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Introduction 1-2

o Stationarity and Ergodicity of dynamic dependence models
= Main challenge for stability conditions: Nonlinearity
» No backwards subsitution scheme as in univariate GARCH or
CCC-MGARCH analysis
» Score is not bounded as in the univariate case (cf. Andres and
Harvey (2012); Harvey and Sucarrat (2012) )
» Temporal dependence in scores as opposed to independent
gamma or beta variates (dito)
@ As in the univariate GAS case (cf. Blasques, Koopman and
Lucas (2012)), use conditions put forward by Straumann and
Mikosch (2006).
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Introduction 1-3

Setting

= Consider the scale model
Yt = h(ft; /l)Ut
frii1 = w(0) + a(0)si(f;; A) + B(O)f;.

= {ui} ~ pua(ug) iid. with E;_¢[u;] = 0 and Var;_1[u;] =1
= A bivariate example:

[ o1(fi; 2) 0 1 0
h(ft’/l) o 1t0t O'Q,t(ft;/l) )( p(ft;/l) \/1 —p(ft;/l)z ’

where oj(f;; 1) = exp(fi;) for i € {1,2} and
p(ft; /l) = tanh(fg,,).
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Theoretical properties 2-4

Represention of time-varying parameters

T T
i1 = > Bo+p T+ Y Basci(fid) (1)
i=0 i=0

o Time-invariant if it exists as T — .

= If 8 has modulus greater than 1, the first term in (1) explodes
as T — oo.

= The convergence of last term in (1) is hard to explicitly
compute due to the nonlinearity inside s;.

= Covariance stationarity: E[y;] = 0 and E[y:y;, ;] = 0 for i # 0.
= If elements of the variance matrix are affine in f;, then {y;} is
covariance stationary iff 8 has modulus less than 1.
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Theoretical properties

Straumann and Mikosch (2006) revisited

@ Stochastic recurrence equations approach:
firr = ¢1(f:0) == w(0) + a(0)si(fi; 1) + B(O)fy ¥ teZ

@ Linear folding if s;(f; 1) = W(u;) fi:

T .
fro1 = (GW(UH) +.3)T+1 fir + wZ(aW(Ut—i) +:3)’
i=0

= A Stationarity and Ergodicity constraint on (a, ) is

E[Iog llaW (uy) +ﬂ||] < 0.

2-5
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Theoretical properties 2-6

Straumann and Mikosch (2006) revisited

@ Stochastic recurrence equations approach:

fH_1 = ¢t(ft; 9) = (.L)(g) + Q(G)St(ft; /l) +ﬁ(9)ft VteZ

= An essential Stationarity and Ergodicity constraint on 6 is

E|log sup llge(f;6) — ¢ (F O)

<o. @)
(LF)eFxF : faf* IIf = £||
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Theoretical properties 2-7

Constructive devices |

= Updating equation is in terms of y; (cf. Creal, Koopman and Lucas
(2011)), whereas stability conditions require fixing randomness.

@ Consider correlation modeling by y; ~ N(0, R(f;; 1)) with

. 1 (fi; 2)
R(f”ﬂ)_(/o(fz:ﬂ) ™ )

@ Let uy ~ N(0,1). Two possible, observationally equivalent
parametrizations for the scale matrix are

1 0
h(f”):[p(fr;a) 1—p<n;a)2) e

%(«/1 TN+ T D) 5 (NTFp( ) - T=p( )
s(NT+p( ) - VT=p(f D) 5(VT+p(f6 D) + VT -p(f: D))
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(Symmetric)

h(fy; 1) = [




Theoretical properties

Constructive devices Il

4 05 o0

KI< <[5 5] [= )b+
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Theoretical properties 2-9

Covering the space

@ In principle, any decompostion h(f;; 1) = (vy, v»)’, where
vi = (cos(a;), sin(a;))’ of R(f;; ) is possible as long as:
> vl = [lvell = 1,
» cos(ar —az) = p.
o The following statement helps us limit decompositions that are relevant for
different SE regions:

Proposition

Let h(f;; ) = h(f; 1)Q, where Q = Q(f; A) is an f,-independent orthogonal
matrix. If u; is Gaussian, the implied SE regions for h(f;; 1) and h(f;; 1) are
identical.
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Correlation models

What does a typical link look like?

\/1 - p(ftx ).)2U1’1U2’1 —p(ff, A)(Ug’t - 1)

firi =w+phi+a
1+ p(f; )2

Stationarity and ergodicity for correlation dynamics
Figure 1: Shapes of |3 + a5(f; 2)| as a random function of f



Correlation models 3-11

& Two-step supremum evaluation:

Definition
> Extremal score: s( (f() a,B, u,y), where
f[( ) — t (a/,ﬁ, u,y) = argsup; |8 + as;(f, ur)l.

> Upward extremal score: sé;*p) = sup;($:(f, u))

> Downward extremal score: si(n/f*) = inf(&(f, u)).

Remark

Calculation of the extremal score can be reduced to

Ao, B)(a,B) = Elog SL:p B+ aét(*)| = Elog SLpr(I,B + asé:;,)l, 1B+ asi(,;f*)l)

o Separates the effect of score from the static parameters («, 3)
o Computationally efficient
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Correlation models 3-12

Effect of constructive device

Figure 2: Stationarity and Ergodicity sufficiency regions for unit scaling
(a = 0) and different matrix decompositions
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Correlation models 3-13

Different models

—— Inverse information matrix scaling (a=1)
—— Inverse square root information matrix scaling (a=12)
Unit Scaling (a=0)

—lInverse information matrix scaling (a=1)
Inverse square root information matrix scaling (a=1/2)
Unit Scaling (a=0)

~—— Constant i

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

B B
(a) Symmetric root (b) Choleski root

Figure 3: Stationarity and Ergodicity sufficiency regions for different bivari-
ate correlation models
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Correlation models 3-14

Higher dimensional models

= Dynamic equicorrelation of Kelly and Engle (2012) has
R(f; ) = (1 = p(fy; ) In + p(fy; Do’
& The score has
Vi(fi; A) = pa(fi; A) (~U; Vi, (Ur) = 1) + pa(fi; 2) (=0’ Vp, , (u)uje = n).
where p3(f;; 2) and p4(f;; A) are two independent functions
— The score cannot be scaled to be independent of f;.
o] Unit scaling (S=1):

Vi(fi 1) = - %P(fﬁ ) (_U;Vpu,/l(ut) - ”) :
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Correlation models

08 L0

L0 08 06 04 02 UBU 02 0.4 06

Figure 4: Stationarity and Ergodicity regions for the multivariate Gaussian
equi-correlation model in n dimensions by the symmetric correlation matrix

decomposition.
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Conclusions 4-16

Main results

o Stationarity and ergodicity properties depend on the
constructive device (covered by symmetric matrix root)

@ Covariance stationarity is typically easier to characterize than
strict stationarity

@ Fat tails and cross-sectional dimension diminish the
Straumann-Mikosch region, for which SE can be guaranteed
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Appendix 5-17
Separation property

Scale model has the density

log py (yilfi; ) = log pua(h(fi; )" yt) — log | det(h(f;; 2))|
= V(f;; 1) = V(f;; 1)'vec (—Vpuyﬁ(ut)u; - I)
= Iy(fi; 2) = W(fi; A) (1, — vec(T)vec(1)’) W(f; ),

where

U(fi; A) = (1® h(f;; )~") avec(h(f; 2))/0f;
‘Z-pu,ﬁ = E[UTU; ® Vpu,/l(ut)vpu,/l(ut)/]‘
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Appendix 5-18

Analytical expression for the derivative of the
score

& It is sufficient to consider the class of observationally equivalent
decomposition matrices, parametrized by

et ) —  OS@UA)  sin(ao(ts )
SU = sin(i(f 1)) cos(ulo(fi )

with ¢(p) = arcsin(p) — ¢(p) and y(p) € C'(R,R).
& The first derivative of the score is given by

8 = T= P2 T=2 = )zlp0) - 5(1 =) + & - 2),
Z(p,y) == (Uf = U)psin(2y) + 2us Upp cos(2¢)
= V102 (2uuz sin(2y) — (&8 — u3) cos(2y)).

& ¢(p) == arcsin(p) © ( ) _
B y(p) := Jarcsin(p) & (Symmetric root) = y(p) = 1/(2+/1 - p?)
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Appendix 5-19

Analytical expression for the derivative of the
score

& It is sufficient to consider the class of observationally equivalent
decomposition matrices, parametrized by

et ) —  OS@UA)  sin(ao(ts )
SU = sin(i(f 1)) cos(ulo(fi )

with ¢(p) = arcsin(p) — ¢(p) and y(p) € C'(R,R).
& The first derivative of the score is given by

8 = T=p2(UNT=2 = )zlp0) - 5 (1 =) + & - 2),
Z(p,y) == (Uf = U)psin(2y) + 2us Upp cos(2¢)
= V102 (2uuz sin(2y) — (&8 — u3) cos(2y)).

@ ¥(p) := arcsin(p) < ( ) _
B ¢(p) := Jarcsin(p) & (Symmetric root) = v(p) = 1/(24/1 - p?)
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Appendix 5-20

Fat Tails
2 :
——Normal
——-t with 20 DoF
1.5 tmthm DZF'
-+t with 5 DoF
1r ——t with 3 DoF |

-1 -0.5 0 0.5 1

B

Figure 5: Stationarity and Ergodicity sufficiency regions for t,-distributed

errors (Choleski decomposition)
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Appendix 5-21

Characterizing the Straumann-Mikosch region

We observe
= Monotonicity (Uniqueness) of A(e,B) in the direction
h = (6 - sign(a), V1 - 62 - sign(B))’, where 6 € [0,1]
o Asymmetry
= Convexity after using Jensen’s inequality
= Dimensionality diminishes the SE sufficiency region
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Appendix 5-22
Semi-analytic expression distributional driver

Define G as the distribution function of —u;Vp, , (ut), which in the
Gaussian case is x2(n):
o Ifa,B>0:

E Vi(f; A ! ! dG el dG
fs*lipRLBJra t(f; )'_Lo[ﬁ_g"(x_")] (X)+fn B dG(x)+

o 1
fmﬁm [Ea (x-n) -/3] dG(x).
o fae<0,8>0:

E Vi(f; A el (1 G " G
sup 5+ avi(1" =" [zn(x—n)—ﬁ] d (X)+fn+4ﬂ/aﬁd 0+

0 1
fn [ﬁ— Ea(x—n)] 4G(x).
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Appendix
Skewness

Level set at zero

AA(GB)
F ISP

Density

Figure 6: The effect of distributional asymmetry in the extremal score on

the SE region
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