Model

Joint and cond risk

SMP and EFSF

Conclusion

Conditional probabilities for euro area sovereign default risk

Andre Lucas, Bernd Schwaab, Xin Zhang

"Dynamic score models" conference, Tinbergen Institute Amsterdam, 17-18 Jan 2013 email: bernd.schwaab@ecb.int Disclaimer: Not necessarily the views of ECB, Eurosystem, or Riksbank.

We propose a **novel modeling framework** to infer **conditional** and **joint probabilities** for sovereign default risk from observed CDS.

Novel framework? Based on a *dynamic GH skewed-t* multivariate density/copula with time-varying volatility and correlations.

Multivariate model is sufficiently flexible to be **calibrated daily** to credit market expectations. Not an "official opinion".

Analysis is based on **Euro area** CDS data, daily from 2008 to end-2012. **Event study**: SMP/EFSF announcement & initial impact on risk.

- Sovereign credit risk: e.g. Pan and Singleton (2008), Longstaff, Pan, Pedersen, and Singleton (2011), Ang and Longstaff (2011).
- Risk contagion, see e.g. Forbes and Rigobon (2002), Caporin, Pelizzon, Ravazzolo, Rigobon (2012).
- Observation-driven time-varying parameter models, see Creal, Koopman, and Lucas (2011, 2012), Zhang, Creal, Koopman, Lucas (2011), Creal, Schwaab, Koopman, Lucas (2011), Harvey (2012).
- 4. Non-Gaussian dependence/copula/credit modeling, see e.g. Demarta and McNeil (2005), Patton and Oh (2011).

Conclusion

Empirical questions

 $(\mathbf{Q1})$ Financial stability information: Based on credit market expectations, what is ...

Pr(two or more credit events in Euro area)? Pr(i|j)-Pr(i), for any i,j? Spillovers, e.g. Pr(PT|GR) - Pr(PT|not GR)? Corr_t(i,j) at time t?

(Q2) Model risk: For answering (a), how important are parametric assumptions? *Normal* vs *Student-t* vs *GH skewed-t*.

(Q3) Event study: did the May 09, 2010 Euro area rescue package change risk dependence? How?

Model

Joint and cond risk

Conclusion

Copula framework

Sovereign defaults iff benefits (v_{it}) exceed a cost (c_{it}) , where

$$\mathbf{v}_{it} = (\boldsymbol{\varsigma}_t - \boldsymbol{\mu}_{\boldsymbol{\varsigma}}) \tilde{\boldsymbol{L}}_{it} \boldsymbol{\gamma} + \sqrt{\boldsymbol{\varsigma}_t} \tilde{\boldsymbol{L}}_{it} \boldsymbol{\epsilon}_t, \quad i = 1, ..., n,$$

 $\epsilon_t \sim N(0, I_n)$ is a vector of risk factors, \tilde{L}_{it} contains risk factor loadings, $\gamma \in \mathbb{R}^n$ determines skewness, $\varsigma_t \sim IG$ is an additional scalar risk factor for, say, *interconnectedness*.

A default occurs with probability p_{it} , where

$$p_{it} = \Pr[v_{it} > c_{it}] = 1 - F_i(c_{it}) \iff c_{it} = F_i^{-1}(1 - p_{it}),$$

where F_i is the CDF of v_{it} .

Focus on *conditional* probability $\Pr[v_{it} > c_{it} | v_{jt} > c_{jt}]$, $i \neq j$.

GH skewed-t dependence

$$y_t = \mu + L_t e_t, \quad t = 1, ..., T, e_t \sim \text{GHST}, \ \text{E}[e_t e_t'] = I_n,$$

$$p(y_t;\cdot) = \frac{v^{\frac{v}{2}}2^{1-\frac{v+n}{2}}}{\Gamma\left(\frac{v}{2}\right)\pi^{\frac{n}{2}}\left|\tilde{\Sigma}_t\right|^{\frac{1}{2}}} \cdot \frac{K_{\frac{v+n}{2}}\left(\sqrt{d(y_t)\cdot(\gamma'\gamma)}\right)e^{\gamma'\tilde{L}_t^{-1}(y_t-\tilde{\mu}_t)}}{(d(y_t)\cdot(\gamma'\gamma))^{-\frac{v+n}{4}}d(y_t)^{\frac{v+n}{2}}},$$

where

$$\begin{array}{lll} d(y_t) &=& v + (y_t - \tilde{\mu}_t)' \tilde{\Sigma}_t^{-1} (y_t - \tilde{\mu}_t), \\ \tilde{\mu}_t &=& -v / (v - 2) \ \tilde{L}_t \gamma, \\ \tilde{\Sigma}_t &=& \tilde{L}_t \tilde{L}_t' & \text{is scale matrix} \end{array}$$

If $\gamma = 0$, then GH skewed-t simplifies to Student's t density. If in addition $v^{-1} \rightarrow 0$, then multivariate Gaussian density. $\tilde{\Sigma}_t(f_t) = \tilde{L}_t(f_t)\tilde{L}_t(f_t)'$ is driven by 1st and 2nd derivative of the pdf. ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Time varying parameters: score

Important: first two derivatives are available in closed form.

$$abla_t = \partial \ln p(y_t; \tilde{\Sigma}(f_t), \gamma, v) / \partial f_t$$

$$= \frac{\partial \operatorname{vech}(\Sigma_t)'}{\partial f_t} \frac{\partial \operatorname{vech}(L_t)'}{\partial \operatorname{vech}(\Sigma_t)} \frac{\partial \operatorname{vech}(\tilde{L}_t)'}{\partial \operatorname{vech}(L_t)} \frac{\partial \ln p_{GH}(y_t|f_t)}{\partial \operatorname{vech}(\tilde{L}_t)}$$

$$= \dots$$

$$= \Psi_t' H_t' \operatorname{vec} \left\{ w_t y_t y_t' - \tilde{\Sigma}_t - \left(1 - \frac{v}{v-2} w_t\right) \tilde{L}_t \gamma y_t' \right\}$$

where
$$\Psi_t = \partial \operatorname{vech}(\Sigma_t) / \partial f'_t$$

 $H_t = \operatorname{messy}$
 $w_t = \frac{v+n}{2 \cdot d(y_t)} - \frac{k'_{\frac{v+n}{2}}\left(\sqrt{d(y_t) \cdot (\gamma'\gamma)}\right)}{\sqrt{d(y_t)/\gamma'\gamma}}; k'_a(b) = \frac{\partial \ln K_a(b)}{\partial b}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

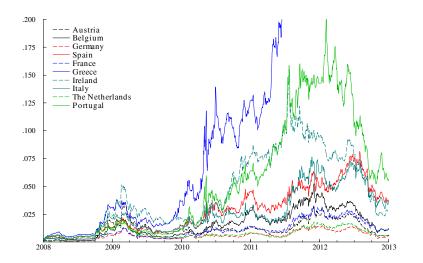
Time varying parameters: scaling

Scaling is by the inverse Fisher information matrix for a symmetric-t.

$$S_t = \left\{ \Psi'(I \otimes \tilde{L}_t^{-1})' \left[gG - \operatorname{vec}(I) \operatorname{vec}(I)' \right] (I \otimes \tilde{L}_t^{-1}) \Psi \right\}^{-1},$$

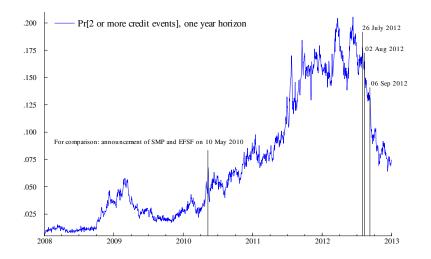
where

$$\begin{split} \Psi_t &= \partial \text{vech}(\Sigma_t) / \partial f'_t, \\ g &= (v+n)(v+2+n) \\ G &= \mathsf{E}[x_t x'_t \otimes x_t x'_t] \text{ for } x_t \sim \mathsf{N}(0, I_n) \end{split}$$

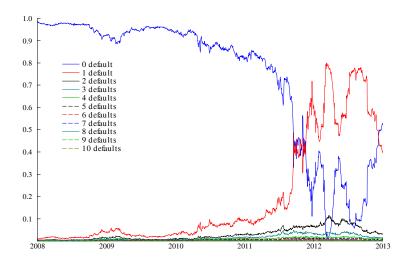

Extracting marginal pd's from CDS

CDS fee equates a premium leg and a default leg given a default intensity, see Duffie (1999), O'Kane and Turnbull (2003).

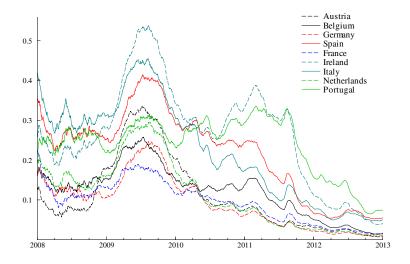
- We use a nonlinear solver to find the default intensity that matches E[PV premium leg] = E[PV default leg].
- Intensity and annual pd are nonlinearly related.
- Use 25% recovery rate and interest rate flat at 1%, ignore counterparty credit risk.
- Overall, not that difficult.


Conclusion

Marginal pd's from CDS

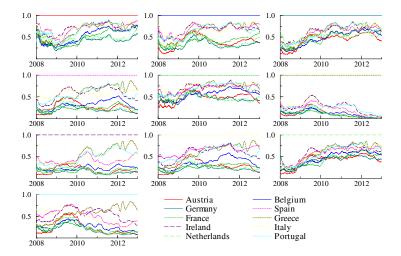

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Pr[2 or more credit events]



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The probability of k=0,1,2,... failures



Conditional pds: Pr(country i|GR)

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Conditional pds: Pr(all i | all j)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The May 09, 2010 package

Joint risk, Pr(i ∩ j)							
	Thu 06 May 2010			Tue 11 May 2010			
	PT	GR	DE	PT	GR	DE	
AT	1.1%	1.1%	0.6%	0.6%	0.7%	0.4%	
BE	1.2%	1.4%	0.7%	0.9%	1.0%	0.6%	
DE	1.0%	1.1%		0.8%	0.8%		
ES	3.0%	3.3%	0.9%	1.5%	1.6%	0.6%	
FR	1.0%	1.0%	0.6%	0.8%	0.9%	0.6%	
GR	4.8%		1.1%	2.3%		0.8%	
IR	2.6%	3.1%	0.8%	1.4%	1.8%	0.6%	
IT	2.8%	2.9%	0.9%	1.4%	1.5%	0.6%	
NL	0.9%	0.9%	0.5%	0.6%	0.7%	0.5%	
РТ		4.8%	1.0%		2.3%	0.8%	
Avg	2.0%	2.2%	0.8%	1.1%	1.2%	0.6%	

The May 09, 2010 package

Conditional risk, Pr(i j)								
	Thu 06 May 2010			Tue 11 May 2010				
	PT	GR	DE	PT	GR	DE		
AT	17%	8%	53%	22%	10%	46%		
BE	20%	10%	60%	32%	15%	61%		
DE	16%	8%		26%	12%			
ES	49%	25%	78%	50%	23%	63%		
FR	16%	8%	58%	28%	12%	62%		
GR	78%		99%	80%		86%		
IR	43%	23%	75%	49%	26%	68%		
IT	45%	22%	77%	49%	21%	64%		
NL	14%	7%	49%	21%	10%	50%		
РТ		36%	91%		33%	81%		
Avg	33%	16%	71%	40%	18%	64%		

Bottom line: joint risks $\downarrow \downarrow$, but dependence \uparrow . "Firewall"-analogy?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction Model Joint and cond risk SMP and EFSF Conclusion

We proposed a **novel modeling framework** to infer **conditional** and **joint probabilities** for sovereign default risk from observed CDS.

Based on a *dynamic skewed-t* multivariate density with time-varying volatility and correlations. Application to euro area CDS.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Model	Joint and cond risk	SMP and EFSF	Conclusion		
Thank you						

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●