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Analyzing the Term Structure of Interest Rates using the

Dynamic Nelson-Siegel Model with Time-Varying Parameters

Abstract

In this paper we introduce time-varying parameters in the dynamic Nelson-Siegel yield

curve model for the simultaneous analysis and forecasting of interest rates of different

maturities, known as the term structure. The Nelson-Siegel model has been recently

reformulated as a dynamic factor model where the latent factors are interpreted as the

level, slope and curvature of the term structure. The factors are modeled jointly as a

vector autoregressive process. We propose to extend this framework in two directions.

First, the factor loadings in the Nelson-Siegel yield model depend on a single loading

parameter. We allow this parameter to be time-varying by treating it as the fourth

latent factor that is modeled jointly with the other factors in the vector autoregressive

process. Second, we investigate in detail whether the overall volatility in interest rates is

constant over time. For this purpose, we introduce a common volatility component that

is specified as a GARCH (generalized autoregressive conditional heteroskedasticity)

process. The common volatility component is scaled separately for each maturity by

an unknown coefficient. We further investigate whether the innovations of the factors

are also subject to a common volatility component. Based on a data-set of yield curves

that is analyzed by others, we present empirical evidence of considerable increases in

model fit when time-varying loadings and volatilities in the dynamic Nelson-Siegel are

introduced.

1 Introduction

Fitting and predicting time-series of a cross-section of yields has proven to be a challenging

task. As with many topics in empirical economic analysis there is the trade-off between

the goodness of fit that is obtained by employing statistical models without a reference to

economic theory, and the lack of fit by economic models that do provide a basis for the

underlying economic theory.

For many decades work on the term structure of interest rates has mainly been theoretical

in nature. In the early years work focused on the class of affine term structure models, see
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Vasicek (1977) and Cox, Ingersoll, and Ross (1985). Duffie and Kan (1996) generalized the

literature and Dai and Singleton (2000) characterized the set of admissable and identifiable

models. Another class of models focused on fitting the term structure at a given point in time

to ensure no arbitrage opportunities exist, see Hull and White (1990) and Heath, Jarrow,

and Morton (1992). It has been shown that the forecasts obtained using the first class of

models do not outperform the random walk forecasts, see for example Duffee (2002). The

second class of models are not appropriate for forecasting given its focus on the cross-section

dimension of yields without a reference to the time series dimension. Time series models

aim to describe the dynamical properties and are therefore more suited for forecasting. This

may partly explain the renewed interest in statistical time series models for yield curves.

The papers of Diebold and Li (2006, DL) and Diebold, Rudebusch, and Aruoba (2006,

DRA) have shifted attention back to the Nelson and Siegel (1987) model. DL and DRA

introduce the dynamic Nelson-Siegel model as a statistical three factor model to describe the

yield curve over time. The three factors represent level, slope and curvature of the yield curve

and thus carry some level of economical interpretation. More importantly, DL and DRA

show that the model-based forecasts outperform many other models including standard time

series models such as vector autoregressive models and dynamic error-correction models. In

DRA, the Nelson-Siegel framework is extended to include non-latent factors such as inflation.

Further they frame the Nelson-Siegel model into a state space model where the three factors

are treated as unobserved processes and modeled by vector autoregressive processes. A

wide range of statistical methods associated with the state space model can be exploited for

maximum likelihood estimation and signal extraction, see Durbin and Koopman (2001). We

will follow this approach in which the state space representation of the Nelson and Siegel

(1987) model plays a central role.

Parameter estimation in DL and DRA relies on two simplifying assumptions. First, the

factor loadings in the Nelson-Siegel model depend on a single loading parameter. To enable

the estimation of time-varying latent factors in a linear setting, the factor loadings are kept

constant over time for each maturity. In the original Nelson and Siegel (1987) article, the

loading parameter is estimated based on the yield (cross-section) for each time period. In

DL, the loading parameter is restricted as constant to keep the factor loadings constant.

Second, volatility is kept constant for each maturity and over the full sample period.
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We contribute to the literature by introducing time-varying factor loadings and time-

varying volatility in the dynamic Nelson-Siegel model. The loading parameter determines

all factor loadings in the Nelson-Siegel model. When we allow the loading parameter to

be time-varying, all loadings will be time-varying. We consider the loading parameter as a

stochastically time-varying latent process and we treat it as the fourth factor. The latent

factors level, slope and curvature together with the time-varying loading parameter are then

modeled jointly as a vector autoregressive process. The loading parameter is not a linear

function of the observation vector and therefore we obtain a nonlinear dynamic model. We

will show that the nonlinear features in the dynamic Nelson-Siegel model can be treated using

extended Kalman filter methods. Next, we introduce time-varying volatility by specifying the

common variance as the well-known generalized autoregressive conditional heteroskedasticity

(GARCH) process, see Bollerslev (1986). In empirical work it is found that during high

volatility periods, the yields for all maturities are highly volatile although some maturities are

more volatile than others. The time-varying volatility is introduced for different components

of the model. We finally carry out formal test procedures and we present misspecification

diagnostics to assess the most appropriate time-varying specifications in the dynamic Nelson-

Siegel model.

The introduction of time-varying parameters may also shed some light on more recent

developments in the term structure literature. The dynamic Nelson-Siegel model does not

rely on theoretical concepts such as the absence of arbitrage, see also the discussion in Ang

and Piazzesi (2003). Recently, Christensen, Diebold, and Rudebusch (2007) have modified

the Nelson-Siegel framework to impose the arbitrage-free condition. As a result, a new class

of affine dynamic term structure models is defined. An important condition for the risk-free

rate to exist in this framework is that loadings are constant over time. This condition may

be validated by allowing the factor loadings to be time-varying as we do in this paper. Also

in the work of Diebold, Li, and Yue (2007) on the global yield curve, constant factors are an

important condition.

There are a number of papers that extend the work of DL and DRA for the Nelson-

Siegel model. Bianchi, Mumtaz, and Surico (2006) allow for time-varying variances for the

latent factors level, slope and curvature. In this specification, it is implied that the factor

loadings for the term-structure are also appropriate weights for the volatility in the term-
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structure. This appears to be a strong assumption that needs to be validated. We therefore

introduce for each yield in the observation equation, a different factor loading for the common

disturbance factor that is subject to a GARCH process. We then construct a test whether the

common volatility factor loadings are a linear combination of the loadings for the factors level,

slope and curvature. Yu and Zivot (2007) extend the Nelson-Siegel framework by including

corporate bonds. De Pooter (2007) examines the dynamic NS model that is extended by

additional factors. It is shown that such extensions can improve both the in-sample fit and

the post-sample forecasting performance. Without adopting the Nelson-Siegel framework,

Bowsher and Meeks (2008) introduce a 5-factor model where spline functions are used to

model the yield curve and where the knots for these splines act as factors. While their

approach allows for a more flexible yield curve some economic intuition of the factors is lost.

Moreover, also in this framework, volatility is kept fixed over time.

The remainder of the paper is organized as follows. Section 2 describes the baseline

dynamic Nelson-Siegel model and Section 3 discusses our new extensions. In Section 4 we

present, discuss and compare estimation results for different model specifications. Section 5

concludes.

2 The dynamic Nelson-Siegel model

In this section we introduce the latent factor model that Nelson and Siegel (1987) have

developed for the yield curve. We focus on the model that is slightly adjusted in terms

of factorization by Diebold and Li (2006) and is extended here to allow for time-varying

parameters. We further discuss the state space approach for this initial extension of the

model.

2.1 The Nelson-Siegel model

Interest rates are denoted by yt(τ) at time t and maturity τ . For a given time t, the yield

curve θt(τ) is some smooth function representing the interest rates (yields) as a function of

maturity τ . A parsimonious functional description of the yield curve is proposed by Nelson

and Siegel (1987). The Nelson-Siegel formulation of the yield is modified by Diebold and Li

(2006) to lower the coherence between the components of the yield curve.
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The Diebold and Li (2006) formulation is given by

θt(τ) = θ(τ ;λ, βt) = β1t + β2t

(

1 − e−λτ

λτ

)

+ β3t

(

1 − e−λτ

λτ
− e−λτ

)

, (1)

where βt = (β1t, β2t, β3t)
′, for given time t, maturity τ and fixed coefficient λ that determines

the exponential decay of the second and third component in (1).

The shape and form of the yield curve is determined by the three components and their

associated weights in βt. The first component takes the value 1 (constant) and can therefore

be interpreted as the overall level that influences equally the short and long term interest

rates. The second component converges to one as τ ↓ 0 and converges to zero as τ → ∞

for a given t. Hence this component mostly influences short-term interest rates. The third

component converges to zero as τ ↓ 0 and as τ → ∞ but is concave in τ , for a given t. This

component is therefore associated with medium-term interest rates.

Since the first component is the only one that equals one as τ → ∞, its corresponding

β1t coefficient is usually linked with the long-term interest rate. By defining the slope of the

yield curve as θt(∞) − θt(0), it is easy to verify that the slope converges to −β2t for a given

t. Finally, the shape of the yield can be defined by [θt(τ
∗) − θt(0)] − [θt(∞) − θt(τ

∗)] for a

medium maturation τ ∗, say, two years, and for a given t. It can be shown that this shape

approximately equals β3t.

In case we observe a series of interest rates yt(τi) for a set of N different maturities

τ1 < . . . < τN available at a given time t, we can estimate the yield curve by the simple

regression model

yt(τi) = θt(τi) + εit

= β1t + β2t

(

1 − e−λτi

λτi

)

+ β3t

(

1 − e−λτi

λτi
− e−λτi

)

+ εit, (2)

for i = 1, . . . , N . The disturbances ε1t, . . . , εNt are assumed to be independent with mean

zero and constant variance σ2
t for a given time t. The least squares method provides estimates

for the βjt coefficients j = 1, 2, 3. These cross-section estimates can be obtained as long as

sufficient interest rates for different maturities are available at time t.

The series of regression estimates for βt, for all time periods t = 1, . . . , T , appear to be
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strongly correlated over time. In other words, the coefficients are forecastable and hence the

Nelson-Siegel framework can be used for forecasting in this way. This has been recognized

by Diebold and Li (2006) who implemented the following two-step procedure: first, estimate

the βt by cross-section least squares for each t; second, treat these estimates as three time

series and apply time series methods for forecasting βt and hence the yield curve θ(τ ;λ, βt).

Diebold and Li (2006) compare their two-step forecasts with those from univariate and

multivariate time series methods. The different methods produce similar results. Never-

theless, the two-step forecasting approach does better than forecasting the different interest

rates series directly, especially for the longer maturities.

2.2 The dynamics of the latent factors

Diebold, Rudebusch, and Aruoba (2006) go a step further by recognizing that the Nelson-

Siegel framework can be represented as a state space model when treating βt as a latent

vector. For this purpose, the regression equation (2) is rewritten by

yt = Λ(λ)βt + εt, εt ∼ NID(0,Σε), t = 1, . . . , T, (3)

with observation vector yt = [yt(τ1), . . . , yt(τN)]′, disturbance vector εt = (ε1t, . . . , εNt)
′ and

N × 3 factor loading matrix Λ(λ) where its (i, j) element is given by

Λij(λ) =



















1, j = 1,
(

1 − e−λ·τi

)

/ λ · τi, j = 2,
(

1 − e−λ·τi − λ · τie
−λ·τi

)

/ λ · τi, j = 3.

The time series process for the 3 × 1 vector βt can be modeled by the vector autoregressive

(VAR) process

βt+1 = (I − Φ)µ+ Φβt + ηt, ηt ∼ NID(0,Ση), (4)

for t = 1, . . . , n, with mean vector µ and initial condition β1 ∼ N(µ,Σβ) where coefficient

matrix Φ and variance matrix Σβ are chosen such that Σβ − ΦΣβΦ′ = Ση and stationarity

of the VAR process must be ensured, see Ansley and Kohn (1986) for an effective reparame-

terisation. We refer to model (3) and (4) as the dynamic Nelson-Siegel (DNS) model.
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2.3 Estimation based on the Kalman filter

We consider the DNS model (3) and (4) as a linear Gaussian state space model. The vector

of unobserved factors βt is the state vector and can be estimated conditional on the past

and concurrent observations y1, . . . , yt via the Kalman filter. Define bt|s as the minimum

mean square linear estimator (MMSLE) of βt given y1, . . . , ys with mean square error (MSE)

matrix Bt|s, for s = t − 1, t. For given values of bt|t−1 and Bt|t−1, the Kalman filter first

computes bt|t and Bt|t, when observation yt is available, using the filtering step

bt|t = bt|t−1 +Bt|t−1Λ(λ)′F−1

t vt, Bt|t = Bt|t−1 − Bt|t−1Λ(λ)′F−1

t Λ(λ)Bt|t−1, (5)

where vt = yt −Λ(λ)bt|t−1 is the prediction error vector and Ft = Λ(λ)Bt|t−1Λ(λ)′ +Σε is the

prediction error variance matrix. The MMSLE of the state vector for the next period t+ 1,

conditional on y1, . . . , yt, is given by the prediction step

bt+1|t = (I − Φ)µ+ Φbt|t, Bt+1|t = ΦBt|tΦ
′ + Ση. (6)

For a given time series y1, . . . , yT , the Kalman filter computations are carried out recursively

for t = 1, . . . , T with initializations b1|0 = µ and B1|0 = Σβ where Σβ is defined below (4).

The parameters in the VAR coefficient matrix Φ, variance matrices Ση and Σε together with

µ and λ are treated as unknown coefficients which are collected in the parameter vector ψ.

Estimation of ψ is based on the numerical maximization of the loglikelihood function that

is constructed via the prediction error decomposition and given by

ℓ(ψ) = −
NT

2
log 2π −

1

2

T
∑

t=1

log |Ft| −
1

2

T
∑

t=1

v′tF
−1

t vt. (7)

As a result, ℓ(ψ) can be evaluated by the Kalman filter for a given value of ψ. A quasi-

Newton optimization method is employed for the purpose of maximization based on the

numerical evaluation of the score function. We have implemented the necessary calculations

in the matrix programming language Ox of Doornik (2001) with the use of the SsfPack

state space functions developed by Koopman, Shephard, and Doornik (1999). A textbook

treatment of Kalman filter methods is given by Durbin and Koopman (2001).
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The state space framework allows for different dynamic processes for vector βt in the

dynamic Nelson-Siegel model. Also, variance matrices Σε and Ση can be full or diagonal.

Diebold, Rudebusch, and Aruoba (2006) assume that Σε is diagonal so that the equations

for the different yield maturities are uncorrelated, given βt. This assumption is often used

to reduce the number of coefficients and to obtain computational tractability.

3 DNS model with time-varying parameters

In this section we extend the DNS model by treating the loading parameter as a stochas-

tically time-varying latent factor and by introducing time-varying volatility in the variance

specification of the disturbances. The extensions introduce nonlinearities in the model that

we will handle by the extended Kalman filter discussed below.

3.1 Time-varying loading parameter

In the DNS model, the loading parameter λ determines the shape of the yield curve. In the

earlier studies, the default is to pre-fix a value for λ without estimation. For example, Diebold

and Li (2006) fix λ at 0.0609 while Diebold, Rudebusch, and Aruoba (2006) estimate λ to

be 0.077. Yu and Zivot (2007) adopt these values for λ in their empirical study concerning

corporate bonds. They argue that the loadings Λij(λ) are not very sensitive to different

values of λ as can be illustrated graphically. Hence they argue that λ can be fixed such

that it maximizes the loading on the curvature component at some medium term (that is,

30 months for λ = 0.0609 and 23.3 months for λ = 0.077).

Here we emphasize that the estimation of λ is straightforward in a state space framework

as it can be included in the parameter vector ψ, see Section 2.3. Keeping λ fixed over the

full sample period may be too restrictive as the data usually spans over a long time period.

In particular, the maturity at which the curvature factor β3t is maximized and the speed

of decay of the slope factor β2t depend only on λ and are fixed as a result. However, these

characteristics of the yield curve may have changed over time. The importance of λ and its

constancy over time is also discussed in Christensen, Diebold, and Rudebusch (2007) where

an arbitrage-free version of the Nelson-Siegel framework is proposed. Given the importance

of λ, we study its role in more detail by considering possible changes of λ over time.
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We propose to treat the time-varying loading parameter λt as the latent fourth factor β4t

and to include it into the vector βt below (1). The new 4×1 vector βt is then modeled by the

VAR process (4). The loading matrix Λ(λ) in the observation equation (3) is then replaced

by Λ(λt) with λt = β4t. The new observation equation is nonlinear in βt as we obtain

yt = Λ(β4t) · (β1t, β2t, β3t)
′ + εt. This specification is of particular interest since it allows

dynamic interactions between changes in cross-sectional (or cross-maturity) dependence,

through β4t, and time series dependence of the yields, through β1t, β2t and β3t. The resulting

model with time-varying loadings will be referred to as the DNS–TVL model. Other dynamic

processes for λt can be considered including a random walk process.

3.2 Time-varying volatility

Another key aspect in the analysis of the term structure is the recognition that interest rates

are the result of trading at financial markets. The volatility in the series may therefore have

changed over time as well. In most empirical work on the yield curve, monthly time series

of interest rates are analyzed under the assumption that the volatility in the time series is

constant over time. A few exceptions are Engle, Ng, and Rothschild (1990) and Bianchi,

Mumtaz, and Surico (2006). However, investigating time-varying volatility in the context

of the DNS model is a novelty. Although the changes in the volatilities for the different

maturities have different intensities, they appear to occur at the same time. For this reason,

we focus mainly on a common pattern of time-varying volatility in interest rates.

Here we modify the DNS model by introducing time-varying variance matrices via a

common volatility component that is modeled by a GARCH process. We adopt the common

GARCH specification, or the one-factor GARCH model, of Harvey, Ruiz, and Sentana (1992)

to introduce a time-varying variance for the disturbances in the observation equation. In

particular, we consider the decomposition of the disturbance vector εt given by

εt = Γε∗t + ε+

t , t = 1, . . . , T,

where Γ is redefined here as a N × 1 loading vector, ε∗t is a scalar disturbance and ε+
t is a

N × 1 disturbance vector. For identification purposes, vector Γ can be normalized such that

Γ′Γ = 1. The disturbance components are mutually independent of each other and their
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distributions are given by

ε∗t ∼ NID(0, ht), ε+

t ∼ NID(0,Σ+

ε ), t = 1, . . . , T, (8)

where Σ+
ε is typically , but not necessarily, a diagonal matrix and where variance ht is

specified as the GARCH process developed by Bollerslev (1986). In particular, we have

ht+1 = γ0 + γ1ε
∗ 2

t + γ2ht, t = 1, . . . , T, (9)

with unknown coefficients γ0 > 0, 0 < γ1 < 1 and 0 < γ2 < 1 and h1 = γ0(1 − γ1 − γ2)
−1.

Lags of ε∗t and ht can also be included in the specification (9). As a result, the variance

matrix of εt has become time-varying and is given by

Σε(ht) = htΓΓ′ + Σ+

ε , t = 1, . . . , T, (10)

where Σε(ht) is a full variance matrix but its time-variation depends on the common and

univariate GARCH process (9). In this specification, the normalization constraint Γ′Γ = 1

can be replaced by fixing γ0 to a known constant. The (unconditional) time-varying variance

matrix of yt is Λ(λ)ΣβΛ(λ)′ + Σε(ht) where Σβ is the solution of Σβ − ΦΣβΦ = Ση. The

unknown coefficients for the GARCH specification are collected in the parameter vector

γ = (γ1, γ2,Γ
′)′. We treat γ0 as a known constant and refer to this model as DNS–GARCH.

In the same framework, we can consider a GARCH specification for Ση in (4) based on the

decomposition ηt = Γηη
∗
t + η+

t with η∗t ∼ NID(0, gt) and Ση = Ση(gt) as in (10). When we

focus on this decomposition only, the variance matrix of yt is given by Λ(λ)Σβ(gt)Λ(λ)′ +Σε.

In this setting, the variance structure of yt subject to volatility depends on matrix Λ(λ).

We regard this specification as a restriction compared to (10) where the volatility variance

structure is determined by Γ. We can construct a likelihood-ratio statistic for this restriction.

Another hypothesis can be formulated by considering yt = Λ(λ)βt+Γε∗t +ε
+
t without GARCH

for Ση. The hypothesis of interest is Γ = Λ(λ)w where w is a 3 × 1 vector of unknown

coefficients. The null model is then given by yt = Λ(λ) (βt + wε∗t ) + ε+
t . In this case, the

variance matrix of yt has become Λ(λ) [Σβ + htww
′] Λ(λ)′ + Σε where the variance structure

subject to volatility also depends on the factor loadings in Λ(λ).
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3.3 Estimation based on the extended Kalman filter

In case loading parameter λt and variance ht (or gt) are specified as an autoregressive process

and a GARCH process, respectively, we cannot determine λt and ht a-priori. In particular,

λt depends on the Nelson-Siegel latent factors level, slope and curvature (β1,t, β2,t and β3,t,

respectively) while the time-varying variance ht in (9) depends deterministically on past

values of the unobserved disturbance term ε∗t . Therefore, we treat λt = β4,t and ε∗t as latent

variables of interest and place them in the state vector αt. A nonlinear state space model

can be designed for the DNS model with time-varying parameters based on this state vector.

The nonlinear observation equation is given by

yt = Zt(αt) + ε+

t , ε+

t ∼ NID{0,Σ+

ε }, t = 1, . . . , T, (11)

with αt = (β1,t, β2,t, β3,t, β4,t, ε
∗
t )

′ = (β ′
t, ε

∗
t )

′ and where Zt(αt) is the N × 1 vector function

Zt(αt) = Λ(λt)(β1,t, β2,tβ3,t)
′ + Γε∗t , with λt = β4,t, t = 1, . . . , T. (12)

The state equation is given by

αt+1 = c+





Φ 0

0 0



αt +





ηt

ε∗t+1



 ,





ηt

ε∗t+1



 ∼ NID



0,





Ση 0

0 ht+1







 , (13)

for t = 1, . . . , T and c = [µ′(I − Φ)′, 0]′. Since ht+1 in (9) is a function of the unobserved

value ε∗t and its past values, we will not be able to compute the necessary value of ht+1 at

time t. A solution is to replace ht+1 by its estimate based on observations y1, . . . , yt, that is

ĥt+1|t = γ0 + γ1e
2

t + γ2ĥt|t−1, t = 1, . . . , T,

where et is an estimate of ε∗t based on y1, . . . , yt and obtained from the filtering step of the

Kalman filter applied to the model (11) and (13). Past values of ĥt|t−1 can be stored outside

the model and the variance ht+1 in (13) is replaced by ĥt+1|t for the prediction step of the

Kalman filter. As a result, the state estimates are sub-optimal, they are not MMSLE. A

more detailed discussion of this approach is provided by Harvey, Ruiz, and Sentana (1992).
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The Kalman filter method only applies to models that are linear in the state vector.

The observation equation (11) is clearly nonlinear in αt. Exact estimation procedures for

nonlinear models require a major computational effort. We prefer to preserve the elegance

of the Kalman filter. For this purpose, we locally linearize the nonlinear function Zt(αt) at

αt = at|t−1 where at|t−1 is an estimate of αt based on the past observations y1, . . . , yt−1. We

obtain the linearized model

yt = Zt(at|t−1) + Żt · (αt − at|t−1) + ε+

t = dt + Żtαt + ε+

t , t = 1, . . . , T,

where dt = Zt(at|t−1) − Żtat|t−1 and Żt = ∂Zt(αt) / ∂α
′
t |αt=at|t−1

= (ż′1t, . . . , ż
′
Nt)

′ with

żit =
[

1 , Λi2(a4,t|t−1) , Λi3(a4,t|t−1) , a2,t|t−1Λ̇i2(a4,t|t−1) + a3,t|t−1Λ̇i3(a4,t|t−1) , Γi

]

,

for which the loading element Λij(λ) is given below (3), Λ̇ij(x) = ∂Λij(λ) / ∂λ|
λ=x

, ak,t|t−1

is the kth element of vector at|t−1 and Γi is the ith element of vector Γ, for i = 1, . . . , N ,

j = 2, 3 and k = 2, 3, 4. Given an estimate at|t−1 and an approximate MSE matrix At|t−1 for

at|t−1, the filtering step is given by

at|t = at|t−1 + At|t−1Ż
′
tF

−1

t vt, At|t = At|t−1 − At|t−1Ż
′
tF

−1

t ŻtAt|t−1, (14)

with vt = yt − dt − Żtat|t−1 = yt − Zt(at|t−1) and Ft = ŻtAt|t−1Ż
′
t + Σ+

ε . We define at|t as a

sub-optimal estimate of αt based on observations y1, . . . , yt and At|t as its approximate MSE

matrix. The prediction step is similar to (6) but then based on the state equation (13).

The estimates at|t−1 and at|t are sub-optimal due to the replacement of ht+1 in (13) by

ĥt+1 and due to the linearization of the original observation equation (11). We therefore label

At|t−1 and At|t as approximate MSE matrices. For a given time series y1, . . . , yT , the filtering

and prediction steps can be carried out recursively for t = 1, . . . , T . The resulting algorithm

is known as the extended Kalman filter, see Anderson and Moore (1979) for a more formal

derivation. The quasi-loglikelihood function is obtained by inserting the values vt and Ft,

defined below (14), into the loglikelihood (7). We then maximize the quasi-likelihood to

obtain estimates for ψ. Estimates of the latent Nelson-Siegel factors, the loading parameter

λt and the GARCH variance ht (or gt) are based on the filtered state estimate at|t.
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4 Data and Empirical Findings

For our empirical analysis of yield curves we consider the unsmoothed Fama-Bliss zero-

coupon yields dataset, obtained from the CRSP unsmoothed Fama and Bliss (1987) forward

rates. We analyze monthly U.S. Treasury yields with maturities of 3, 6, 9, 12, 15, 18, 21,

24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months over the period from January 1972 to

December 2000. This dataset is the same as the one analyzed by Diebold, Rudebusch, and

Aruoba (2006) and Diebold and Li (2006) who provide more details on its construction.

[insert Table 1]

Table 1 provides summary statistics for our dataset. For each maturity, we report mean,

standard deviation, minimum, maximum and some autocorrelation coefficients. We also

present the statistics for proxies of the level, slope and curvature of the yield curve, see

the discussion in Section 2.1. The summary statistics reveal that the average yield curve is

upward sloping. Volatility decreases by maturity, with the exception of the 6-month being

more volatile than the 3-month bill. Yields for all maturities are persistent, most notably for

long term bonds. However, with a first-order autocorrelation of 0.970, the 3-month bill is also

highly persistent. The level, slope and curvature proxies are persistent but to a lesser extent.

The curvature and slope proxies are least persistent given the twelfth-order autocorrelation

coefficients of 0.259 and 0.410, respectively.

4.1 DNS: baseline dynamic Nelson-Siegel model

We have been able to estimate the baseline DNS model with parameter estimates that are

almost identical to those in Diebold, Rudebusch, and Aruoba (2006, Table 1, p.316). A

slight difference stems from our restriction of a stationary VAR process for the factors, see

Section 2.2. The factor loadings parameter λ is estimated as 0.0778, with a standard error of

0.00209. The high significance of this estimate confirms that interest rates are informative

about λ while small changes in the loadings have a significant effect on the likelihood value.

[insert Table 2]

Table 2 reports sample means and standard deviations of filtered errors. The filtered

errors are defined as the difference between the observed yield curve and its filtered estimate,
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obtained from the Kalman filter. We find that in particular the 3-month rate is difficult to

fit: it has the highest mean filtered error. The standard deviations reported in Table 2

indicate that the bonds with intermediate maturity are filtered most accurately.

4.2 DNS–TVL: time-varying factor loadings

To obtain some indication whether the λ parameter varies over time, we consider the baseline

model for four equally sized subperiods that cover the full sample. The four estimates of

λ for the consecutive subperiods are 0.0397, 0.126, 0.0602 and 0.0695. The corresponding

standard errors are sufficiently small to conclude that the four λ estimates are distinct from

each other (except for the last two subsamples). This finding provides some evidence that

the assumption of constant factor loadings over time does not necessarily hold.

[insert Figure 1]

Next we consider the DNS model by treating the factor loadings parameter λ as a latent

factor that is modeled jointly with the other factors by a VAR process, see Section 3.1. We

estimate the coefficients of this model and obtain filtered estimates of both the three yield

factors and the time-varying λ using the extended Kalman filter discussed in Section 3.3.

Panel (A) of Figure 1 presents the filtered estimates of the factor loadings parameter λ. The

λ estimates in 1974 are particularly high whereas at the end of the 1970’s and the beginning

of the 1980’s the estimates are rather volatile. Although many changes occur in the early

part of the sample, the changes in the late 1990s are also pronounced. Since both slope

and curvature of the yield depend on λ, we conclude that sufficient evidence is provided of

significant changes in the characteristics of the yield curve over time.

[insert Table 3]

Parameter estimates of the DNS model with λ as a latent factor are discussed in Section

4.4. Here we focus on the fit of the model. Table 2 enables comparisons, for each maturity,

between the sample means of the filtered errors for the DNS and DNS–TVL models. For

13 out of the 17 maturities the mean filtered error is lower. This is particularly the case

for short maturities. The standard deviations of the filtered errors are lower for 11 out of
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the 17 maturities. Table 3 reports the performance of the DNS models by presenting values

for the loglikelihood, the Akaike Information Criterion (AIC) together with the likelihood-

ratio (LR) test for model improvement. When comparing the loglikelihood values between

the DNS and DNS-TVL models, the difference of 300 is convincing by any means. This is

confirmed by the AIC and LR values. The results therefore provide sufficient evidence of a

highly significant improvement in the fit of the DNS–TVL model over its baseline version.

4.3 DNS–GARCH: time-varying volatility

The second modification of the DNS model is to allow for a common time-varying volatility

component in the observation disturbances using the GARCH specification discussed in

Section 3.2. The details of estimation are discussed in Section 3.3. Panel (A) of Figure 2

presents the filtered estimates of the common volatility. It shows that the common volatility

is particularly high in the early years of the 1980’s while from the end of the 1980s onwards

the volatility is low and rather constant over time. The latter finding may suggest that after

the publication of the Nelson and Siegel (1987) paper, their method has become the default

of practitioners to price the cross-sections of yields which may have had a dampening effect

on volatility. However, low volatility in a prolonged period from the mid-1980’s has also

been detected for time series of US Inflation, see the discussion in Stock and Watson (2007).

[insert Figure 2]

Table 2 reports the mean of the filtered errors for the model with GARCH and this

mean is lower for 15 out of the 17 maturities when compared to those for the baseline

DNS model. Only the 72 and 120-month bonds have a higher mean in the DNS–GARCH

model. Furthermore, the standard deviations of the filtered errors of the DNS–GARCH

model is lower for 12 out of the 17 maturities. In Table 3 we compare loglikelihood and AIC

values of the DNS–GARCH model with those of the baseline DNS model. Similarly to the

DNS–TVL model, we find a highly significant improvement in the loglikelihood value of the

DNS–GARCH model over the baseline model. The likelihood increase and the AIC decrease

are even higher than in the case for the DNS–TVL models. It indicates that most gains in

describing the yield curve in this dataset are obtained by introducing time-varying volatility.
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We also consider the DNS–GARCH model for treating volatility in ηt, the innovations of

the factors in (4). In this specification, the GARCH process is loaded onto the level, slope

and curvature factors while it is indirectly loaded onto the observed yields via βt. Empirical

support for this specification is weak, the GARCH parameter estimates indicate that the

common volatility component is close to a constant while the other parameter estimates are

similar to those obtained for the DNS model. The loglikelihood increase of 14.5 reported in

Panel (B) of Table 3 is relatively small but it is significant. However, we obtain stronger

support for a common GARCH component in the observation disturbances in εt. In the

latter case, we can test whether the GARCH loadings are linear combinations of the factor

loadings via the restriction Γ = Λ(λ)w where w is unknown and needs to be estimated.

The resulting loglikelihood increase of 92 compared to the baseline model is significant but

moderate when compared to the increase obtained by the unrestricted DNS–GARCH model.

4.4 DNS–TVL–GARCH: time-varying loadings and volatility

Given the encouraging initial results of the last two subsections, we next discuss in more

detail the estimation results presented in Table 4 for the DNS–TVL–GARCH model, the

DNS model with both time-varying factor loadings and volatility. In Table 2, the means

and standard deviations of the filtered errors for the full model specification are given. In

comparison with the baseline DNS model, we observe that the filtered error mean is lower

for 14 out of 17 maturities. Although this improvement is slightly less than for the DNS–

GARCH model, we also have 14 error series that have smaller standard deviations compared

to the baseline model. Such improvement has not been obtained by the other DNS models.

The loglikelihood and AIC values reported in Panel (A) of Table 3 for the full model

show strong significant improvements compared to the baseline DNS model. When we

benchmark the values against models with only time-varying factor loadings or only time-

varying volatility, we also obtain significant improvements. We therefore conclude that

both model extensions significantly contribute to improvements in the DNS model fit. The

GARCH extension provides the most significant improvement.

Panel (A) of Figure 1 presents the filtered λ estimates obtained from the DNS–TVL–

GARCH model where λ is treated as a latent factor. The λ estimates are similar to the
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DNS–TVL model. Panel (B) presents the loadings for slope and curvature that are obtained

using the minimum and maximum value of the estimates of λ. It shows clearly that the

loadings can differ significantly over time. The current model specification provides this

flexibility. In Panel (A) of Figure 2 the filtered estimate of the common GARCH component

is displayed for the DNS–TVL–GARCH model. The volatility estimates are similar to the

DNS–GARCH model. However, in the period at the end of the 1980’s, the estimates of both

λ and the common volatility are different when compared to the single DNS extensions. It

is interesting to observe that for this period the filtered λ estimates are lower compared to

the DNS–TVL model. The sharp increases in the yields in this period are explained more

accurately by a common GARCH component than a time-varying loading parameter λ.

[insert Table 4]

In Table 4 we report a selection of the parameter estimates for the DNS-TVL-GARCH

model. We first focus on the estimate of the VAR coefficient matrix Φ for βt, with the four

latent factors, which is reported in Panel (A) of Table 4. When compared to the estimates

of the baseline DNS model, reported by Diebold, Rudebusch, and Aruoba (2006, Table

1, p.316), the inclusion of λ as a latent factor mostly affect the dynamics of the slope and

curvature. A new empirical finding is the high persistence of the time-varying factor loadings

parameter λ. The results also reveal that the curvature factor depends heavily on the factor

loadings parameter while, compared to the baseline model, it is less persistent and has a

higher variance. The factor loadings parameter λ depends heavily on the (lagged) slope and

curvature factors. The estimated variance matrix Ση is reported in Panel (B). Although

the four innovation series for the factors are all correlated, the strong negative correlation

between the curvature factor and the λ factor suggests a substitution effect.

The estimates of the GARCH parameters are presented in Panel (C) of Table 4. Since we

estimate all elements in loading vector Γ, the constant in the GARCH specification cannot be

identified and is kept at a fixed small value. The remaining estimates for the coefficients γ1

and γ2 are significant and they have similar values as the ones for the DNS–GARCH model

(not reported here). The estimates of the elements in Γ are presented graphically in Panel

(B) of Figure 2. The estimated loadings are displayed by a line-plot against the maturity

length. Although the loadings are quite smooth against maturity, it is interesting to find that
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the maturities of 15 and 18 are relatively less subject to the common GARCH component

while the short maturities are most affected by GARCH. When the estimated loadings in Γ

are interacted with the GARCH component, we obtain the time-varying volatility for each

maturity. Panel (C) in Figure 2 displays the volatility process for a selection of maturities.

[insert Figure 3]

In Figure 3 we compare the filtered latent factors obtained from the DNS–TVL–GARCH

model with those from the baseline model and their data-based proxies. The level factors

are presented with the 120 month yield, the slopes with the spread of 3 month over 120

month yields and the curvatures with the 24 month yield minus the 3 and 120 month yield.

The estimated factors from both models describe the data-based proxies equally well. To

highlight the differences in fit of our model extensions, the bottom plots in each panel of

Figure 3 present the differences of the factors between the DNS and DNS–TVL–GARCH

models. The differences are most pronounced for the slope and curvature factors, particularly

in the 1973-1974, 1978-1983 and 1991-1994 periods. It confirms the findings reported in Table

4 from which we learn that the dynamics for slope and curvature have been most affected

by our extensions when compared to the baseline DNS model.

4.5 Robustness of empirical results

In this section we study the robustness of our results in three ways: (a) comparison with

regression results; (b) model with time-varying splines; (c) results based on a different sample.

(a) Results based on regression. When the VAR specification is discarded in the

DNS model, the original Nelson and Siegel (1987) model (2) is obtained and the factors level

β1t, slope β2t and curvature β3t can be estimated for each period t using standard regression

methods. In case λ is treated as unknown, it can be estimated by nonlinear least squares

(NLS), see Diebold and Li (2006). For a given estimate of λ, the factors and the constant

variance σ2
t in (2) can be estimated by ordinary least squares (OLS).

In Panel (A) of Figure 4, the NLS estimates of λ in the Nelson-Siegel model are displayed

(as dots) together with the estimates of factor β4t in the DNS–TVL–GARCH model (solid

line) as obtained from the methods described in Section 3.3. The individual NLS estimates

are well represented by the estimated fourth factor. In some cases, the λ parameter in the
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Nelson-Siegel framework cannot be estimated accurately since the estimation relies on 17

observations only. The analysis based on the DNS–TVL–GARCH model provides estimates

of λ using current and past observations. The resulting estimates are therefore based on more

data and become more stable as a result. However, the DNS–TVL–GARCH specification is

sufficiently flexible to provide an adequate representation of the changes in λ over time.

The dots in the graph of Panel (B) are the OLS estimates of the constant variance σ2
t

in the Nelson-Siegel model (2) with λ fixed at 0.0609 as in Diebold and Li (2006). The

estimated common GARCH component of the DNS–TVL–GARCH model is also presented

in this graph (with scale adjustment). It is encouraging that the estimated common GARCH

component provides an accurate description of the time-varying volatility in the time series

of yields. Deviations between the two estimates can be detected at the end of the 1980’s.

(b) Results based on time-varying spline functions. To verify that our empirical

findings are not specific to a particular model specification, we next consider λ and the

common variance as spline functions of time in the DNS model. In this specification, the

model is time-varying and linear, conditional on a set of knot positions (known a-priori in

the analysis) and a corresponding set of unknown coefficients. Parameter estimation can be

based on the standard Kalman filter methods of Section 2.3. When more knots are chosen,

the time-varying smooth functions becomes more flexible. Initially we use spline functions

based on five knots which are equally spaced over the time-horizon of the sample.

From the empirical results obtained by a model with a spline function for λ, it has become

evident that the factor loadings parameter λ is not constant over time. The LR test statistic

indicates that the model with a spline function for λ improves the fit significantly compared

to the baseline model.By increasing the number of knots, the time-varying λ estimates come

closer to those obtained from the DNS-TVL model and displayed in Panel (A) of Figure 1.

Furthermore, we have considered a spline function for the time-varying common volatility

component in the observation disturbances. The positions of the five knots are equally

spaced over the time-horizon. The model fit improves significantly for this specification

when compared to the baseline model. For this model the estimated volatility is high in the

period between 1980 and 1987. Thereafter the variance becomes constant for all maturities.

When more knots are introduced, the estimated spline function for the variance gets closer

to the estimated GARCH component as displayed in Panel (A) of Figure 2.
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(c) Results based on a different sample. From the results presented in Panels

(A) of Figures 1 and 2 we have learned that the DNS–TVL–GARCH model particularly

captures the variations in both λ and the volatility before 1987. It is therefore interesting

to investigate whether the DNS–TVL–GARCH model also provides improvements in model

fit for the data-set after 1987. For this purpose, we have re-estimated the baseline DNS

model and its extensions for the sub-sample indicated by >1987. The results reported in

Panel (A) of Table 3 are reproduced for the sub-sample >1987 in the lower section of Panel

(B). We are encouraged by the empirical result that the model fit has increased for the TVL

and GARCH extensions of the DNS model based on the >1987 sample. The significant

improvements for the GARCH extension of the DNS model are pronounced and most likely

due to the volatility changes in the initial period after 1987 and in the middle of the 1990’s.

5 Conclusion

The Nelson-Siegel framework provides means for an effective time series analysis of yield

data. In this paper we propose two extensions for the dynamic Nelson-Siegel (DNS) model

of Diebold, Rudebusch, and Aruoba (2006) where the level, slope and curvature of the yield

are treated as dynamic latent factors and modeled by a VAR process. The factor loadings in

the DNS model depend on a single parameter that is usually taken as fixed. We show that

the factor loading parameter can be estimated accurately from the data. It implies that the

data can be highly informative about the factor loadings. Our first contribution concentrates

on the question whether the factor loading parameter is constant over time. For this purpose

we treat the loading parameter as the fourth latent factor in the DNS model. This nonlinear

extension of the DNS model leads to a significant improvement in model fit. Next we turn

our attention to the volatility pattern in each of the maturities and we focus on the question

whether it is constant over time. For this purpose we introduce a common GARCH volatility

component in the DNS model. The common volatility component is multiplied by a loading

parameter for each maturity. The GARCH extension of the DNS model provides an even

more significant improvement in model fit. The empirical results are obtained for a standard

dataset that is analyzed by others in the literature. We have given evidence that our empirical

results are robust against alternative model specifications and different sample choices. The

general framework of the DNS model allows other modifications for future research.
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Table 1: Summary Statistics
The table reports summary statistics for U.S. Treasury yields over the period 1972-2000. We examine
monthly data, constructed using the unsmoothed Fama-Bliss method. Maturity is measured in months. For
each maturity we show mean, standard deviation (Std.dev.), minimum, maximum and three autocorrelation
coefficients, 1 month (ρ̂(1)), 1 year (ρ̂(12)) and 30 months (ρ̂(30)).

Summary Statistics for each Maturity
Maturity Mean Std.dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)
3 6.851 2.695 2.732 16.020 0.970 0.700 0.319
6 7.079 2.702 2.891 16.481 0.972 0.719 0.355
9 7.201 2.679 2.984 16.394 0.972 0.726 0.378
12 7.302 2.602 3.107 15.822 0.971 0.729 0.394
15 7.408 2.548 3.288 16.043 0.973 0.737 0.415
18 7.481 2.532 3.482 16.229 0.974 0.743 0.431
21 7.544 2.520 3.638 16.177 0.975 0.747 0.442
24 7.558 2.474 3.777 15.650 0.975 0.745 0.450
30 7.647 2.397 4.043 15.397 0.975 0.755 0.470
36 7.724 2.375 4.204 15.765 0.977 0.761 0.480
48 7.861 2.316 4.308 15.821 0.977 0.765 0.499
60 7.933 2.282 4.347 15.005 0.980 0.779 0.514
72 8.047 2.259 4.384 14.979 0.980 0.786 0.524
84 8.079 2.215 4.352 14.975 0.980 0.768 0.526
96 8.142 2.201 4.433 14.936 0.982 0.793 0.535
108 8.176 2.209 4.429 15.018 0.982 0.794 0.540
120(level) 8.143 2.164 4.443 14.925 0.982 0.771 0.532
slope 1.292 1.461 -3.505 4.060 0.929 0.410 -0.099
curvature 0.121 0.720 -1.837 3.169 0.788 0.259 0.076
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Table 2: Filtered Errors of Model Extensions
The table reports the filtered errors from the four Nelson-Siegel latent factor models we estimate. The filtered
errors are defined as the difference between the observed yield curve and its filtered estimate, obtained from
the Kalman filter. The Baseline model corresponds to the baseline dynamic Nelson-Siegel latent factor model
with constant factor loadings and volatility (DNS). The Time-Varying Factor Loading model corresponds
to the model with λ added to the state (DNS–TVL). The Time-Varying Volatility model corresponds to
the model with a common GARCH component for the volatility (DNS–GARCH). The Both Time-Varying
model corresponds to the model with the factor loadings parameter added to the state and the common
GARCH component for volatility (DNS–TVL–GARCH). For each maturity we show mean and standard
deviation (Std.dev.). We summarize these per model with three statistics: the mean, median and number of
maturities for which the absolute value is lower than that of the baseline model (#Lower).

Filtered Errors (in basis points)
Both

Baseline Time-Varying Time-Varying Time-Varying
Model Factor Loading Volatility DNS–TVL
DNS DNS–TVL DNS–GARCH –GARCH

Maturity Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.
3 -12.63 22.37 -2.87 14.15 -7.61 21.88 -3.29 16.02
6 -1.34 4.87 0.19 1.99 0 0 0.17 0.92
9 0.51 8.13 -0.95 7.54 0.01 9.73 -0.77 7.9
12 1.32 9.89 -0.89 9.46 -0.6 10.53 -1.14 9.61
15 3.72 8.76 1.71 8.29 0.16 5.83 -0.06 5.84
18 3.63 7.22 2.15 6.38 0.72 4.18 0.63 3.73
21 3.26 6.43 2.39 5.82 1.45 6.15 1.87 6.19
24 -1.39 6.33 -1.69 7 -0.87 7.38 -0.66 6.71
30 -2.68 5.98 -2.11 6.35 -1.5 6.42 -1.41 6.05
36 -3.29 6.6 -2.22 6.71 -1.21 5.71 -1.37 5.74
48 -1.83 9.67 -0.52 9.19 1.11 7.6 0.78 7.86
60 -3.29 7.98 -2.3 7.15 -0.79 5.58 -1.46 6.84
72 1.94 9.02 2.41 8.68 2.61 9.01 2.18 9
84 0.68 10.18 0.59 10.6 0.21 11.05 0.58 10.84
96 3.51 9.15 2.9 9.9 1.84 8.83 1.66 8.75
108 4.24 13.5 3.16 13.22 -0.54 7.81 0.48 8.89
120 -1.33 16.34 -2.82 16.43 -4.09 14.7 -3.17 15.82
Mean -0.29 9.55 -0.05 8.76 -0.54 8.38 -0.29 8.04
Median 0.51 8.76 -0.52 8.29 0 7.6 -0.06 7.86
#Lower 13 11 15 12 14 14
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Table 3: Loglikelihood and AIC of Model Extensions
Panel A reports the loglikelihood and Akaike Information Criterion (AIC) for the various model extensions
proposed. The Baseline model corresponds to the baseline dynamic Nelson-Siegel latent factor model with
constant factor loadings and volatility (DNS). The Time-Varying Factor Loadings model corresponds to
the model with λ added to the state (DNS–TVL). The Time-Varying Volatility model corresponds to the
model with a common GARCH component for the volatility (DNS–GARCH). The Time-Varying Loadings
and Volatility model corresponds to the model with the factor loadings parameter added to the state and
the common GARCH component for volatility (DNS–TVL–GARCH). In Panel B we report the loglikelihood
and AIC for various alternative models and for our extensions estimated only for the period after 1987.

Panel A: Performance of Model Extensions
Loglikelihood AIC LR-test vs. Baseline

DNS–baseline 3184.6 -6297.1
DNS–TVL 3484.9 -6875.7 600.6∗∗

0.00

DNS–GARCH 3657.3 -7204.7 945.6∗∗
0.00

DNS–TVL–GARCH 3766.8 -7401.7 1164.6∗∗
0.00

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance

at the 1% level or less. The probability H0 is accepted is reported below the test-statistic.

Panel B: Alternative Models and Results for Post-1987 Period
Loglikelihood AIC LR-test vs. Baseline

Alternative Model Specifications

DNS–GARCH (in ηt) 3199.1 -6316.2 29.1∗∗
0.00

DNS–GARCH (Γ = Λ(λ)w) 3276.6 -6471.2 184.1∗∗
0.00

Models Estimated for Post-1987 Period

DNS–baseline (>1987) 3041.7 -6011.4
DNS–TVL (>1987) 3213.5 -6333.0 343.6∗∗

0.00

DNS–GARCH (>1987) 3544.3 -6978.6 1005.2∗∗
0.00

DNS–TVL–GARCH (>1987) 3668.5 -7205.0 1253.6∗∗
0.00

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance

at the 1% level or less. The probability H0 is accepted is reported below the test-statistic.
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Table 4: Estimates of Latent Factors VAR Model and GARCH Process
The table reports the estimates of the vector autoregressive (VAR) model for the latent factors and the
GARCH parameter estimates. The results shown correspond to the latent factors of the Nelson-Siegel latent
factor model with the time-varying factor loadings parameter added to the state and a common GARCH
component for the volatility (DNS–TVL–GARCH). Panel A shows the estimates for the constant vector µ
and autoregressive coefficient matrix Φ, Panel B shows the estimates for the covariance matrix Ση, Panel C
the estimates for the common GARCH process.

Panel A: Constant and Autoregressive Coefficients of VAR
Levelt−1 Slopet−1 Curvaturet−1 Loadingt−1 Constant (µ)

Levelt (β1,t) 0.994∗∗
0.00832

0.0497∗∗
0.016

−0.0287∗
0.0135

0.0369
0.0437

7.82∗∗
1.24

Slopet (β2,t) −0.0118
0.0133

0.931∗∗
0.0298

0.0149
0.0255

−0.0165
0.0629

−1.63∗∗
0.409

Curvaturet (β3,t) −0.0308
0.0338

0.198∗∗
0.0646

0.658∗∗
0.0449

0.878∗∗
0.17

0.443
0.392

Loadingt (λt) 0.0179
0.00948

−0.0555∗∗
0.0177

0.0734∗∗
0.0165

0.585∗∗
0.0639

−2.37∗∗
0.143

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance at the 1%

level or less. The standard errors are reported below the estimates.

Panel B: Variance Matrix of VAR
Levelt (β1,t) Slopet (β2,t) Curvaturet (β3,t) Loadingt (λt)

Levelt (β1,t) 0.0988∗∗
0.00899

−0.0445∗∗
0.0116

0.0986∗∗
0.0367

−0.00393
0.0157

Slopet (β2,t) 0.237∗∗
0.0365

0.0596
0.0537

0.0595∗∗
0.0203

Curvaturet (β3,t) 1.6∗∗
0.22

−0.302∗∗
0.0638

Loadingt (λt) 0.188∗∗
0.0265

An asterisk (*) denotes significance at the 5% level or less and two asterisks (**) denote significance at the 1%

level or less. The standard errors are reported below the estimates.

Panel C: GARCH Parameters
γ0 γ1 γ2

Estimate 0.0001
NA

0.471∗∗
0.118

0.506∗∗
0.118

An asterisk (*) denotes significance at the 5% level or

less and two asterisks (**) denote significance at the

1% level or less. The standard errors are reported

below the estimates.
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Figure 1: Time-Varying Factor Loadings Parameter Added to State
In this figure we present the filtered time series of the factor loadings parameter λ and the slope and curvature
loadings using the minimum and maximum value of the filtered λ. In Panel (A) we show the filtered time
series for both the model with the factor loadings parameter added to the state (DNS–TVL, dotted line) and
the model with both the time-varying factor loadings parameter added to the state and a common GARCH
component for the volatility (DNS–TVL–GARCH, solid line). In Panel (B) we show the slope and curvature
loadings using the minimum and maximum value of the filtered λ for the DNS–TVL–GARCH model.
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Figure 2: Time-Varying Volatility
In this figure we present the time-varying volatility. In Panel (A) we plot the time varying volatility for both
the model with a common GARCH volatility component (DNS–GARCH, dotted line) and the model with
both time-varying factor loadings and a common GARCH component for the volatility (DNS–TVL–GARCH,
solid line). In Panel (B) we show the loadings, for each maturity, of the common GARCH process in the
DNS–TVL–GARCH model. Panel (C) shows the estimated volatility for the DNS–TVL–GARCH model.
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Figure 3: Level, Slope and Curvature
This figure reports the level, slope and curvature as obtained from the Nelson-Siegel latent factor model with
both time-varying factor loadings and volatility (DNS–TVL–GARCH). Panels (A), (B) and (C) report the
level, slope and curvature respectively together with their proxies from the data. For the level this is the
120 month treasury yield, for slope this is the spread of 3 month over 120 month yields and for curvature
this is twice the 24 month yield minus the 3 and 120 month yield. In addition we show the filtered level,
slope and curvature for the baseline dynamic Nelson-Siegel model (DNS) and the difference compared to the
latent factors from the DNS–TVL–GARCH model (bottom plots in each panel).
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Figure 4: Time-Varying Extensions compared to NLS and OLS Analysis
In this figure we compare the time-varying factor loadings parameter and volatility component from the
DNS–TVL–GARCH model to output from the NLS and OLS analysis. We compare the time-varying factor
loadings parameter λ to estimates obtained from using NLS. The time-varying common GARCH volatility
we compare to the residual variance from the OLS model.
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(B) Common Time-Varying Volatility Component, compared to OLS
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