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Motivation

I Economic time series often share common features, e.g.
business cycle dynamics.

I Economic time series may be continuous and/or discrete and
be observed at different frequencies.

I Credit risk application:

1. Credit conditions depend on the macroeconomy

2. Corporate defaults tend to “cluster” together in time.

3. Default probabilities are higher than can be explained by
covariates.



Contributions

I We introduce observation-driven mixed measurement panel
data models.

I The approach allows for non-linear, non-Gaussian models with
common factor across different distributions.

I Credit risk application: we develop new models for credit
ratings transitions and loss-given-default (LGDs).

I The models include:

1. Time-varying ordered logit
2. Time-varying beta distribution



Mixed measurement panel data models

yit ∼ pi (yit |F t ,Y t−1;ψ), i = 1, . . . ,N,

ft+1 = ω + B1ft + A1st

with log-likelihood function

log p(yt |F t ,Y t−1;ψ) =
N∑
i=1

δit log pi (yit |F t ,Y t−1;ψ)

I The observation vector yt is N × 1.

I The individual observations yit may come from different distributions.

I KEY: The factors ft may be common across distributions.

I δit is an indicator function equal to 1 if yit is observed and zero otherwise.
Missing values are naturally taken into account.



Mixed measurement panel data models

yit ∼ pi (yit |F t ,Y t−1;ψ), i = 1, . . . ,N,

ft+1 = ω + B1ft + A1st

The score function is

st = St∇t

∇t =
N∑
i=1

δit∇i,t =
N∑
i=1

δit
∂ log pi (yit |F t ,Y t−1;ψ)

∂ft
,

I KEY: The score function allows us to pool information from different
observations to estimate the common factor ft .

I The score function also allows us to “weight” the information coming
from different types of data.



Scaling matrix

Consider the eigenvalue-eigenvector decomposition of Fisher’s (conditional)
information matrix

It = Et−1[∇t∇′t ] = UtΣtU
′
t ,

We define the scaling matrix as

St = UtΣ
−1/2
t U ′t

I St is then the “square root” of a generalized inverse.

I The innovations st driving ft have an identity covariance matrix, when the
info. matrix is non-singular.

I The conditional information matrix is additive for our models:

It = Et−1[∇t∇′t ] =
N∑
i=1

δitEi,t−1[∇it∇′it ].



Log-likehood function and ML estimation

I The log-likelihood function for an observation-driven model can easily be
computed.

I The ML estimator is

ψ̂ = arg max
ψ

T∑
t=1

N∑
i=1

δit log pi (yit |F t ,Y t−1;ψ),

I Estimation is similar to a GARCH model.

I For a given value of ψ, the factors are computed {f0, f1, . . . , fT} from the
recursion:

ft+1 = ω + B1ft + A1st



Credit risk

I Growing econometrics literature on models for credit risk: McNeil et al.
(2005), Bauwens and Hautsch (JFEct, 2006), Gagliardini and Gourieroux
(JFEct, 2005), Koopman Lucas and Monteiro (JEct, 2008), Duffie et al.
(JFE, JoF 2008).

I Basic observations:

1. Probability of default varies over time with the business cycle.
2. Conditional on default, the loss (recovery rate) varies with the

business cycle.
3. We observe excess clustering of defaults and ratings transitions

beyond what can be explained by simply adding covariates.

4. The literature focuses on a credit risk or frailty factor.

I Industry standard models are too simple to capture these features.

I New models in the literature are parameter driven models requiring
simulation methods for estimation.

I We provide observation driven alternatives.



Data: Moody’s and FRED

I We observe data from Jan. 1980 to March 2010.

I 7, 505 companies are rated by Moody’s.

I We pool these into 5 ratings categories (IG, BB, B, C, D).

I We observe transitions, e.g. IG → BB or C → D

I There are J = 16 total types of transitions.

I 19,450 total credit rating transitions.

I 1,342 transitions are defaults.

I 1,125 measurements of loss-given default (LGD).

I LGD is the fraction of principal an investor loses when a firm defaults.

I We also observe six macroeconomic variables: industrial production
growth, credit spread, unemployment, annual S&P500 returns, realized
volatility, real GDP growth (qtly).



Models

I Credit ratings can be modeled using the (static) ordered
probit model of CreditMetrics; one of the current industry
standards, see Gupton Stein (2005).

I LGD’s are often modeled by (static) beta distributions.
I GOAL: Build models that improve on current industry

standards and are (relatively) easy to implement and estimate.

1. Time-varying ordered logit

2. Time-varying beta distribution

I Forecasting credit risk.

I Simulation of loss distributions and scenario analysis.

I Bank executives and regulators and can use them for “stress
testing.”



Mixed measurement model for credit risk

ym
t ∼ N (µt ,Σm)

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

I ym
t are the macro variables.

I y c
i,t are indicator variables for each credit rating j for firm i .

I y r
k,t are the LGDs for the k-th default.

I Kt are the number of defaults in period t.

I µt , πijt , and (akt , bkt) are functions of an M × 1 vector of factors ft .



Time varying Gaussian model for macro data

ym
t ∼ N (µt ,Σm) ,

µt = Zmft .

I Zm is a (6×M) matrix of factor loadings.

I Σm is a (6× 6) diagonal covariance matrix.

I S̃t is a selection matrix indicating which macro variables are observed at
time t.

∇m
t =

(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1

S̃t (ym
t − µt) ,

Imt =
(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1

S̃tZ
m.



Moody’s monthly credit ratings transitions

The data have been pooled together each month.
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Time-varying ordered logit

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,
πijt = P [Ri,t+1 = j ] = π̃ijt − π̃i,j−1,t ,

π̃ijt = P [Ri,t+1 ≤ j ] =
exp(θijt)

1 + exp(θijt)
,

θijt = zcijt − Z c′
it ft .

I y c
it is an indicator variable for each rating type.

I Jc = 5 categories j ∈ {IG, BB, B, C, D}.
I Rit is the rating for firm i at the start of month t.

I πijt is the probability that firm i is in category j .

I π̃i,D,t = 0 and π̃i,IG,t = 1.

I To our knowledge, a time-varying ordered logit model is new.



Time-varying ordered logit

The contribution to the log-likelihood at time t is

ln pi (y
c
it |F t ,Y t−1;ψ) =

Nt∑
i=1

Jc∑
j=1

y c
ijt log (πijt)

The score and information matrices are

∇c
t = −

Nt∑
i=1

Jc∑
j=1

y c
ijt

πijt
· π̇ijt · Z c

it ,

Ict =

Nt∑
i=1

nit

(∑
j

π̇2
ij,t

πij,t

)
Z c
itZ

c′
it

where

π̇ijt = π̃ijt (1− π̃ijt)− π̃i,j−1,t (1− π̃i,j−1,t) .



Loss given default

I When a firm defaults, investors typically lose a fraction of
their investment (alternatively, they recover a fraction of their
investment).

I The fraction of losses experienced by investors also varies with
the business cycle.

I We develop a new model for a time-varying beta distribution.

I See McNeil and Wendin (2007 JEmpFin) for Bayesian
inference in a state space model.



Loss given default by transition type
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Time-varying beta distribution

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

akt = βr · µr
kt

bkt = βr · (1− µr
kt)

log (µr
kt/ (1− µr

kt)) = z r + Z r ft .

I We observe Kt ≥ 0 defaults at time t.

I 0 < y r
k,t < 1 is the amount lost conditional on the k-th default.

I µr
kt is the mean of the beta distribution.

I z r is the unconditional level of LGDs.

I Z r is a (1×M) vector of factor loadings.

I βr is a scalar parameter



Time-varying beta distribution

The contribution to the log-likelihood at time t is

ln pi (y
r
kt |F

t ,Y t−1;ψ) =

Kt∑
k=1

(akt − 1) log (y r
kt) + (bkt − 1) log (1− y r

kt)

− log [B (akt , bkt)]

The score and information matrices are

∇r
t = βr

Kt∑
k=1

µrkt(1− µrkt) (Z r )′ (1,−1)
(

(log(y r
kt), log(1− y r

kt))′ − Ḃ (akt , bkt)
)

Irt = βr

Kt∑
k=1

(µrkt(1− µrkt))2 (Z r )′ (1,−1)
(
B̈ (akt , bkt)

)
(1,−1)′ Z r

where

σ2
kt = µr

kt · (1− µr
kt)/(1 + βr ).



Estimation details

I The macro data ym
t has been standardized.

I We consider models with p = 1 and q = 1 factor dynamics.

I For identification of the level parameters, we set ω = 0 in the factor
recursion:

ft+1 = A1st + B1ft

I For identification of the factors, we also impose restrictions on Zm,Z c ,
and Z r .

I Some parameters have been pooled for “rare” transitions; e.g.,
IG → D and BB → D.

I Moody’s re-defined several categories in April 1982 and Oct. 1999
causing incidental re-ratings (outliers), which we handle via dummy
variables for these dates.



AIC, BIC, and log-likelihoods for different models

(3,0,0) (3,1,0) (3,2,0) (3,2,1)

log-Lik -40056.2 -39817.1 -39780.8 -39780.0
AIC 80242.4 79776.2 79713.6 79716.0
BIC 80991.0 80594.0 80589.0 80615.0

(4,0,0) (4,1,0) (4,2,0) (4,2,1)

log-Lik -39828.7 -39596.3 -39561.6 -39560.4
AIC 79805.3 79352.7 79293.2 79294.8
BIC 80658.0 80274.0 80273.0 80297.0

The number of factors for each data type are represented by (m, c, r).



Parameter estimates for the (4,2,0) model
Factor dynamics and macro loadings Zm

macro1 macro2 macro3 macro4 frailty1 frailty2

A 0.221∗∗∗ 0.154∗∗∗ 0.300∗∗∗ 0.282∗∗∗ 0.033∗∗∗ 0.036∗∗∗

(0.011) (0.014) (0.016) (0.023) (0.006) (0.010)
B 0.966∗∗∗ 0.974∗∗∗ 0.924∗∗∗ 0.896∗∗∗ 0.974∗∗∗ 0.981∗∗∗

(0.012) (0.016) (0.022) (0.026) (0.012) (0.012)

Zm

macro1 macro2 macro3 macro4 frailty1 frailty2

IP 1.000 0.000 0.000 0.000 0.000 0.000 ∗∗∗

(0.004)
UR -0.467∗∗∗ 1.000 0.000 0.000 0.000 0.000 ∗∗∗

(0.061) (0.004)
RGDP 0.675∗∗∗ -0.266∗∗ 0.000 0.295∗∗∗ 0.000 0.000 ∗∗∗

(0.070) (0.120) (0.068) (0.033)
Cr.Spr. -0.275∗∗∗ 0.000 1.000 0.000 0.000 0.000 ∗∗∗

(0.075) (0.004)
rS&P 0.000 -0.358∗∗ -0.293∗∗∗ 1.179∗∗∗ 0.000 0.000 ∗∗∗

(0.157) (0.076) (0.086) (0.012)
σS&P 0.101∗ 0.245∗ 0.563∗∗∗ 1.000 0.000 0.000 ∗∗∗

(0.096) (0.176) (0.084) (0.042)



Parameter estimates for the (4,2,0) model

Credit rating and LGD loadings Z c and Z r

Z c macro1 macro2 macro3 macro4 frailty1 frailty2

IG -0.064∗ 0.000 0.217∗∗∗ -0.110∗ 1.520∗∗∗ -0.727∗∗

(0.051) (0.053) (0.064) (0.283) (0.270)
BB 0.000 0.204∗∗∗ 0.158∗∗∗ -0.077∗ 1.000 0.000

(0.057) (0.038) (0.041)
B -0.154∗∗∗ 0.130∗∗ 0.150∗∗∗ -0.121∗∗∗ 0.914∗∗∗ 0.000

(0.036) (0.056) (0.031) (0.038) (0.137)
CCC -0.283∗∗∗ 0.000 0.076∗ 0.000 1.486∗∗∗ 1.000

(0.052) (0.048) (0.418)

macro1 macro2 macro3 macro4 frailty1 frailty2 βr
Z r 0.000 0.000 0.274∗∗∗ -0.077∗ 0.938∗∗ 0.913∗∗∗ 2.572∗∗∗

(0.045) (0.057) (0.315) (0.199) (0.094)



Estimated factors for the (4,2,0) model
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Time-varying transition probabilities
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Loss given default results
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time. Bottom right are transition probabilities from BB → D.



Simulating cumulative loss distributions

I Most financial institutions carry a large portfolio of credit
related securities.

I Given a portfolio at time T , we can use the models to
simulate different possible risk scenarios.

I GOAL: determine the amount of capital banks may need in
the future.

I What happens if we do not include time-varying parameters ft
in the model?

I Scenario analysis:
1. What happens if there is a negative shock to RGDP?

2. What happens if there is an increase to credit spreads?



Simulating cumulative loss distributions

I At time T , a financial institution holds a portfolio of bonds.

I The goal is to forecast the loss distribution at time T + h.

I We assume a portfolio of firms with 1144 firms rated IG, 265
firms rated BB, 615 firms rated B, and 311 firms rated CCC.

I In the paper, we consider losses due only to default.

I For simplicity, we do not assume a time-varying discount
function.

I We use 500, 000 simulations.

I We can start at different values fT .



Simulating cumulative loss distributions

Cumulative losses on a portfolio of bonds at different horizons.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150

1 month

expansion

recession

0.00 0.01 0.02 0.03 0.04

3 months

recession

expansion

0.025 0.050 0.075 0.100 0.125

12 months

recession

expansion

0.05 0.10 0.15 0.20 0.25

36 months

recession

expansion

Comparison between different values of fT starting in a recession and expansion for

the (4,2,0) model.



Simulating cumulative loss distributions

Comparison of cumulative loss distributions with/without factors.
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Conclusion and future work

I We introduce a new class of observation-driven models for
mixed-measurement data which share exposure to common
factors.

I Missing values and mixed frequencies are handled in a natural
way.

I Using this approach, we develop new models for credit risk.

I The models can be used for simulating loss distributions,
stress testing, and scenario analysis.

I Future work:
I When computing loss distributions, current models do not account

for changes in market prices of bonds or loans.
I Current models depend on industry credit ratings by Moody’s,

Fitch, Standard & Poors.
I Potential to use alternative sources of data.


