A New Semiparametric Volatility Model

Jiangyu Ji André Lucas

VU University Amsterdam, Tinbergen Institute, and Duisenberg school of finance

Workshop on Dynamic Models driven by the Score of Predictive Likelihoods, Amsterdam, January 2013

Introduction

The semiparametric volatility model Monte carlo evidence Application to empirical data and density forecast evaluation Conclusion

Introduction

- We propose a new volatility model in which:
 - the skewed and fat-tailed shape of the innovation distribution directly affects volatility dynamics;
 - the innovation distribution is estimated by kernel density method.
- related literature: Creal, Koopman, and Lucas (2012), Engle and Gonzalez-Rivera (1991), Drost and Klaassen (1997), Harvey(2008).

イロト イポト イヨト イヨト

Model specification Estimation semiparametric estimation

Model specification

• We apply the GAS framework to our need. We consider a univariate return series y_t and

$$y_t = \mu + \xi_t = \mu + \sigma_t \epsilon_t, \epsilon_t \sim p_{\epsilon}(\cdot)$$
(1)

• In order to make sure that the volatility σ_t is always positive, we let $f_t = \log \sigma_t^2$ and choose a GAS(1,1) specification,

$$f_{t+1} = \tilde{\omega} + \tilde{\alpha} s_t + \tilde{\beta} f_t \tag{2}$$

・ロト ・回ト ・ヨト ・ヨト

where $\tilde{\omega}, \tilde{\alpha} \in \mathbb{R}$, $|\tilde{\beta}| < 1$ and we choose unit scaling ($S_t = 1$) for the density score,

$$s_t = S_t \nabla_t = 1 \times \frac{\partial \ln p_\epsilon(y_t | f_t, \mathcal{F}_t; \theta)}{\partial f_t}.$$
(3)

Model specification Estimation semiparametric estimation

Estimation

- Parameter estimation of the model is straightforward, since the model is defined in conditional terms similar to the standard GARCH model.
- Calculation of ∇_t :

$$\frac{\partial \ln p_{y}(y_{t}|f_{t},\mathcal{F}_{t};\theta)}{\partial f_{t}} = -\frac{1}{2} - \frac{1}{2} \frac{p_{\epsilon}'(e^{-\frac{f_{t}}{2}}(y_{t}-\mu))(y_{t}-\mu)e^{-\frac{f_{t}}{2}}}{p_{\epsilon}(e^{-\frac{f_{t}}{2}}(y_{t}-\mu))}.$$
 (4)

• We can iteratively update $s_1, f_2, s_2, f_3, \dots, f_{n-1}, s_{n-1}, f_n$. Then we can evaluate the likelihood as

$$L = \frac{1}{n} \sum_{t=1}^{n} I_t = \frac{1}{n} \sum_{t=1}^{n} \ln \frac{1}{\sigma_t} \rho_\epsilon \left(\frac{y_t - \mu}{\sigma_t} | f_t, \mathcal{F}_t; \theta \right).$$
(5)

・ロト ・回ト ・ヨト ・ヨト

Model specification Estimation semiparametric estimation

Semiparametric estimation

• We first estimate the model assuming normality, then we calculate standardized residuals and use kernel density estimator to determine the error density and replace p_{ϵ} by its estimate \hat{p}_{ϵ} ,

$$\hat{p}_{\epsilon}(x) = \frac{1}{nh} \sum_{t=1}^{n} k\left(\frac{\hat{\epsilon}_t - x}{h}\right), \tag{6}$$

• We use the standard normal kernel

$$k(v) = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}v^2}, -\infty < v < \infty, \tag{7}$$

with a bandwidth of h = 0.5.

 bandwidth: reasonable changes of the bandwidth, say 0.3 ≤ h ≤ 0.8;

Results under correct specification what matters: number of iteration or sample size? Simulation results under mis-specification

イロト イポト イヨト イヨト

Results under correct specification

- we use the new model as DGP to simulate return series and investigate volatility forecast accuracy of this model.
- simulation scheme
 - B = 100 samples; length of n = 2000; parameter $(\mu, \omega, \alpha, \beta) = (0, 0.2, 0.3, 0.9)$;
 - error density: standard normal, Student's t with $\nu = 3$, and 5 degrees of freedom, and a mixture of normals.
- we estimated the parameters by four different estimation methods: GAS-true, GAS-normal, GAS-t(ν) and semi-GAS.

Table 1: Simulation results under correct specification

median of RMSE of σ_t	Ν	t(5)	$MN(\chi^{2}(6))$
GAS-true	0.104	0.128	0.116
GAS-normal	0.104	0.474	0.430
$GAS-t(\nu)$	0.105	0.147	0.419
semi-GAS	0.207	0.241	0.257

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results under correct specification what matters: number of iteration or sample size? Simulation results under mis-specification

< 3 >

what matters: number of iteration or sample size? t(5), α

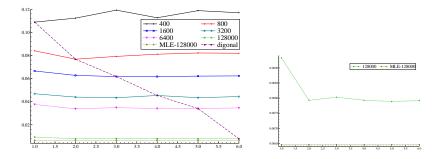


Figure : what matters: number of iteration or sample size?

Results under correct specification what matters: number of iteration or sample size? Simulation results under mis-specification

소리가 소문가 소문가 소문가

Simulation with stochastic volatility

- In reality, we do not know the DGP and models are only approximate to the DGP.
- Therefore, we choose a stochastic volatility process such that the volatility models are only statistical models to approximate time-varying volatility.
- The stochastic volatility DGP SV is specified as $y_t \sim p(0, \sigma_t^2)$ with $\sigma_t^2 = exp(\alpha_t)$ and $\alpha_t = 0.01 + 0.98\alpha_{t-1} + \eta_t$, where $\eta_t \sim N(0, 0.1^2)$, for t = 1, ..., n.

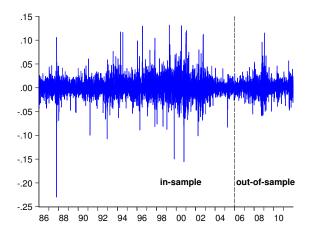
Table 2: Simulation results under mis-specification:stochastic volatility

median of	RMSE of σ_t	GARCH	GAS
N	GAS-normal	0.237	0.236
	$GAS-t(\nu)$	0.237	0.235
	semi-GAS	0.237	0.243
t(3)	GAS-normal	0.351	0.375
	$GAS-t(\nu)$	0.345	0.280***
	semi-GAS	0.334	0.295**
$MN(\chi^{2}(6))$	GAS-normal	0.247	0.246
	$GAS-t(\nu)$	0.255	0.251
	semi-GAS	0.243	0.231**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Estimation and plots of score functions Density forecast evaluation

Empirical application with IBM daily return series



Estimation and plots of score functions Density forecast evaluation

Estimation results

Table 3: Empirical Estimation Results										
	GAS	GAS*	GAS	GAS		GARCH	GARCH	GARCH		
	normal	$t(\nu)$	t(u)	semi		normal	$t(\nu)$	semi		
μ	0.061	0.012	0.017	0.041	μ	0.067	0.012	0.033		
	(0.023)	(0.020)	(0.019)	(0.019)		(0.021)	(0.019)	(0.020)		
$\tilde{\omega}$	0.016	0.007	0.007	0.012	ω	0.041	0.015	0.024		
	(0.003)	(0.002)	(0.003)	(0.002)		(0.009)	(0.005)	(0.006)		
$\tilde{\alpha}$	0.059	0.016	0.131	0.142	α	0.079	0.033	0.046		
	(0.007)	(0.002)	(0.019)	(0.010)		(0.010)	(0.006)	(0.006)		
\tilde{eta}	0.985	0.993	0.994	0.991	$\alpha + \beta$	0.995	0.995	0.994		
	(0.002)	(0.002)	(0.002)	(0.002)		(0.003)	(0.002)	(0.002)		
ν		4.743	5.174		ν		5.006			
		(0.300)	(0.345)				(0.330)			
log-lik	-10000.80	-9631.35	-9576.68	-9570.8		-9917.2	-9599.78	-9597.3		

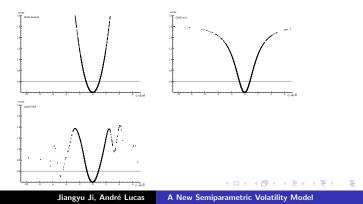
イロン イヨン イヨン イヨン

Э

Estimation and plots of score functions Density forecast evaluation

To know more about the volatility dynamics

- We plot score functions against standardized residuals for each estimation method.



Estimation and plots of score functions Density forecast evaluation

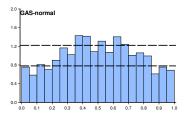
To generate density forecasts and evaluate them

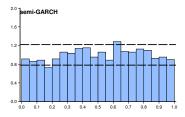
- After we estimate the model by one method, we freeze it, and use it to generate out-of-sample volatility forecasts and density forecasts. We denote the forecast of *p_ε* at time *t* as *p̂_t*.
- For GAS-normal, GAS- $t(\nu)$, semi-GAS and Semi-GARCH.
- Method by Diebold, Gunther, and Tay (1998). True density is $\{p_t(y_t|\mathcal{F}_t)\}_{t=1}^m$; Density forecast is $\{\hat{p}_t(y_t|\mathcal{F}_t)\}_{t=1}^m$. We can evaluate density forecasts by assessing the distribution of a series called the probability integral transform, z_t , with $z_t = \int_{-\infty}^{y_t} \hat{p}_t(u) du$.

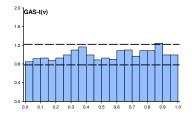
소리가 소문가 소문가 소문가

Estimation and plots of score functions Density forecast evaluation

Density forecast evaluation results: histogram





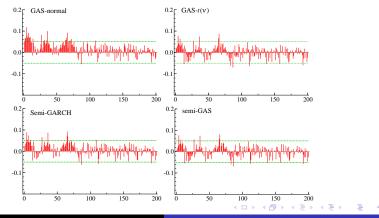


Jiangyu Ji, André Lucas

A New Semiparametric Volatility Model

Estimation and plots of score functions Density forecast evaluation

Density forecast evaluation results: Correlogram of $(z_t - \bar{z})^2$



Jiangyu Ji, André Lucas A New Semi

A New Semiparametric Volatility Model

Conclusion: main results

- We introduce a new semiparametric time-varying volatility model. In this model,
 - we use kernel density methods to estimate the error density;
 - the form of the error distribution also governs the specification of volatility dynamics;
- Monte carlo evidence and application to real data:
 - simulations results show that the new model provides accurate volatility forecasts.
 - the new model does a good job of generating density forecasts