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Introduction

We propose a new volatility model in which:

the skewed and fat-tailed shape of the innovation distribution
directly affects volatility dynamics;
the innovation distribution is estimated by kernel density
method.

related literature: Creal, Koopman, and Lucas (2012), Engle and
Gonzalez-Rivera (1991), Drost and Klaassen (1997), Harvey(2008).

Jiangyu Ji, André Lucas A New Semiparametric Volatility Model



Introduction
The semiparametric volatility model

Monte carlo evidence
Application to empirical data and density forecast evaluation

Conclusion

Model specification
Estimation
semiparametric estimation

Model specification

We apply the GAS framework to our need. We consider a univariate
return series yt and

yt = µ+ ξt = µ+ σtεt , εt ∼ pε(·) (1)

In order to make sure that the volatility σt is always positive, we let
ft = log σ2

t and choose a GAS(1,1) specification,

ft+1 = ω̃ + α̃st + β̃ft (2)

where ω̃, α̃ ∈ R, |β̃| < 1 and we choose unit scaling (St = 1) for the
density score,

st = St∇t = 1× ∂ ln pε(yt |ft ,Ft ; θ)

∂ft
. (3)

Jiangyu Ji, André Lucas A New Semiparametric Volatility Model



Introduction
The semiparametric volatility model

Monte carlo evidence
Application to empirical data and density forecast evaluation

Conclusion

Model specification
Estimation
semiparametric estimation

Estimation

Parameter estimation of the model is straightforward, since the
model is defined in conditional terms similar to the standard
GARCH model.

Calculation of ∇t :

∂ ln py (yt |ft ,Ft ; θ)

∂ft
= −1

2
− 1

2

p′ε(e
− ft

2 (yt − µ))(yt − µ)e−
ft
2

pε(e−
ft
2 (yt − µ))

. (4)

We can iteratively update s1, f2, s2, f3, · · ·, fn−1, sn−1, fn. Then we
can evaluate the likelihood as

L =
1

n

n∑
t=1

lt =
1

n

n∑
t=1

ln
1

σt
pε

(
yt − µ
σt
|ft ,Ft ; θ

)
. (5)
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Semiparametric estimation

We first estimate the model assuming normality, then we calculate
standardized residuals and use kernel density estimator to determine
the error density and replace pε by its estimate p̂ε,

p̂ε(x) =
1

nh

n∑
t=1

k

(
ε̂t − x

h

)
, (6)

We use the standard normal kernel

k(v) =
1√
2π

e
1
2 v

2

,−∞ < v <∞, (7)

with a bandwidth of h = 0.5.

bandwidth: reasonable changes of the bandwidth, say
0.3 ≤ h ≤ 0.8;
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Results under correct specification

we use the new model as DGP to simulate return series and
investigate volatility forecast accuracy of this model.

simulation scheme

B = 100 samples; length of n = 2000; parameter
(µ, ω, α, β) = (0, 0.2, 0.3, 0.9);
error density: standard normal, Student’s t with ν = 3, and 5
degrees of freedom, and a mixture of normals.

we estimated the parameters by four different estimation methods:
GAS-true, GAS-normal, GAS-t(ν) and semi-GAS.
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Table 1: Simulation results under correct specification
median of RMSE of σt N t(5) MN(χ2(6))

GAS-true 0.104 0.128 0.116
GAS-normal 0.104 0.474 0.430

GAS-t(ν) 0.105 0.147 0.419
semi-GAS 0.207 0.241 0.257
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what matters: number of iteration or sample size? t(5), α
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Figure : what matters: number of iteration or sample size?
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Simulation with stochastic volatility

In reality, we do not know the DGP and models are only
approximate to the DGP.

Therefore, we choose a stochastic volatility process such that the
volatility models are only statistical models to approximate
time-varying volatility.

The stochastic volatility DGP SV is specified as yt ∼ p(0, σ2
t ) with

σ2
t = exp(αt) and αt = 0.01 + 0.98αt−1 + ηt , where
ηt ∼ N(0, 0.12), for t = 1, . . . , n.
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Table 2: Simulation results under mis-specification:
stochastic volatility

median of RMSE of σt GARCH GAS
N GAS-normal 0.237 0.236

GAS-t(ν) 0.237 0.235
semi-GAS 0.237 0.243

t(3) GAS-normal 0.351 0.375
GAS-t(ν) 0.345 0.280∗∗∗

semi-GAS 0.334 0.295∗∗

MN(χ2(6)) GAS-normal 0.247 0.246
GAS-t(ν) 0.255 0.251
semi-GAS 0.243 0.231∗∗
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Empirical application with IBM daily return series
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Figure : Daily IBM Returns
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Estimation results

Table 3: Empirical Estimation Results

GAS GAS∗ GAS GAS GARCH GARCH GARCH
normal t(ν) t(ν) semi normal t(ν) semi

µ 0.061 0.012 0.017 0.041 µ 0.067 0.012 0.033
(0.023) (0.020) (0.019) (0.019) (0.021) (0.019) (0.020)

ω̃ 0.016 0.007 0.007 0.012 ω 0.041 0.015 0.024
(0.003) (0.002) (0.003) (0.002) (0.009) (0.005) (0.006)

α̃ 0.059 0.016 0.131 0.142 α 0.079 0.033 0.046
(0.007) (0.002) (0.019) (0.010) (0.010) (0.006) (0.006)

β̃ 0.985 0.993 0.994 0.991 α + β 0.995 0.995 0.994
(0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)

ν 4.743 5.174 ν 5.006
(0.300) (0.345) (0.330)

log-lik -10000.80 -9631.35 -9576.68 -9570.8 -9917.2 -9599.78 -9597.3
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To know more about the volatility dynamics

We want to know: how does the volatility react to the news, εt?
Does the volatility react to positive news and negative news equally?
We plot score functions against standardized residuals for each
estimation method.
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To generate density forecasts and evaluate them

After we estimate the model by one method, we freeze it, and use it
to generate out-of-sample volatility forecasts and density forecasts.
We denote the forecast of pε at time t as p̂t .

For GAS-normal, GAS-t(ν), semi-GAS and Semi-GARCH.

Method by Diebold, Gunther, and Tay (1998). True density is
{pt(yt |Ft)}mt=1; Density forecast is {p̂t(yt |Ft)}mt=1. We can evaluate
density forecasts by assessing the distribution of a series called the
probability integral transform, zt , with zt =

∫ yt
−∞ p̂t(u)du.
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Density forecast evaluation results: histogram
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Figure : Density Forecast Evaluation: density estimates of zt
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Density forecast evaluation results: Correlogram of
(zt − z̄)2
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Conclusion: main results

We introduce a new semiparametric time-varying volatility model. In this

model,

we use kernel density methods to estimate the error density;
the form of the error distribution also governs the specification
of volatility dynamics;

Monte carlo evidence and application to real data:

simulations results show that the new model provides accurate
volatility forecasts.
the new model does a good job of generating density forecasts
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