Observation Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk

Drew Creal^a, Bernd Schwaab^b Siem Jan Koopman^{c,e}, André Lucas^{d,e}

^aUniversity of Chicago, Booth School of Business
^bEuropean Central Bank
^cDepartment of Econometrics, Vrije Universiteit Amsterdam
^dDepartment of Finance, Vrije Universiteit Amsterdam,
and Duisenberg school of finance
^eTinbergen Institute, Amsterdam

Score Workshop, Amsterdam, Jan. 17-18, 2013

Motivation

- ► Economic time series often share common features, e.g. business cycle dynamics.
- Economic time series may be continuous and/or discrete and be observed at different frequencies.
- Credit risk application:
 - 1. Credit conditions depend on the macroeconomy
 - 2. Corporate defaults tend to "cluster" together in time.
 - Default probabilities are higher than can be explained by covariates.

Contributions

- ▶ We introduce observation-driven mixed measurement panel data models.
- ► The approach allows for non-linear, non-Gaussian models with common factor across different distributions.
- Credit risk application: we develop new models for credit ratings transitions and loss-given-default (LGDs).
- The models include:
 - 1. Time-varying ordered logit
 - 2. Time-varying beta distribution

Mixed measurement panel data models

$$y_{it} \sim p_i(y_{it}|F^t, Y^{t-1}; \psi), \quad i = 1, \dots, N,$$

 $f_{t+1} = \omega + B_1 f_t + A_1 s_t$

with log-likelihood function

$$\log p(y_t|F^t, Y^{t-1}; \psi) = \sum_{i=1}^{N} \delta_{it} \log p_i(y_{it}|F^t, Y^{t-1}; \psi)$$

- ▶ The observation vector y_t is $N \times 1$.
- ▶ The individual observations *y*_{it} may come from different distributions.
- **KEY**: The factors f_t may be common across distributions.
- δ_{it} is an indicator function equal to 1 if y_{it} is observed and zero otherwise. Missing values are naturally taken into account.

Mixed measurement panel data models

$$y_{it} \sim p_i(y_{it}|F^t, Y^{t-1}; \psi), \quad i = 1, \dots, N,$$

 $f_{t+1} = \omega + B_1 f_t + A_1 s_t$

The score function is

$$S_{t} = S_{t} \nabla_{t}$$

$$\nabla_{t} = \sum_{i=1}^{N} \delta_{it} \nabla_{i,t} = \sum_{i=1}^{N} \delta_{it} \frac{\partial \log p_{i}(y_{it}|F^{t}, Y^{t-1}; \psi)}{\partial f_{t}},$$

- KEY: The score function allows us to pool information from different observations to estimate the common factor f_t.
- The score function also allows us to "weight" the information coming from different types of data.

Scaling matrix

Consider the eigenvalue-eigenvector decomposition of Fisher's (conditional) information matrix

$$\mathcal{I}_t = E_{t-1}[\nabla_t \nabla_t'] = U_t \Sigma_t U_t',$$

We define the scaling matrix as

$$S_t = U_t \Sigma_t^{-1/2} U_t'$$

- \triangleright S_t is then the "square root" of a generalized inverse.
- ► The innovations s_t driving f_t have an identity covariance matrix, when the info. matrix is non-singular.
- ▶ The conditional information matrix is additive for our models:

$$\mathcal{I}_t = E_{t-1}[\nabla_t \nabla_t'] = \sum_{i=1}^N \delta_{it} E_{i,t-1}[\nabla_{it} \nabla_{it}'].$$

Log-likehood function and ML estimation

- The log-likelihood function for an observation-driven model can easily be computed.
- The ML estimator is

$$\hat{\psi} = \arg \max_{\psi} \sum_{t=1}^{T} \sum_{i=1}^{N} \delta_{it} \log p_{i}(y_{it}|F^{t}, Y^{t-1}; \psi),$$

- Estimation is similar to a GARCH model.
- ▶ For a given value of ψ , the factors are computed $\{f_0, f_1, \dots, f_T\}$ from the recursion:

$$f_{t+1} = \omega + B_1 f_t + A_1 s_t$$

Credit risk

- ▶ Growing econometrics literature on models for credit risk: McNeil et al. (2005), Bauwens and Hautsch (JFEct, 2006), Gagliardini and Gourieroux (JFEct, 2005), Koopman Lucas and Monteiro (JEct, 2008), Duffie et al. (JFE, JoF 2008).
- Basic observations:
 - 1. Probability of default varies over time with the business cycle.
 - Conditional on default, the loss (recovery rate) varies with the business cycle.
 - We observe excess clustering of defaults and ratings transitions beyond what can be explained by simply adding covariates.
 - 4. The literature focuses on a credit risk or frailty factor.
- Industry standard models are too simple to capture these features.
- New models in the literature are parameter driven models requiring simulation methods for estimation.
- We provide observation driven alternatives.

Data: Moody's and FRED

- We observe data from Jan. 1980 to March 2010.
- ▶ 7,505 companies are rated by Moody's.
- We pool these into 5 ratings categories (IG, BB, B, C, D).
- \blacktriangleright We observe transitions, e.g. IG \rightarrow BB or C \rightarrow D
- ▶ There are J = 16 total types of transitions.
- ▶ 19,450 total credit rating transitions.
- 1,342 transitions are defaults.
- ▶ 1,125 measurements of loss-given default (LGD).
- ▶ LGD is the fraction of principal an investor loses when a firm defaults.
- We also observe six macroeconomic variables: industrial production growth, credit spread, unemployment, annual S&P500 returns, realized volatility, real GDP growth (qtly).

Models

- Credit ratings can be modeled using the (static) ordered probit model of CreditMetrics; one of the current industry standards, see Gupton Stein (2005).
- ▶ LGD's are often modeled by (static) beta distributions.
- GOAL: Build models that improve on current industry standards and are (relatively) easy to implement and estimate.
 - 1. Time-varying ordered logit
 - 2. Time-varying beta distribution
- Forecasting credit risk.
- Simulation of loss distributions and scenario analysis.
- ► Bank executives and regulators and can use them for "stress testing."

Mixed measurement model for credit risk

$$egin{array}{lll} y^{\kappa}_t & \sim & \mathsf{N}\left(\mu_t, \Sigma_m
ight) \\ y^c_{i,t} & \sim & \mathsf{Ordered\ Logit}\left(\pi_{ijt}, j \in \{\mathsf{IG}, \, \mathsf{BB}, \, \mathsf{B}, \, \mathsf{C}, \, \mathsf{D}\}\right), \\ y^c_{k,t} & \sim & \mathsf{Beta}\left(a_{kt}, b_{kt}\right), \qquad k = 1, \ldots, K_t, \end{array}$$

- y_t^m are the macro variables.
- $y_{i,t}^c$ are indicator variables for each credit rating j for firm i.
- \triangleright $y_{k,t}^r$ are the LGDs for the k-th default.
- $ightharpoonup K_t$ are the number of defaults in period t.
- \blacktriangleright μ_t , π_{ijt} , and (a_{kt}, b_{kt}) are functions of an $M \times 1$ vector of factors f_t .

Time varying Gaussian model for macro data

$$y_t^m \sim N(\mu_t, \Sigma_m),$$

 $\mu_t = Z^m f_t.$

- \triangleright Z^m is a $(6 \times M)$ matrix of factor loadings.
- $ightharpoonup \Sigma_m$ is a (6×6) diagonal covariance matrix.
- \tilde{S}_t is a selection matrix indicating which macro variables are observed at time t.

$$\begin{split} \nabla_t^m &= \left(\tilde{S}_t Z^m \right)' \left(\tilde{S}_t \Sigma_m \tilde{S}_t' \right)^{-1} \tilde{S}_t \left(y_t^m - \mu_t \right), \\ \mathcal{I}_t^m &= \left(\tilde{S}_t Z^m \right)' \left(\tilde{S}_t \Sigma_m \tilde{S}_t' \right)^{-1} \tilde{S}_t Z^m. \end{split}$$

Moody's monthly credit ratings transitions

The data have been pooled together each month.

Time-varying ordered logit

$$\begin{aligned} & y_{i,t}^c & \sim & \text{Ordered Logit} \left(\pi_{ijt}, j \in \{ \text{IG, BB, B, C, D} \} \right), \\ & \pi_{ijt} & = & \text{P} \left[R_{i,t+1} = j \right] = \tilde{\pi}_{ijt} - \tilde{\pi}_{i,j-1,t}, \\ & \tilde{\pi}_{ijt} & = & \text{P} \left[R_{i,t+1} \leq j \right] = \frac{\exp(\theta_{ijt})}{1 + \exp(\theta_{ijt})}, \\ & \theta_{ijt} & = & z_{ijt}^c - Z_{it}^{c\prime} f_t. \end{aligned}$$

- \triangleright y_{it}^c is an indicator variable for each rating type.
- ▶ $J^c = 5$ categories $j \in \{IG, BB, B, C, D\}$.
- R_{it} is the rating for firm i at the start of month t.
- $ightharpoonup \pi_{ijt}$ is the probability that firm i is in category j.
- $\tilde{\pi}_{i,D,t} = 0$ and $\tilde{\pi}_{i,IG,t} = 1$.
- To our knowledge, a time-varying ordered logit model is new.

Time-varying ordered logit

The contribution to the log-likelihood at time t is

$$\ln p_i(y_{it}^c|F^t, Y^{t-1}; \psi) = \sum_{i=1}^{N_t} \sum_{j=1}^{J^c} y_{ijt}^c \log (\pi_{ijt})$$

The score and information matrices are

$$\nabla_t^c = -\sum_{i=1}^{N_t} \sum_{j=1}^{J^c} \frac{y_{ijt}^c}{\pi_{ijt}} \cdot \dot{\pi}_{ijt} \cdot Z_{it}^c,$$

$$\mathcal{I}_t^c = \sum_{i=1}^{N_t} n_{it} \left(\sum_{i} \frac{\dot{\pi}_{ij,t}^2}{\pi_{ij,t}} \right) Z_{it}^c Z_{it}^{c\prime}$$

where

$$\dot{\pi}_{ijt} = \tilde{\pi}_{ijt} \left(1 - \tilde{\pi}_{ijt} \right) - \tilde{\pi}_{i,j-1,t} \left(1 - \tilde{\pi}_{i,j-1,t} \right).$$

Loss given default

- When a firm defaults, investors typically lose a fraction of their investment (alternatively, they recover a fraction of their investment).
- ► The fraction of losses experienced by investors also varies with the business cycle.
- ▶ We develop a new model for a time-varying beta distribution.
- See McNeil and Wendin (2007 JEmpFin) for Bayesian inference in a state space model.

Loss given default by transition type

Time-varying beta distribution

$$y_{k,t}^r \sim \operatorname{Beta}\left(a_{kt},b_{kt}
ight), \qquad k=1,\ldots,K_t,$$
 $a_{kt} = eta_r \cdot \mu_{kt}^r$ $b_{kt} = eta_r \cdot (1-\mu_{kt}^r)$ $\log\left(\mu_{kt}^r/\left(1-\mu_{kt}^r
ight)
ight) = z^r + Z^r f_t.$

- ▶ We observe $K_t \ge 0$ defaults at time t.
- ▶ $0 < y_{k,t}^r < 1$ is the amount lost conditional on the k-th default.
- μ_{kt}^r is the mean of the beta distribution.
- z^r is the unconditional level of LGDs.
- $ightharpoonup Z^r$ is a $(1 \times M)$ vector of factor loadings.
- \triangleright β_r is a scalar parameter

Time-varying beta distribution

The contribution to the log-likelihood at time t is

$$\ln p_i(y_{kt}^r|F^t, Y^{t-1}; \psi) = \sum_{k=1}^{K_t} (a_{kt} - 1) \log (y_{kt}^r) + (b_{kt} - 1) \log (1 - y_{kt}^r) - \log [B(a_{kt}, b_{kt})]$$

The score and information matrices are

$$\nabla_{t}^{r} = \beta_{r} \sum_{k=1}^{K_{t}} \mu_{kt}^{r} (1 - \mu_{kt}^{r}) (Z^{r})' (1, -1) \left((\log(y_{kt}^{r}), \log(1 - y_{kt}^{r}))' - \dot{B} (a_{kt}, b_{kt}) \right)$$

$$\mathcal{I}_{t}^{r} = \beta_{r} \sum_{k=1}^{K_{t}} (\mu_{kt}^{r} (1 - \mu_{kt}^{r}))^{2} (Z^{r})' (1, -1) \left(\ddot{B} (a_{kt}, b_{kt}) \right) (1, -1)' Z^{r}$$

where

$$\sigma_{kt}^2 = \mu_{kt}^r \cdot (1 - \mu_{kt}^r)/(1 + \beta_r).$$

Estimation details

- ▶ The macro data y_t^m has been standardized.
- ▶ We consider models with p = 1 and q = 1 factor dynamics.
- \blacktriangleright For identification of the level parameters, we set $\omega=0$ in the factor recursion:

$$f_{t+1} = A_1 s_t + B_1 f_t$$

- For identification of the factors, we also impose restrictions on Z^m, Z^c, and Z^r.
- ▶ Some parameters have been pooled for "rare" transitions; e.g., $IG \rightarrow D$ and $BB \rightarrow D$.
- Moody's re-defined several categories in April 1982 and Oct. 1999 causing incidental re-ratings (outliers), which we handle via dummy variables for these dates.

AIC, BIC, and log-likelihoods for different models

	(3,0,0)	(3,1,0)	(3,2,0)	(3,2,1)
log-Lik	-40056.2	-39817.1	-39780.8	-39780.0
AIC	80242.4	79776.2	79713.6	79716.0
BIC	80991.0	80594.0	80589.0	80615.0
	(400)	()	()	
	(4,0,0)	(4,1,0)	(4,2,0)	(4,2,1)
log-Lik	-39828.7	-39596.3	-39561.6	- 39560.4
log-Lik AIC				

The number of factors for each data type are represented by (m, c, r).

Parameter estimates for the (4,2,0) model

Factor dynamics and macro loadings Z^m

	$macro_1$	macro ₂	macro ₃	macro ₄	$frailty_1$	$frailty_2$	
Α	0.221***	0.154***	0.300***	0.282***	0.033***	0.036***	
	(0.011)	(0.014)	(0.016)	(0.023)	(0.006)	(0.010)	
В	0.966***	0.974***	0.924***	0.896***	0.974***	0.981***	
	(0.012)	(0.016)	(0.022)	(0.026)	(0.012)	(0.012)	
	Z^m						
	$macro_1$	$macro_2$	macro ₃	macro ₄	$frailty_1$	$frailty_2$	
IΡ	1.000	0.000	0.000	0.000	0.000	0.000	
UR	-0.467***	1.000	0.000	0.000	0.000	0.000	
	(0.061)						
RGDP	0.675***	-0.266**	0.000	0.295***	0.000	0.000	
	(0.070)	(0.120)		(0.068)			
Cr.Spr.	-0.275***	0.000	1.000	0.000	0.000	0.000	
	(0.075)						
$r_{S\&P}$	0.000	-0.358**	-0.293***	1.179***	0.000	0.000	
		(0.157)	(0.076)	(0.086)			
$\sigma_{S\&P}$	0.101*	0.245*	0.563***	1.000	0.000	0.000	
	(0.096)	(0.176)	(0.084)				

Parameter estimates for the (4,2,0) model

Credit rating and LGD loadings Z^c and Z^r

Z^c	macro ₁	macro ₂	macro ₃	macro ₄	$frailty_1$	$frailty_2$
IG	-0.064*	0.000	0.217***	-0.110*	1.520***	-0.727**
	(0.051)		(0.053)	(0.064)	(0.283)	(0.270)
BB	0.000	0.204***	0.158***	-0.077*	1.000	0.000
		(0.057)	(0.038)	(0.041)		
В	-0.154***	0.130**	0.150***	-0.121***	0.914***	0.000
	(0.036)	(0.056)	(0.031)	(0.038)	(0.137)	
CCC	-0.283***	0.000	0.076*	0.000	1.486***	1.000
	(0.052)		(0.048)		(0.418)	
	, ,		,		,	
	$macro_1$	macro ₂	macro ₃	macro ₄	$frailty_1$	$frailty_2$
Z^r	0.000	0.000	0.274***	-0.077*	0.938**	0.913***
			(0.045)	(0.057)	(0.315)	(0.199)

Estimated factors for the (4,2,0) model

Time-varying transition probabilities

Loss given default results

Top and bottom left are loss distributions. Top right is a plot of the mean through time. Bottom right are transition probabilities from BB \to D.

- Most financial institutions carry a large portfolio of credit related securities.
- ▶ Given a portfolio at time *T*, we can use the models to simulate different possible risk scenarios.
- ► GOAL: determine the amount of capital banks may need in the future.
- What happens if we do not include time-varying parameters f_t in the model?
- Scenario analysis:
 - 1. What happens if there is a negative shock to RGDP?
 - 2. What happens if there is an increase to credit spreads?

- ▶ At time T, a financial institution holds a portfolio of bonds.
- ▶ The goal is to forecast the loss distribution at time T + h.
- ▶ We assume a portfolio of firms with 1144 firms rated IG, 265 firms rated BB, 615 firms rated B, and 311 firms rated CCC.
- ▶ In the paper, we consider losses due only to default.
- For simplicity, we do not assume a time-varying discount function.
- ▶ We use 500,000 simulations.
- We can start at different values f_T .

Cumulative losses on a portfolio of bonds at different horizons.

Comparison between different values of f_T starting in a recession and expansion for the (4,2,0) model.

Comparison of cumulative loss distributions with/without factors.

Left: starting at $f_T = 0$. Right: f_T starting in a recession.

Conclusion and future work

- We introduce a new class of observation-driven models for mixed-measurement data which share exposure to common factors.
- Missing values and mixed frequencies are handled in a natural way.
- Using this approach, we develop new models for credit risk.
- The models can be used for simulating loss distributions, stress testing, and scenario analysis.
- Future work:
 - When computing loss distributions, current models do not account for changes in market prices of bonds or loans.
 - Current models depend on industry credit ratings by Moody's,
 Fitch, Standard & Poors.
 - Potential to use alternative sources of data.