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1 Introduction

A key concern in empirical model building is model stability. Hansen (2001) provides an

overview of a large number of different parameter stability tests found in the literature, including

standard tests such as the Chow (1960) break test, the supremum F -tests of Andrews (1993),

and the weighted F -tests by Andrews and Ploberger (1994).

When testing for parameter stability, the model under the alternative hypothesis of pa-

rameter instability can take many different forms. For example, there might be one or more

deterministic structural breaks in the parameters of a model as in, for example, Vogelsang and

Perron (1998), Bai and Perron (2003), Perron (2006), and Qu and Perron (2007); the param-

eters might exhibit regular regime switches as in Hamilton (1989); or the parameters might

evolve continuously over time, either in a parameter driven (state space) framework such as

Harvey (1989), Bauwens and Veredas (2004), Shephard (2005), and Hafner and Manner (2012),

Durbin and Koopman (2012), or an observation driven framework such as Engle (1982), Boller-

slev (1986), Engle and Russell (1998), Davis et al. (2003), Patton (2006), and Creal et al.

(2013).

The goal of this paper is twofold. First, we develop a new test for parameter stability in non-

linear, non-Gaussian models against the generalized autoregressive score (GAS) alternative of

Creal et al. (2013). GAS models are a flexible class of observation driven time-varying parameter

models characterized by a parametric conditional observation density. As their likelihood is

available in closed form, likelihood based estimation and inference is straightforward. The

usefulness of the GAS framework to capture time-variation in parameters has been illustrated

in for example Creal et al. (2011) and Harvey (2013) for multivariate volatility and correlation

models, in Creal et al. (2014) for mixed measurement factor models, and in Oh and Patton

(2013) and De Lira Salvatierra and Patton (2013) for copula models. GAS models generalize

other well known observation driven time varying parameter models such as the GARCH model

of Engle (1982) and Bollerslev (1986) or the ACD model of Engle and Russell (1998). Moreover,

their out-of-sample forecasting accuracy is at par with that of comparable non-linear non-

Gaussian state space models; see Koopman et al. (2012). A parameter stability test against

the alternative of GAS dynamics can thus provide a useful signal that a static model is too

simplistic and needs to be augmented.

The Lagrange multiplier (LM) test we develop takes a highly intuitive form: it tests for

non-zero autocorrelations in the likelhood score of the static model. As such, it can be seen as

an omnibus diagnostic tool generalizing the familiar ARCH-LM test of Engle (1982) to settings

beyond time-varying volatility. The asymptotic distribution of the test easily follows by familiar
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results from White (1987). Moreover, similar to most omnibus LM diagnostic tests, the new

test can easily be computed by means of an auxiliary regression.

As a second goal of our paper, we investigate the finite sample properties of the new test in

relation to that of other familiar (and less familiar) tests from the literature. We consider linear

as well as non-linear models. Computational efficiency then becomes a concern, as estimating

an additional non-linear model is typically costly. This automatically favors the use of LM-

based test statistics. In particular, we consider the sup-LM tests of Andrews (1993), the test

against random walk parameter alternatives of Nyblom (1989), and the recent test against local

parameter driven time variation of Müller and Petalas (2010). Each of these tests is built with

an entirely different alternative time-varying parameter framework in mind than the GAS-based

test. All tests are applicable to both linear and non-linear settings.

The results of Müller and Petalas (2010) are particularly interesting for our paper. They

prove that a test against a parameter driven alternative is asymptotically locally optimal against

an alternative where the magnitude of the time variation in the unstable parameters shrinks

as the sample size grows. Their theoretical results are supported by numerical simulations; see

also Elliott and Müller (2006) for the case of linear models. We extend their results in several

directions. First, we consider a wider set of alternatives for parameter variation, including

deterministic regime switches, random walk parameters, and stationary parameter driven dy-

namics. Second, we pay attention to non-local alternatives. The theoretical results in Müller

and Petalas (2010) do not make clear predictions about the behavior of alternative testing

methodologies under non-local alternatives in finite samples. In particular, tests against other

than parameter driven alternatives might have a better overall performance in a finite sample

setting. In addition, the finite sample performance of the different testing procedures may

crucially depend on the type of data generating process under the alternative.

Our simulation experiment provides several interesting results. The new test against the

observation driven (GAS) alternative exhibits higher power for alternatives that display regu-

lar regime switches or non-local parameter driven time-variation. For parameter driven time

variation close to the null or for infrequent structural changes, the test of Müller and Petalas

(2010) performs best. For local time variation, the optimality of the Müller and Petalas (2010)

approach follows directly from their analytical results. Also the good performance in the setting

with infrequent breaks is in line with their simulation results, where they show how their test

typically performs similar to or better than the sup-LM test of Andrews (1993). If the size of

the time-variation is larger or more frequent, however, the new GAS-LM test against observa-

tion driven alternatives performs better. The new test’s power performance is also surprisingly

robust over alternative specifications of the data generating process, in contrast to most of its
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competitors.

The explanation of our findings follows from the construction of the different tests. The

GAS-LM test builds directly on the autocorrelations of the likelihood scores in the static model.

These autocorrelations can typically be estimated rather well even if the time varying parameter

in the unknown data generating process moves quickly. This explains the good performance of

the test in settings with many breaks or strong mean reverting parameter dynamics. The test

of Müller and Petalas (2010), by contrast, uses the unconditional volatility of the path of the

time varying parameter as its main ingredient. This path is estimated under a high persistence

assumption. If the true time varying parameter moves quickly, the estimated path typically

becomes almost constant, thus reducing the estimated volatility of the path and consequently

the power of the test. The same holds for the path estimated under GAS dynamics, but this

does not affect the GAS-LM test as the latter is not based on the volatility of the estimated path

of the time varying parameter. For slow time variation, the opposite holds and the likelihood

ratio (LR) perspective of the Müller and Petalas (2010) test results in a better performance of

the test compared to the LM based GAS test.

We apply all tests empirically to test for the stability of the parameters of loss given default

(LGD) models in a credit risk context. LGD is the fraction of the outstanding amount of a

loan or bond that is lost in case the company gets into default. The LGD is a key ingredient of

current financial risk management and regulation. Many financial industry credit risk models

for LGDs use static parameters. A prime example is the use of a static beta disribution for

LGDs. Such a modeling strategy is highly risky if the properties of LGDs actually vary over

time. For example, losses could be on average higher in situations where default risk is also

higher, thus exacerbating total expected losses defined as the probability of default times the

LGD. If such time-variation is a property of the data, it should be modeled and would typically

result in higher capital requirements for financial instututions. We use a panel data set of LGDs

for corporate bond data obtained from Moody’s to test for the presence of such time-variation.

The data set is non-standard and therefore provides an interesting example of the flexibility

of our testing approach. Using quarterly data, the number of LGD observations per quarter

varies over time. This follows directly from the fact that the LGD can only be observed in case

of a default, where the number of defaults varies over time. Assuming the LGDs are drawn

from a beta distribution with possibly time-varying parameters, all our tests strongly confirm

that the distributional properties of LGDs vary over time. In particular, we find that LGDs

were on average very low compared to the static model during the period leading up to the

2008 financial crisis, suggesting that the abundance of liquidity during this period not only

prevented firms from defaulting, but also mitigated the losses for those cases in which a default
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was unavoidable.

The remainder of this paper is set up as follows. In Section 2 we describe our new test

statistic as well as the main alternative tests from the literature. In Section 3 we describe

our Monte-Carlo experiment to study the finite sample properties of the tests and present the

simulation results. In Section 4, we apply the different tests to our empirical panel of corporate

bond loss fractions. Section 5 concludes. An online appendix to this paper holds additional

simulation results.

2 Testing frameworks for time-varying parameters

In this section we present our three different frameworks to test for parameter instability. Each

of these frameworks has been designed with a particular alternative in mind for the dynamic

behavior of the time-varying parameters. As we focus on tests that should be applicable to

non-linear models, we focus on Lagrange Multiplier (LM) type tests only. Although LM

tests are typically less powerful against specific alternatives than Wald or likelihood ratio type

tests, LM tests only require estimation under the null. In a non-linear, non-Gaussian setting,

this provides considerable advantages. Estimating non-linear models under the alternative can

prove cumbersome if not infeasible, for example, if one considers multiple break dates or if the

likelihood under the alternative is not known in closed form.

To fix the notation, we consider a dependent variable yt ∈ R
m for t = 1, . . . , T , where T

denotes the sample size; a vector of time-varying parameters ft ∈ F ⊂ R
k, and a vector of

static parameters δ ∈ D ⊂ R
n, where F and D denote the parameter space of the time-varying

and static parameter vectors, respectively.

2.1 Observation driven time-variation

In an observation driven framework, the time-varying parameter ft is driven by a deterministic

function of lagged dependent variables and contemporaneous or lagged exogenous variables.

The observation driven modeling framework has the advantage that the likelihood is available

in closed form and can easily be evaluated through a prediction error decomposition. This

leads to simple estimation and inference procedures. The main challenge in the observation

driven framework is to determine which function of the observations to choose as a driver for

ft. A general approach encompassing many popular non-linear, non-Gaussian dynamic models

is the generalized autoregressive score (GAS) model of Creal et al. (2013). GAS models use the

(scaled) score of the conditional observation density to drive the parameter ft through time. At

each time step, the dynamics of the time-varying parameter can be interpreted as a steepest-
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ascent or Gauss-Newton improvement, where we improve the local fit of the model by taking

into account the information in the most recent observation and its distribution. The GAS

framework encompasses the Gaussian GARCH model of Engle (1982) and Bollerslev (1986),

the ACD and ACI models of Engle and Russell (1998) and Russell (2001), the MEM model of

Engle and Gallo (2006) and Cipollini et al. (2012), models for Poisson counts in Davis et al.

(2003), and the Beta-t-GARCH model of Harvey (2013), among many others.

In the GAS(p, q) framework, the time-varying parameter follows the dynamic specification

ft+1 = (I− B1 − . . .−Bp)ω +

q∑
i=1

Aist−i+1 +

p∑
j=1

Bjft−j+1, (1)

where the elements of the vector ω and of the matrices Ai and Bj are static parameters for

i = 1, . . . , p and j = 1, . . . , q,

st := St · ∇f,t := St · ∂ ln p(yt|ft; δ)

∂ft
, (2)

with p(yt|ft; δ) the conditional observation density, and ∇f,t its score. The k × k matrix

St = S(ft; δ) scales the score by using, for example, a power of the Fisher information matrix

of the conditional observation density to account for the curvature of the score; see Creal et al.

(2013) for more details.

To develop the GAS-LM test, we draw the analogue with the ARCH-LM test of Engle

(1982) or the GARCH-LM test of Lee (1991). The ARCH(1)-LM test of Engle for the model

yt = x′
tβ + σtεt with εt ∼ (0, 1) tests the null of a constant variance against the alternative

σ2
t+1 = (1−A)ω + Aε2t = (1− A)ω + A(ε2t − σ2

t ) + Aσ2
t , (3)

such that under the alternative σ2
t+1 varies around the static level ω as driven by the scaled

score of a Gaussian density, ε2t − σ2
t . Under the null hypothesis, A = 0.

The LM test against a GAS alternative takes the same perspective as (3), but acknowledges

the fact that the time varying parameter ft may characterize a different distributional property

than the variance, and moreover that under the alternative the dynamics of ft are driven by

the score st of the conditional observation density rather than by the score (ε2t − σ2
t ) of the

Gaussian volatility model in (3). Similar to (3), we thus test the null of no parameter variation

against the GAS alternative

ft+1 = (I− A1 − . . .− Aq)ω +

q∑
i=1

Aist−i+1 +

q∑
i=1

Aift−i+1. (4)

Similar to (3), the time varying parameter ft varies under the alternative around its static level

ω. We can use the same arguments as in Lee (1991) to allow for different coefficients Bi (rather

than Ai) for the lags of ft−i+1 under the alternative.
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To define the LM test statistic, let �t(δ, ω, a) = ln p(yt|ft; δ) be the likelihood at time t,

where we suppressed the dependence of ft on the static parameters δ, ω, and a = vec(A1, . . . , Aq).

Define s̄p,t = vec(st, . . . , st−p+1)), where ιq ∈ R
q×1 is a vector of ones, and ⊗ is the Kronecker

product. Also let G ′
t = (∇′

δ,t,∇′
ω,t,∇′

ω,t ⊗ s̄′p,t−1), with ∇δ,t and ∇ω,t denoting the derivatives of

�t with respect to δ and ω, respectively. Following White (1987), the LM test for H0 : a = 0

versus the alternative H1 : a �= 0, is given by

LM = G ′H−1G, G =

T∑
t=1

Gt, H =

T∑
t=1

GtG ′
t, (5)

where all derivatives are evaluated at the maximum likelihood estimates under the null hy-

pothesis. As always, the covariance matrix H can be replaced by a robust long-term covariance

matrix if needed, i.e.,

H̃ =
T∑
t=1

t∑
τ=1

wT,t−τ (GtG ′
τ + GτG ′

t) ,

for some kernel weights wT,t−τ , see Andrews (1991).

Under the null and under standard regularity conditions, the GAS-LM test converges to

a χ2 distributed random variable with dim(a) degrees of freedom; see White (1987). The

asymptotic statistical theory of the GAS-LM test is therefore entirely standard, in contrast to

that of some alternative parameter stability tests.

Following Davidson and MacKinnon (1990), we can also write the LM test statistic as the

explained sum of squares of the auxiliary OLS regression

1 = (∇′
δ,t,∇′

ω,t,∇′
ω,t ⊗ s̄p,t−1)βLM + residual, (6)

where βLM is a vector of auxiliary regression parameters, and all derivatives are again evaluated

under the null. The regression interpretation of the GAS test makes it easy to compute in

standard packages. The only quantities needed are the first derivatives of the conditional

observation density at each time t, which we can easily obtain either analytically or numerically.

The GAS-LM test has an intuitive interpretation. Looking at the auxiliary regression (6),

we see that the key term in the regression is ∇ω,t ⊗ s̄p,t−1. The elements of this vector are

vec(St−i∇ω,t−i∇′
ω,t) for i = 1, . . . , q, where we have used the fact that under the null the score

of the conditional density with respect to ft is the same as that with respect to ω. The LM

test against the GAS alternative thus checks whether there is any autocorrelation in the scores

∇f,t of the static model. Such autocorrelations can be exploited to improve the fit of the model

by using the likelihood scores as drivers for the time varying parameter as is done in the GAS

framework.

Even though the above LM test has been derived with the GAS alternative in mind, we

expect this test to also have power against alternative forms of parameter instability. As such
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it can be regarded as an omnibus test for model misspecification. The same holds for the tests

against structural breaks and against parameter driven time variation, which we discuss next.

2.2 Parameter driven time-variation

In parameter driven time-varying parameter models, the parameter ft is a stochastic process

that is subject to its own source of error. Important examples of this class of models are linear,

Gaussian state space models (see, e.g. Harvey (1989)), stochastic volatility models as reviewed

in Shephard (2005), stochastic conditional duration models as in Bauwens and Veredas (2004),

and stochastic copula models such as Hafner and Manner (2012). The additional randomness

in ft on top of the randomness in yt itself (conditional on ft) makes these models harder to

estimate. The likelihood function is typically not available in closed form except in specific

cases, such as linear-Gaussian state space models and discrete-state hidden Markov models, see

Durbin and Koopman (2012) and Hamilton (1989). Estimation of these models by likelihood

methods typically requires approximation and/or simulation techniques; see for example Creal

(2012) and Durbin and Koopman (2012) for a discussion of alternative approaches.

Müller and Petalas (2010), denoted as MP10 from now on, provide an elegant and generic

set-up to test for parameter instability. Their approach encompasses non-linear and non-

Gaussian models with moderately time-varying parameters. If the time variation vanishes

asymptotically, MP10 show that we can address the inference problem about parameter stabil-

ity by considering a linear Gaussian state space model where the observations are replaced by

the likelihood scores of the static model. Moreover, they prove that such an approach is not

only asymptotically optimal against the alternative of (local) parameter driven time varying

parameters, but also against a much wider range of alternative (local) parameter dynamics. As

such, the test stands in a long tradition of point optimal tests against local alternatives, such as

random walk parameters; see for example Nyblom and Mäkeläinen (1983), Franzini and Harvey

(1983), King and Hillier (1985), Nyblom (1989), and Elliott and Müller (2006).

The key intuition for the MP10 test follows from a pseudo-model

HV−1∇ω,t = S−1(ft − f̄) + νt, νt ∼ N(0,S−1)

(ft+1 − f̄) = (1− cT−1)(ft − f̄) + ν̃t, ν̃t ∼ N(0, c2T−2S−1),
(7)

where f̄ is a fixed benchmark level for ft around which there is local time variation, ci is a

fixed tuning parameter, H = T−1
∑T

t=1 ∂
2 ln p(yt|f̄)/∂f 2

t , V = T−1
∑T

t=1 ∇ω,t∇′
ω,t, and S =

H−1VH−1. The local time variation in ft clearly vanishes as the sample size grows. Equation

(7) can be seen as a linear Gaussian state space model, where the observations are the likelihood

scores and the state (ft − f̄) is a nearly-integrated process.
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The pseudo-observation model in (7) is close to the Laplace transformations used in the

approximating linear state space models of Durbin and Koopman (2000) and Richard and

Zhang (2007). In these papers, the approximating models are used to estimate the parameters

in non-linear and non-Gaussian state space models via importance sampling. As explained in

Müller and Petalas (2010), the primary difference between the approximating linear Gaussian

model in these papers and the approximating model in MP10 is the use of the global Hessian

H rather than the local Hessian of the conditional observation density at time t in the MP10

approach.

MP10 construct a point optimal test using a likelihood ratio test of the null c = 0 versus

the alternative c = 10. Though the theory in MP10 is highly advanced, the proposed test

statistic is actually surprisingly straightforward to compute using simple regression techniques.

An algorithm is provided in the paper. The point optimality of the test gives it a clear likelihood

ratio interpretation. As a result, the test has a clear power advantage compared to an LM

based test. This stems from the fact that we actually obtain an approximate fit of the model

under the (local) parameter driven alternative c = 10 based on the regressions used to compute

the test statistic. This allows us to capture part of the corresponding gain of the likelihood

ratio compared to the Lagrange multiplier test, just as if we would have estimated the model

under both the null and the alternative rather than under the null only.

Based on similar regressions as the ones used to obtain the test statistic itself, MP10 also

propose an algorithm to estimate the path of the time-varying parameter ft. Their final estimate

is a weighted average risk based combination of the estimated paths for different values of c,

namely c = 0, 5, 10, . . . , 50. We will use this estimate in our empirical application later on.

The crucial ingredient in the test of Müller and Petalas (2010) is the sum of (ft − f̄) · ∇ω,t.

The test thus makes direct use of the variability of the estimated path ft for c = 10 in deviation

from its static counterpart f̄ . The differences ft − f̄) are weighted by the likelihood score with

respect to the (possibly) dynamic parameter. If the estimated path ft is relatively constant,

or if the likelihood is not very sensitive with respect to ft, the resulting test statistic is small.

Note that the (smoothed) estimate of the path for the test is obtained under c = 10, which

typically implies a high degree of persistence. This can become problematic if there is rapid

time variation in ft under the alternative, such as in the case of regular regime switches or

strongly mean reverting parameter dynamics. In those cases, the estimated path of ft can turn

out rather constant, thus resulting in a low value of the test statistic and a low power of the

corresponding testing procedure.

Compared to the GAS-LM test from Section 2.1, the MP10 test has three main differences.

First, due to the choice of c = 10 and the structure of the auxiliary regressions, the MP10
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test statistic weights both present and future autocovariances of the score. By contrast, the

GAS-LM test only uses past autocovariances. Second, the GAS-LM test allows the user to

include an explicit number of autocovariances through the choice of the parameter q. The

MP10 test, by contrast, takes all autocovariances into account, but implicitly defines their

weight through the choice of the parameter c = 10. Third, the distributions of the GAS and

MP10 test under the null differ markedly. Whereas the GAS-LM test follows the standard χ2

asymptotics of White (1987), the MP10 test follows the asymptotic distribution as derived in

Elliott and Müller (2006).

2.3 Structural breaks

Andrews (1993) proposes a general parameter stability test for nonlinear parametric models

against alternatives with a one-time structural change in (a subset of) the parameters. General-

izations to multiple breaks are possible, but typically computer intensive unless the structure of

the model is sufficiently simple; see, e. g. Bai and Perron (2003). The tests against a structural

break alternative are based on partial-sample GMM (PS-GMM) estimators and can be of the

supremum Wald, Lagrange multiplier (LM), and likelihood ratio (LR) type. Modifications of

these tests that use weighted averages rather than the supremum of the tests over all possible

break points are proposed by Ploberger et al. (1989) and Andrews and Ploberger (1994). To be

consistent in our exposition, we focus on the LM based version of the test. This precludes the

need to estimate a possibly highly non-linear model over many different subsamples, which can

be costly in terms of computational time, particularly during the exploratory modeling phase.

Let π ⊂ (0, 1) and let 	πT 
+1 denote the breakpoint of the parameter ft, where 	x
 denotes
the integer part of x ∈ R. The null and alternative hypothesis for the Andrews test are given

by

H0 : ft = f̄0 ∀t ≥ 1 and some f̄0 ∈ F ⊂ R
k, (8)

H1 :
⋃
π∈Π

H1,T (π) for some Π ⊂ (0, 1), (9)

H1,T (π) : ft =

⎧⎪⎨
⎪⎩
f̄1(π) for t = 1, . . . , 	πT 

f̄2(π) for t = 	πT 
+ 1, . . . , T,

(10)

for constants f̄1(π), f̄2(π) ∈ F . Though the test is designed for a single structural break at

unknown date, it is by now well-known that the test also has good power properties against a

range of other, more general alternatives; see for example the survey of Hansen (2001).

The distribution of the Andrews’ LM test is that of the supremum of the square of a tied

down Bessel process as derived in Theorem 3 of Andrews (1993), where one can also find the
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critical values of the test.

In contrast to the tests described in Sections 2.1 and 2.2, the Andrews’ LM test does not

build on the autocorrelation of the score of the likelihood, but rather on the average level

of the score before and after the break. In particular, the crucial ingredients of the test are

scaled versions of
∑�πT �

t=1 ∇ω,t and
∑T

t=�πT �+1 ∇ω,t. This clearly follows from the framework for

the alternative, which in this case is that of a structural break (at unknown point). It also

follows directly that if there are regular switches between alternative values of the parameter,

the Andrews’ test may have difficulty in picking this up: the means of the moment conditions

before and after any particular tentative breakpoint may fail to be sufficiently different in small

samples. Such cases might arise if the time-varying parameter follows a data generating process

with regular regime switches or with strongly mean reverting dynamics.

2.4 Martingale type time–variation

Our final benchmark is the all-purpose test for parameter of Nyblom (1989). This test is based

on the assumption that under the alternative the time varying parameter follows a martingale

process. As argued by Nyblom (1989), this encompasses the case of one or more structural

breaks. The test thus has links to both tests in Sections 2.2 and 2.3.

The key element in the Nyblom test is the partial sum of the likelihood scores. This brings

the test close to the partial sums in the Andrews’ test. However, the Nyblom test does not

take a supremum, but rather considers the average of the squares of partial sums. As we see in

our simulation experiment in the next section, this causes the Nyblom test to have an inferior

performance compared to the other three tests in most settings.

3 Monte Carlo study

3.1 Set-up

We consider a range of different data generating processes (DGPs). For each DGP, we generate

a time series of length T = 2, 000 observations and compute the GAS-LM(1), the GAS-LM(5),

the sup−LM test of Andrews (1993), the test of Müller and Petalas (2010) (MP10), and the

test of Nyblom (1989). All test results are stored, and the process is repeated N = 10, 000 times

to compute the size and power properties of the tests. Together, these tests cover parameter

stability tests against a wide range of alternative modeling frameworks.

We differentiate the DGPs considered for this study along two dimensions. First, we consider

DGPs with different types of dynamics for the time-varying parameter. In particular, we
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consider regime switching type models, models with random structural breaks, and state-space

models. Second, we consider different degrees of non-linearities in the parameters of the DGPs,

such as time variation in the mean, in the variance, in the dependence structure, and in higher

order moments.

3.1.1 Types of time variation

We consider the following different types of DGPs to generate time-varying parameters.

Regime switches: Let nb ∈ N denote the fixed number of switches, then the evolution of ft

is given by

ft =

⎧⎪⎨
⎪⎩
Δ for 	 j·T

nb+1

 + 1 ≤ t ≤ 	 (j+1)·T

nb+1

 for every j = 1, 3, . . . , (2 · 	0.5nb − 0.5
 + 1) ,

0 otherwise,
(11)

with Δ denoting the difference (in absolute value) between the two regimes. For example, for

nb = 4, we have ft = Δ for 	0.2T 
 + 1, . . . , 	0.4T 
, and for 	0.6T 
 + 1, . . . , 	0.8T 
, and zero

elsewhere. This creates regular and equally sized patches where the parameter alternately takes

the value 0 and Δ. Alternatively, we could make the regime switches stochastic rather than

deterministic, but we do not expect major differences with the current deterministic set-up in

terms of level and power properties of the different tests.

Random structural breaks: For random structural breaks, we follow the set-up of Elliott

and Müller (2006). In particular, we generate nb uniform random numbers in the interval (0,1),

π1, . . . , πnb
. The parameter then is a random walk with (infrequent) Gaussian increments at

the points 	πjT 
+ 1 for j = 1, . . . , nb,

ft =

nb∑
j=1

1{t>�πjT �}vj , (12)

where 1A is the indicator function for the event A, and vj is a Gaussian random variable with

zero mean and standard deviation Δ.

State-space: For a DGP with parameter driven dynamics, we assume that ft follows an

autoregressive process of order one, AR(1),

ft+1 = φft + ηt+1, (13)

where ηt+1 is normally distributed with zero mean and standard deviation Δ.

3.1.2 Types of non-linearities in the DGP

For each one of the three different dynamic frameworks for ft discussed in Section 3.1.1, we

consider different models. In particular, we consider models for a time-varying mean, yt =
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ft + σεεt ∈ R, with σε ∈ R
+; a time-varying log-variance, yt = exp(ft/2)εt ∈ R; and time-

varying dependence,

yt =

⎛
⎝ 1 tanh(ft)

tanh(ft) 1

⎞
⎠

1
2

εt ∈ R
2. (14)

We consider two distributions for εt, namely the standard normal and the Student’s t(5) dis-

tribution.

Our fourth model is a time-varying beta distribution yt ∼ Beta(αt, βt). We use the model in

the empirical application in Section 4 and therefore introduce it more thoroughly. The model

has two time-varying parameters. In the DGP, we let both of these depend on a common scalar

ft. In the application later on, we allow both parameters to evolve independently, causing ft

to be two-dimensional.

We consider two settings for the beta DGP. In the first setting, we use

αt = f̄ ∗ exp(ft)

1 + exp(ft)
, βt =

f̄

1 + exp(ft)
, f̄ > 0, (15)

such that both the mean μt = exp(ft)/(1+ exp(ft)) and variance μt(1−μt)/(1+ f̄) of the beta

distribution vary over time. The mean lies in the [0,1] range by construction, irrespective of

the value of ft. The variance automatically tends to zero if the mean tends to either 0 or 1,

which is natural for the beta distribution. The constant f̄ > 0 determines the additional extent

of concentration of the distribution.

In the second version of the model, we set

αt = f̄ ∗ exp(ft), βt = (1− f̄) ∗ exp(ft), 0 < f̄ < 1. (16)

This implies that the mean μt = f̄ is constant, while the variance f̄(1− f̄)/(1+ exp(ft)) varies

over time.

In total we have models for means, variances, and correlations for the normal and Student’s t

distribution, plus two versions of the time varying beta distribution. Combining these 8 settings

in total with the 3 different forms of time-variation from Section 3.1.1, we have 24 simulation

experiments in total. For each of these, we implement all tests at the 5% significance level.

Before we present the results, we note that the Andrews test is implemented over a grid

of breakpoints Π in (9). We use the test based on the boundary break point values of 15%

and 85% of the sample size. Ideally, we would compute the test using all possible breakpoints

between these boundary values. This, however, is too computer intensive, certainly for the

non-linear data generating processes considered later on. The supremum over a grid of values

is always less than the supremum over the entire set of possible breakpoints. This entails the

danger of the test in the simulations are undersized and their power is too low. To avoid this

13
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Figure 1: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for the regime–switching Gaussian time-varying mean model.

problem we calibrated the grid such that the simulated size of the test is roughly equal to the

nominal size given the critical value in Andrews (1993). The final grid of breakpoint values is

	jT 
 for j = 0.15, . . . , 0.85 in steps of 0.0005.

3.2 Results

The results for the time-varying mean, Gaussian distribution, and deterministic regime switches

are presented in Figure 1. For the case of a single regime switch, the top left panel shows that

the power of the Nyblom, Andrews, and Müller-Petalas is best. This is to be expected, as the

Andrews test is the optimal test in this case. The power behavior of all three tests roughly

coincides. The GAS tests are less powerful and need roughly a 2.5 to 3 times more distant

alternative than the Andrews test to obtain maximum power.

If the number of regime switches increases, the Nyblom test quickly looses power, followed

by the Andrews sup-LM test. Already for 6 regime switches over 2,000 observations, the

Nyblom test has similar power to the GAS(0,1) test, whereas the Andrews test has similar
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power to the GAS(0,5) test. The MP10 test’s power also decreases, but the MP10 test is still

the best for 6 regime switches. Further increases in the number of switches, however, also

breaks down the performance of the MP10 test. The power performance of the GAS tests, on

the other hand, remains remarkably robust across the number of regime switches. Although

this may seem suspicious at first sight, the result is entirely intuitive. The GAS test is based

on the autocorrelation of the likelihood score with respect to the dynamic parameter, where

the scores are computed under the null. Looking at Figure 2, the parameter estimate under

the null is some type of average level of the true parameter path, which is indicated by the

pulse function in each graph. As a result, the scores under the null roughly follow the pattern

of the (demeaned) pulse function. This exhibits strong autocorrelation. If the number of

regime switches increases, the autocorrelation remains strong. The number of points where the

correlation pattern is broken, is equal to the number of switches. As the latter is typically small

compared to the sample size, the power performance of the GAS test remains highly stable if

we increase the number of switches.

The behavior is very different for the MP10 test. For this test, the estimated difference

ft − f̄ under the alternative c = 10 plays a key role, as explained in Section 2.2. Figure 2 also

holds the MP10 estimate of ft. It is clear that the increase in the number of regime switches

makes it harder for the smoothed estimate f̂t to capture the true dynamics of the simulated

parameter. As the number of regime switches increases, the estimated difference ft− f̄ becomes

negligible. As a result, the power of the MP10 tests starts to decrease.

The results for the case with random breaks are given in Figure 11. For one break, the

tests do not appear to reach maximum power of one. This is due to the fact that the generated

break dates are sometimes very close to the starting or end point of the sample. The tests have

little power against these alternatives. If the number of regime switches increases, maximum

power is reached quite fast. This is due to the substantial probability that two consecutive

breaks will be in the same direction, thus increasing the overall signal that the parameters are

not constant over time. In all cases, the Andrews, MP10, and Nyblom tests appear to have

superior power to the GAS based tests.

Finally, Figure 12 contains the results for the parameter driven time variation. The time-

varying parameter follows the model ft+1 = φft+σηηt, where ηt ∼ N(0, 1). The left hand panel

contains the results for varying σ2
η on the horizontal axis, and fixed φ = 0.9. The right hand

panel contains the results for varying φ and fixed σ2
η = 0.15.

In both settings, the GAS tests display the best overall power performance. For the case of

fixed φ = 0.9, the true simulated parameter path exhibits strong mean reversion. In a sense,

this is similar to the regular regime switches in Figure 10. We already explained why the
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Figure 2: Evolution of the parameter path estimated using the Müller-Petalas procedure with c = 10 (dashed

line) and the true (simulated) parameter path (solid line). The different panels contain the results for an

increasing number of regime switches.

MP10 test in this case has worse power performance compared to the GAS tests. The same

phenomenon is at work in the left panel in Figure 12. What is difficult to see in the current

figure, but will be made clear later on is that for local alternatives, i.e., values of σ2
η very close

to zero, the MP10 test actually has a better power performance than the GAS test. This is

in line with the analytical results of Müller and Petalas (2010), who prove that their test is

optimal against local alternatives.

In the right panel of Figure 12, we again see that the GAS tests have the best performance.

For large values of φ (on the horizontal axis), the time variation becomes a martingale, and

the Nyblom, Andrews, and MP10 test display adequate power behavior. For lower values of

φ, however, the parameter path is strongly mean reverting and only the GAS test has power.

The power comes from the fact that even for strong mean reversion, the score under the null

still displays significant autocorrelation. There is, however, no substantial change in the level

of the score under the null (Andrews and Nyblom) for small values of φ, nor is there a strong
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Figure 3: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for the Gaussian time-varying mean model with random

breaks.
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Figure 4: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for the Gaussian time-varying mean model with parameter

driven time variation.
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Figure 5: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for the time-varying beta model with parameter driven time

variation.

time variation in f̂t − ˆ̄f in this case, compare Figure 2.

Rather than presenting the full simulation results in the main text, we refer the interested

reader to the online Appendix containing all additional results. The results are highly robust

compared to the results presented so far. This holds if we replace the Gaussian distribution by

a Student’s t distribution, or if we consider time-varying variances and correlations rather than

time-varying means.

Also the results for the time-varying beta distribution confirm our earlier findings. We

highlight, however, one main finding. In Figure 5, we present the results for the case of a

time-varying mean and variance, i.e., the first simulation setting for the time-varying beta

distribution. The time-varying parameter ft follows an autoregressive process of order 1. We

particularly highlight the left hand panel in Figure 5. The variance σ2
η of the error term is in

this case such that we remain close to the null hypothesis of no time variation. As a result, the

maximum power over the range of alternatives considered remains quite low and we effectively

zoom in on the local power behavior of all tests. The left panel clearly shows the MP10 test

has the best power very close to the null. As mentioned earlier, this is directly in line with the

analytical results of Müller and Petalas (2010). As we get more distant from the null, however,

the GAS tests have a better performance than the MP10 test.

Also the right hand panel in the figure displays a similar pattern as in Figure 12. For medium

persistence levels, the GAS tests clearly outperform the other tests. For low persistence levels,

however, all tests have hardly got any power. If the true persistence level is about 0.7, the GAS

tests reach their maximum power level. For the MP10 test this happens for a persistence level

of about φ = 0.9. In the next section, we implement all tests for the time-varying beta model
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to an empirical example and provide some further insight.

4 Empirical application

We consider quarterly observations of losses given default (LGDs) on corporate bonds. The

data are obtained from Moody’s and cover the first quarter of 1982 to the first quarter of 2010.

The fraction of loss is measured as the percentage price drop in the value of the corporate bond

from the day before to 20 days after the announcement of default.1 We want to test whether

there is significant time variation in the distributional characteristics of LGDs. Time varying

LGDs are important for credit risk modeling and financial risk management, as credit portfolio

losses could be severely underestimated if default risk and LGD risk exacerbate one another;

see for example Creal et al. (2014).

The data display several non-standard features. First, because LGDs are measured as

percentage losses, they are bounded to the interval [0, 1]. To accommodate this, we assume

that the LGDs are drawn from a beta distribution. Second, the number of observed LGDs

varies per quarter, such that the dimension of the observation vector varies over time. These

features have to be accounted for in the testing methodology. Combining the observation period

with the varying number of LGDs per quarter, we have 1125 LGD-quarter observations, with

the number of LGDs per quarter varying from 1 in 1982 to a max of 58 in 2009.

Let yi,t denote the ith observation at time t with i = 1, . . . , Kt, where Kt represents the

number of LGD observations at time t. We take Kt as given and model yi,t at time t as

independent draws from a beta distribution with parameters αt = exp(f1,t) and βt = exp(f2,t),

where ft = (f1,t, f2,t)
′. Define yt = (y1,t, . . . , yKt,t)

′. Then the log conditional observation

density of yt is given by

ln p(yt|ft) =
Kt∑
i=1

ln Γ(αt + βt)− ln Γ(αt)− ln Γ(βt) + (αt − 1) ln yi,t + (βt − 1) ln(1− yi,t), (17)

where Γ denotes the gamma function. The conditional score and information matrix for (17)

are given by

∇f,t =

Kt∑
i=1

⎛
⎝

(
Ψ(αt + βt)−Ψ(αt) + ln yi,t

) · αt(
Ψ(αt + βt)−Ψ(βt) + ln(1− yi,t)

) · βt

⎞
⎠ , (18)

1This is also known as the market implied LGD. As the value may become negative, e.g., after a timely

restructuring or merger announcement, we censor negative observed LGDs to 1 basis point, i.e., 0.01%. This

concerns only 14 out of 1125 observations, or 1.25% of the observations.
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Table 1: Test statistics and critical values for the corporate LGD data, 1982Q1–2010Q1

Stat 10% 5% 1%

LM GAS(0,1) 16.20 4.60 5.99 9.21

LM GAS(0,5) 22.84 15.99 18.31 23.21

MP10 -27.34 -12.80 -14.32 -17.57

MP10* -40.78 -12.80 -14.32 -17.57

Andrews 18.56 10.01 11.79 15.51

Nyblom 1.63 0.61 0.75 1.07

and

It = Kt ·
⎛
⎝ α2

t (Ψ
′(αt) + Ψ′(αt + βt)) −αtβtΨ

′(αt + βt)

−αtβtΨ
′(αt + βt) β2

t (Ψ
′(βt) + Ψ′(αt + βt))

⎞
⎠ , (19)

where Ψ denotes the digamma function, i.e., Ψ(x) = d ln Γ(x)/dx. We set the GAS scaling

matrix to the inverse information matrix, i.e., St = I−1
t , to account for the curvature of the

score. Using these definitions, we can now compute the different test statistics. The results are

presented in Table 1.

All test statistics clearly reject the null hypothesis of constant parameters. We have slightly

modified the Muller-Petalas test (denoted as MP10*) to account for the fact that the number

of observations Kt varies over time. In the original MP10 paper, the Hessian is estimated

unconditionally over the entire sample. That makes sense if the number of observations per

period is constant. Here, however, we treat Kt as given and multiply the Hessian in the

algorithm of MP10 at time t by Kt/K̄, with K the time series average of Kt. The modification

result follows directly from a similar derivation as used for the information matrix in (19), and

corrects the steps in the MP10 algorithm for periods where there are many, respectively few

LGD observations in the cross section.

We confirm the test results from Table 1 by estimating the path of the time varying param-

eter ft in two alternative ways. First, we estimate ft based on a GAS(1,1) model,

ft+1 = ω + Ast +Bft, st = St∇t, A =

⎛
⎝ a11 0

0 a22

⎞
⎠ , B =

⎛
⎝ b11 0

0 b22

⎞
⎠ . (20)

Estimating the model with full rather than diagonal matrices A and B gives very similar results.

The parameter estimates are presented in Table 2. We find that there is strong persistence in

both αt and βt, as both b11 and b22 are large. All parameter estimates are strongly significant,

except ω2. Interestingly, the persistence (b11) in αt is not as strong as that in βt. As αt and

βt characterize the mean of the beta distribution when it is close to 0 and 1, respectively,
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Table 2: GAS(1, 1) coefficients estimation results

Coeff. Estimate Std Err t–stat

ω1 0.0559 0.0088 6.3449

ω2 -0.0023 0.0073 -0.3075

a11 0.1943 0.0220 8.8156

a22 0.1836 0.0361 5.0770

b11 0.8571 0.0233 36.8217

b22 0.9235 0.0355 26.0252

the higher persistence (b22) of βt indicates that the higher LGDs are more persistent than low

LGDs. There appears to be no such difference between a11 and a22.

Our second estimate of ft is obtained as a byproduct of the MP10 algorithm. It is based

on a Weighted Average Risk estimate of the path ft for several local alternatives. We use the

same method as for MP10* to correct for the time-varying number of observations Kt when

estimating the path. The results are shown in Figure 6.

The LGD data range from close to zero to almost one for given cross sections. Rather than

providing the plots of αt and βt directly, we present a plot of the mean of the beta distribution

αt/(αt + βt). Both the MP10* and GAS estimates of the mean capture the salient features of

the data. There are clear peaks in average credit losses around the 1991 recession, the 2000-

2001 burst of the dotcom bubble, and the most recent financial crisis. The peaks clearly defy

the assumption of constant parameters. The MP estimate appears to lead the GAS estimate.

This is due to the fact that the GAS model is a filter (one-sided estimator), whereas the MP

estimate is a smoother (two-sided estimator) and thus takes future observations into account.

There is one episode where the two estimates differ substantially, namely the period leading up

to the 2008 financial crisis. The GAS estimate reveals a more moderate trough than the MP

estimate.

It is interesting to see that the MP estimate works well even though it is designed for local

time variation only. To understand this, note that the smoothed path of ft in Figure 6 for MP10*

is based on a weighted average of 10 different paths, corresponding to autoregressive coefficients

b11 = b22 = 1− c/T for c = 0, 5, 10, . . . , 50. If we look closer to the weights, we find that all the

weight is assigned to paths corresponding to c = 30, . . . , 50, with the mode weight at c = 40. As

T = 113, this corresponds to an autoregressive decay of 1− 40/113 ≈ 0.65. This is much lower

than the persistence estimates of the GAS model in Table 2. Moreover, the autoregressive

coefficient in the MP10 method is the same for αt and βt, in contrast to the GAS model.
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Figure 6: Corporate Loss Given Default (LGD) data, 1982–2010, and fitted means (left panel) and variances

(right panel)

Note: This figure contains the market implied LGDs of corporate bonds over the period 1982Q1–2010Q1

as observed by Moody’s, left panel. The left panel also contains the mean of the fitted beta distribution,

αt/(αt + βt), for the GAS model from Table 2 and the MP10* smoothed parameter path of Müller and Petalas

(2010). The right hand curve provides the estimates of the variance, αt/((αt + βt)
2(1 + αt + βt)), for both

methods, as well as a 1 year rolling window estimate of the variance (Var).

To fit the unconditional variation in the data, the smaller persistence parameter in MP10* is

counterbalanced by a higher error variance. Combined, these two effects make the MP10* path

more sensitive to some of the lower values of the LGDs in the period leading up to the credit

crisis. Also note that the MP10* test is not influenced by these less persistent paths, as it is

entirely based on the local alternative c = 10 or a persistence parameter 1 − 10/113 ≈ 0.91.

The latter is more in line with the estimated persistence parameters b11 and b22 of the GAS

model.

We present estimates of the variance of the beta distribution in the right-hand panel in

Figure 6. The variance equals αt/((αt+βt)
2(1+αt+βt)) and is slightly trending upwards, with

the more recent variation in LGD percentages being somewhat larger than that in the early

1980s. There are two peaks in the variance. These are linked to the periods when there are

few LGD observations and the relative dispersion of the few observed LGDs is large. Again,

the variance estimates using either the MP10* or the GAS framework are roughly similar. The

main differences arise around 1997 and around 2004–2006. The lower mean over the latter

period for MP10* compared to GAS (see left panel) is thus partly off-set by a higher variance.

Again, the test is not affected by this, because it uses an autoregressive coefficient of around

0.91 for MP10* (c = 10), rather than around 0.65 (c = 40) as used to obtain the smoothed

estimate.
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5 Conclusions

We have introduced a new mis-specification test for parameter stability in general non-linear,

possibly non-Gaussian time-series models. Building on the Generalized Autoregressive Score

(GAS) dynamics as developed by Creal et al. (2013), we proposed a Lagrange Multiplier test for

the null of constant parameters against the alternative of GAS effects. We have carried out an

extensive Monte Carlo study to investigate the finite sample properties of the new test compared

to a number of competing general purpose tests for parameter instability. Each of these tests

against a very different time-varying parameter framework: either structural breaks, Andrews

(1993); local parameter driven variation, Müller and Petalas (2010); or martingale processes

for the time-varying parameters, Nyblom (1989).

We find that the new GAS test has a robust power performance. For different types of DGPs,

the power behavior of the GAS test remains relatively constant, whereas that of competing

tests varies considerably. None of the tests is uniformly superior in all situations considered.

The GAS test performs well if parameters vary considerably over time, particularly when this

variation is strongly mean reverting and frequent. For incidental changes or a small magnitude

of the time variation, the test of Müller and Petalas (2010) typically performs best, which is in

line with what theory predicts.

We applied our tests to an empirical panel data set consisting of loss given default percent-

ages of corporate bonds. We showed how all tests could be used for this data set and could be

adapted for a setting with a time-varying number of observations. Interestingly, we found that

the smoothing approach of Müller and Petalas (2010) can also be useful in cases of non-local

time variation in the parameters. The estimated path using their algorithm gives comparable

results to estimating the path using a dynamic GAS model for the data set considered. This

again illustrates that the two testing paradigms can provide complementary signals in empirical

work.
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Online Appendix: additional simulation results

Gaussian time–varying variance
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Figure 7: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
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Figure 8: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.
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Figure 9: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
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Gaussian time–varying correlation
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Figure 10: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
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Figure 11: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.
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Figure 12: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
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t–distribution time–varying mean
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Figure 13: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
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Figure 14: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.
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Figure 15: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
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t–distribution time–varying variance
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Figure 16: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
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Figure 17: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.
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Figure 18: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
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t–distribution time–varying correlation
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Figure 19: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
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Figure 20: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.
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Figure 21: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
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Beta first setting
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Figure 22: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
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Figure 23: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0 1 2 3

·10−2

0

0.2

0.4

0.6

0.8

1

Figure 24: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
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Beta second setting
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Figure 25: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
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Figure 26: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.
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Figure 27: Empirical power functions of the LMGAS(0,1) (—), the LMGAS(0,5) (···), the Andrews test (•–), the
Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
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