with quarterly or monthly

frequencies and of disaggregated data with a longer time horizon may be useful in this respect.

Further research in this direction is however beyond the scope of this study since relevant data

is not easily available for the Netherlands.

5.2 Signal extraction: trends for exposure and risk

Figure 4 presents the estimated trends for the risk of inside and outside urban areas. The

apparent accelerated decrease in the trend of the risk for inside urban areas is the result of

the interventions in 1974 and 1975 whereas for outside urban areas it is the result of the effect

of the intervention in 1974. These trends represent the estimates of the unobserved log-risk

component δit.

Figure 5 displays the trends of exposure inside and outside urban areas. The exposure
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Table 1: Estimation results of variances and interventions in equations for inside and outside

urban areas. Only those parameter estimates are reported that significantly deviate from zero.

The lower and upper limits of the asymmetric 95% confidence interval are given below the

estimated value, in brackets.

Parameter Estimated value

inside outside

Variance of

Slope exposure µit 0.0312 1.6999
(0.0191 0.0509) (1.1974 2.4132)

Level log-risk δit 0.0012 0.0012
(0.0007 0.0020) (0.0005 0.0025)

Irregular traffic volume yit 0.7492 0.0794
(0.5177 1.0844) (0.0183 0.3451)

Intervention in

1974 −0.1822 −0.1705
(−0.2850 −0.0794) (−0.2567 −0.0842)

1975 −0.1387
(−0.2464 −0.0310)
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Figure 5: Time series plots of estimated trends of the exposure component µit for inside (left

panel) and outside (right panel) urban areas. Disaggregated traffic volume data is available in

the period within vertical lines. The shaded areas indicate 95% confidence intervals.
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Figure 6: Estimated versus observed motor vehicle kilometres for inside (left panel) and outside

(right panel) urban areas. Solid lines represent the model estimates and dots are the observed

values. Disaggregated traffic volume data is available in the period within vertical lines. The

shaded areas are 95% confidence intervals.

inside urban areas increases steadily from the 1960s onwards until it levels off at the end of

the 1970s. It starts slowly increasing again from the 1990s onwards. It may be noted that the

stabilisation of the exposure inside urban areas in the 1970s takes place before the period for

which disaggregated traffic volume data is available. This shows that the methodology enables

the recognition of such changes before disaggregated data is available. In comparison with

the trend of exposure inside urban areas, the margin of confidence in the trend of exposure

outside urban areas is small. Moreover, the outside trend is growing more consistently over the

years although some minor temporary fluctuations of trend increases can be observed. Such

fluctuations are detected even at time points where traffic volume data outside urban areas is

not available. For example, in the period before 1980, when the outside exposure trend levels

off, such fluctuations are identified partly through the aggregated traffic volume, see Figure 1.

On the other hand, the fluctuations do not appear in the inside exposure trend notwithstanding

its larger confidence interval. This can be explained by the fact that the estimated exposure

trends also rely on the observed time series of number of fatal accidents. Since more fatal

accidents occur outside urban areas, it is apparently more likely that the fluctuations in the

number of accidents affect outside exposure more than inside exposure.

5.3 The fit of the model

This section concentrates on the ability of the multivariate nonlinear model to fit the time series

of motor vehicle kilometres and fatal accidents, inside and outside urban areas. In Figures 6 and

7 the model predictions are represented as solid lines, with 95% confidence intervals represented

by shaded areas, and the observed data is represented as enlarged dots. The confidence intervals

are based on the estimated variances of the disturbances.

The estimated values for the motor vehicle kilometres in Figure 6 are equal to the trends

µit for exposure discussed in the previous section. The fit of the estimated model is quite
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Figure 7: Estimated versus observed number of fatal accidents for inside (left panel) and outside

(right panel) urban areas. Solid lines represent the model estimates and dots are the observed

values. Disaggregated traffic volume data is available in the period within vertical lines. The

shaded areas indicate 95% confidence intervals.

satisfactory. The estimated number of fatal accidents in Figure 7 is based on the nonlinear

function µit exp δit. The effectiveness of this simple nonlinear relationship is convincing given

the good fit of the estimated number of accidents to the data. Apart from some small differences,

the estimates for inside and outside urban areas show similar patterns. It is encouraging that

the model has identified the sudden increase in the number of fatal accidents outside urban

areas in 1975–1977 whereas the number of accidents inside urban areas continues to decrease

in this period.

5.4 External validation

To further validate the estimates obtained by the model, we consider the estimated trend for

the exposure outside urban areas displayed in the right panel of Figure 5. These estimates are

also presented as the solid line in Figure 8. Since traffic volume data outside urban areas is

only available for the years 1984 up to 1996, the fit between the observed volume data outside

urban areas and the estimated trend can only be evaluated for this 13 year period. However, as

mentioned in Section 2, an alternative indicator for exposure outside urban areas is available

which extends beyond the 13 year period. This alternative indicator is obtained by multiplying

the indexed traffic intensity on main roads in the Netherlands with the total length of roads

outside urban areas. Since this alternative indicator is measured on a different scale from the

motor vehicle kilometers driven outside urban areas, the values of the latter observations were

regressed on the alternative indicator observations for the years 1984 up to 2000. The predicted

values of this simple regression without intercept yield properly re-scaled alternative indicator

observations and are plotted as dots in Figure 8. As the figure shows, the estimated trend for

exposure outside urban areas is quite consistent with the alternative indicator values, even in

the eleven year period from 1973 through 1983 for which no motor vehicle kilometres driven

were available.
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Figure 8: The fit of traffic volume outside urban areas: extrapolation and validation of the

model. The fit implied by the multivariate nonlinear model is represented by a solid line.

Traffic volume outside urban areas is only available in the period within vertical lines. The

alternative indicator observations of volume are represented by the dots. The dashed line

reflects the linear extrapolation of the traffic volume data outside urban areas.

Finally, alternative back-casts and forecasts can be produced by the linear extrapolation

of traffic volume outside urban areas. These back- and forecasts are shown in Figure 8 as a

dashed line. Especially the back-casts of the nonlinear state space model are clearly superior

to a simple extrapolation of the traffic volume data.

6 Implications for road safety research

The current results offer the possibility to interpret the disaggregated developments of road

safety over a much longer period of time than the 13 year period of 1984 up to and including

1996 for which all disaggregated data is available. Previous research by Appel (1982, for

Germany) and Oppe (1989, for the Netherlands) of macroscopic developments in road safety

led to the conclusion that the risk of road safety expressed as the number of persons killed

per motor vehicle kilometre (which strongly resembles the development of the number of fatal

accidents per motor vehicle kilometre) suggested an exponentially decreasing tendency. This

conclusion is supported by our model-based approach of analysing disaggregated risk.

From Figure 6 we learn that the development of Dutch traffic volume has increased since

the 1960s. Disaggregating the traffic volume for inside and outside urban areas shows that the

traffic volume inside urban areas continued to increase until the end of the 1970s. It started

to increase again from the 1990s. On the other hand, the traffic volume outside urban areas
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kept on growing more consistently and strongly with the largest acceleration between about

1983 and 1992. Although the increase of traffic mobility outside urban areas was limited in

the early 1960s, it has increased more dramatically from the end of the 1960s when comparing

it to mobility inside urban areas. It can therefore be concluded that this development was a

dominant factor in the total traffic volume long before the beginning of the new century.

7 Conclusions

The model-based treatment of exponential and multiplicative relationships between number

of accidents and factors such as exposure and risk has proven to be effective. A multivariate

nonlinear time series model is estimated using a partially disaggregated data set of traffic

volume and number of accidents. The estimation methods are based on extended versions of

the standard multivariate Kalman filter and related algorithms. We have shown that a state

space methodology in a multivariate and nonlinear setting with many missing observations is

feasible and that it can lead to interesting empirical results. The empirical study consists of

the analysis of road safety in the Netherlands by simultaneous consideration of two sections of

the total traffic system: inside and outside urban areas. It is assumed that the development of

road safety inside urban areas is different from the development of road safety outside urban

areas due to differences in road infrastructure and changes in the use of road transport inside

and outside urban areas over the years.

The empirical results show that developments of exposure inside and outside urban areas

have roughly kept up with each other up to 1980. After this period, a decline of the growth

in exposure inside urban areas occurred and lasted until approximately 1990. Then exposure

inside urban areas started to increase again. In contrast, the exposure outside urban areas

has steadily increased since 1980. The model has successfully reconstructed the development

of traffic volume outside urban areas for a long time period. This is confirmed by considering

an alternative estimate of traffic volume outside urban areas, based on the product of the

index of traffic intensity and an estimate of the total road length, both outside urban areas.

The similarity between these alternative data-driven estimates and the model estimates is

convincing.

Although the empirical results are satisfactory, the methodology of this paper can be im-

proved further. For example, the model may need to allow for covariances between the dis-

aggregated values. Furthermore, introducing common components in the model may lead to

statistically more significant dynamic relations between the series. Finally, the consideration of

non-Gaussian features in the model may enhance the applicability of the current methodology

in cases where small counts are observed.
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