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Abstract
In dynamic conditional score models, the innovation term of the

dynamic specification is the score of the conditional distribution. These
models are investigated for non-negative variables, using distributions
from the generalized beta and generalized gamma families. The log-
normal distribution is also considered. Applications to the daily range
of stock market indices are reported and models are fitted to duration
data.
KEYWORDS: Burr distribution; Durations; Range; Score; Un-

observed components; Weibull distribution.
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1 Introduction

Many variables, particularly those associated with intra-day financial data,
are intrinsically non-negative. Examples include the time between trades,
the range of a price over a day and realized volatility; see Brownlees and
Gallo (2010). Distributions appropriate for non-negative variables include
the gamma, Weibull, Burr and F . As a rule, the location and scale for such
distributions are closely connected, usually depending on the same parame-
ter. If the location/scale is to change over time, the use of an exponential
link function ensures that it remains positive. The unobserved components
model is then

yt = εt exp(λt), 0 ≤ yt <∞, t = 1, ...., T,
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where λt = lnµt depends on a disturbance term, ηt, which may or may not
be correlated with the standardized IID variable, εt. In the first-order model

λt+1 = δ + φλt + ηt, ηt ∼ NID
(
0, σ2

η

)
; (1)

see, for example, Bauwens and Veredas (2004) and Bauwens and Hautsch
(2009, p 964-5). Taking logarithms, that is

ln yt = λt + ln εt, t = 1, ...., T, (2)

gives a linear state space form. For some variables, like the logarithm of
range, quasi-maximum likelihood (QML) estimation using the Kalman filter
may reasonably good because ln εt is often close to a normal distribution.
Nevertheless effi cient estimation usually requires the use of simulation-based
methods.
Multiplicative error models (MEMs) provide an observation-driven ap-

proach for dynamic non-negative variables; see Russell and Engle (2010) for
a recent survey. In these models, the conditional mean, µtpt−1, and hence the
conditional scale, is a linear function of past observations. The model can be
written

yt = εtµtpt−1, 0 ≤ yt <∞, t = 1, ...., T, (3)

µt+1pt = δ + βµtpt−1 + αyt, δ, α, β > 0 (4)

where εt has a distribution with mean one. The emphasis in early work was on
the gamma and Weibull distributions, both of which include the exponential
distribution as a special case.
An exponential link function, µtpt−1 = exp(λtpt−1) ensures that µtpt−1 is

positive. Exponential link functions have been studied and applied by Brandt
and Jones (2006) and Bauwens and Giot (1997). However, it is the combina-
tion of the exponential link function with the conditional score that facilitates
the development of an asymptotic distribution theory and enables compre-
hensive expressions for the moments, autocorrelations and forecasts to be
derived. The practical implication is that the conditional score for a heavy-
tailed distribution will give extreme observations less weight than they would
receive in the standard MEM framework.
It is not always convenient to define εt so that its mean is one. For

many purposes it is better to work with a measure of scale and to set its
logarithm equal to λtpt−1. Since scale and location only differ by a factor
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of proportionality, the statistical properties of parameters estimated with
an exponential link function are essentially unchanged. The model can be
written

yt = εt exp(λtpt−1), t = 1, ...., T, (5)

λt+1|t = (1− φ)ω + φλt|t−1 + κut, |φ| < 1, (6)

where ω is the unconditional mean of λtpt−1 and exp(λtpt−1) is equal to a
measure of scale,with the distribution of εt standardized accordingly. The
dynamics are driven by the conditional score, ut,that is the first derivative
of the logarithm of the conditional probability density function of yt.We call
such models dynamic conditional score (DCS) models1.
The statistical theory of DCS models for non-negative variables is sim-

plified by the fact that for, the gamma and Weibull distributions, the score
and its derivatives are dependent on a gamma variate, while for the Burr and
F-distributions the dependence is on a beta variate. The log-logistic distri-
bution is a special case of the Burr and hence is also dependent on a beta
variable. In fact the theory can be rationalized by regarding gamma and
Weibull as special cases of the generalized gamma (GG) distribution, while
the Burr and log-logistic distributions are special cases of the generalized
beta (GB) distribution. The F-distribution is related to the GB distribution
in that the special case when the degrees of freedom are the same is equiv-
alent to a special case of GB. The generalized gamma and the generalized
beta are both described in Kotz and Kleiber (2003). The distributions in
the GB class are particularly useful in situations where there is evidence of
heavy tails.
The first section below sets out some generic properties of DCS models

for non-negative distributions and this is followed by a detailed treatment of
generalized gamma, generalized beta and F-distributions. Section 5 discusses
the lognormal model and it is noted that, because ln yt is the sum of volatility
and noise, the model can be treated as parameter driven or observation
driven. After a section on tests and model selection, models are fitted to
intra-day data on range and duration.

1Rather than the term dynamic conditional score models, which we use here, Creal,
Koopman and Lucas ( 2011) prefer the name generalized autoregressive score (GAS) .
However, despite the attraction of the acronym, the term ’autoregressive ’conveys a more
limited dynamic structure than is actually the case.
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2 General properties

The gamma distribution plays a similar role to the role of the Gaussian
distribution in modeling location and scale in two-sided distributions. The
ML estimators of mean and variance in samples of IID observations from a
Gaussian distribution are linear combinations of the observations and their
squares respectively. The ML estimator of location/scale for a gamma distri-
bution is likewise a linear combination of the observations. For more complex
dynamic models, estimation procedures associated with the gamma distrib-
ution provide a simple benchmark against which to assess other methods, in
the same way as do methods associated with the normal. However, Gaussian
models are vulnerable to outliers and the same is true of a MEM model or
any other model, including a DCS model, which assumes a gamma distrib-
ution; see, for example, Victoria-Feser and Ronchetti (1994) and Kotz and
Kleiber (2003, p 165). Using a more heavy-tailed conditional distribution
does not solve the problem within the MEM framework, but it does when
the DCS approach is adopted.
This section sets out the general approach to formulating DCS models for

non-negative variables and explains how to derive their properties. The use
of an exponential link function for each of the distributions considered yields
a score that is independent of λtpt−1 and is a linear function of IID variables,
which in turn depend on the standardized variables, εt.

2.1 Heavy tails

Although kurtosis is a good measure of heavy-tail behaviour when there are
two tails, it is not satisfactory for non-negative variables. The coeffi cient
of variation (CV), which is defined as the ratio of the standard deviation
to mean, is a useful measure for characterizing distributions of non-negative
variables; see, for example, Bauwens et al (2004, table 2). A distribution
is said to exhibit overdispersion if the CV exceeds one. However, as will
become apparent later, overdispersion is neither necessary nor suffi cient for
a distribution to be heavy-tailed and so the CV is of limited value in this
respect.
The most widely accepted criterion for classifying a distribution as heavy-

tailed is, like overdispersion, by reference to the exponential distribution; see
Asmussen (2003).
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Definition 1 A distribution is said to be heavy-tailed if

lim
y→∞

exp(y/α)F (y) =∞ for all α > 0, (7)

where F (y) = Pr(Y > y) = 1− F (y) is the survival function.

When y has an exponential distribution, F (y) = exp(−y/α), so exp(y/α)F (y) =
1 for all y. Overdispersion arises when the CV exceeds the CV for an expo-
nential distribution, that is unity, but overdispersion is neither necessary not
suffi cient for (7) to hold.

Definition 2 A distribution is said to be long-tailed if, for a fixed value of
x,

lim
y→∞

Pr(Y > y + x | y) = 1. (8)

When a distribution is long-tailed, the probability of an observation being
bigger than a value at some point beyond y, given that it is known to be at
least y, is close to one. In other words for large y, F (y + x) ' F (y). All
long-tailed distributions are heavy-tailed, but the converse is not true.
The above criteria are related to the behaviour of the conditional score

and whether or not it discounts large observations.

2.2 Moments

When λtpt−1 is generated by a stationary process with mean ω, that is

λtpt−1 = ω +
∞∑
j=1

ψjut−j, (9)

with ψj, j = 1, 2, .., fixed,

E (ymt ) = E (εmt )E(emλtpt−1) = E (εmt ) emω
∞∏
j=1

E(emψjut−j), m = 1, 2, ...

(10)
For all the models considered here, the u′ts are linear functions of independent
gamma, beta or normal variates, so the terms E(expmψjut−j), j = 1, 2, .., are
all moment generating functions (MGFs) with a known analytic form. When
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ut is beta distributed, the existence of moments of yt depends solely on the
existence of moments for the conditional distribution, the reason being that
the beta variable is bounded. For models in which ut is gamma distributed,
conditions need to be placed on the parameters of the dynamic scale process.
The effect of volatility is to inflate the moments. In other words, the

unconditional moments are greater than , or equal to, the conditional ones.
Specifically, E (ymt ) ≥ E (εmt ) because, from Jensen’s inequality, E

(
emλtpt−1

)
≥

expE (mλtpt−1) .
Expressions for the autocorrelations of the observations to a positive

power may also be derived by making use of the formulae for moment gen-
erating functions, but the details are beyond the scope of this paper.

2.3 Forecasts

When λtpt−1 has a moving average representation, as in (9), the optimal
estimator of λT+`pT+`−1 is its conditional expectation

λT+`pT = ω +
∞∑
k=0

ψ`+kuT−k, ` = 2, 3, ..

The prediction error is
∑`−1

j=1 ψjuT+`−j and the conditional moments can be
found in a similar way to the unconditional moments, leading to the following
results. Thus

ET
(
eλT+`pT+`−1

)
= eλT+`pT

`−1∏
j=1

E(eψjut−j), ` = 2, 3, ..

The volatility of the volatility is, for ψj < γ/2, j = 1, 2, ...,

V oV (`) = ET
(
e2λT+`pT+`−1

)
− (ET

(
eλT+`pT+`−1

)
)2, ` = 2, 3, ..

= e2λT+`pT

`−1∏
j=1

E(e2ψjut−j)−
(
`−1∏
j=1

E(eψjut−j)

)2
 .

Expressions for the optimal (MMSE) predictor of the observation at T+`,
that is ET (yT+`), and the corresponding predictor of the variance follow.
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Furthermore it is straightforward to simulate the multi-step predictive dis-
tributions because

yT+` = εT+` exp(
`−1∑
j=1

ψjuT+`−j)[exp(λT+`pT )]. (11)

and, as already, noted ut is a linear function of gamma or beta variates.

2.4 Asymptotic distribution of the maximum likeli-
hood estimator

For the first-order model, (6), define

a = φ+ κE

(
∂ut
∂λ

)
(12)

b = φ2 + 2φκE

(
∂ut
∂λ

)
+ κ2E

(
∂ut
∂λ

)2

≥ 0

c = κE

(
ut
∂ut
∂λ

)
,

Let λ1 be the time-varying parameter, which is a function of κ, φ and ω,and
let λ2 denote the fixed parameters. The static information matrix for the
distribution in question is combined with the matrix

D(ψ) = D

 κ
φ
ω

 =
1

1− b

 A D E
D B F
E F C

 (13)

where

A = σ2
u, B =

κ2σ2
u(1 + aφ)

(1− φ2)(1− aφ)
, C =

(1− φ)2(1 + a)

1− a ,

D =
aκσ2

u

1− aφ, E =
c(1− φ)

1− a and F =
acκ(1− φ)

(1− a)(1− aφ)
,

to give the full information matrix

I(ψ,λ2) =

 E
(
∂ lnLt
∂λ1

)2

D(ψ)

 0
0

1−φ
1−a

E
(
∂ lnLt
∂λ1

∂ lnLt
∂λ′2

)
E
(
∂ lnLt
∂λ1

∂ lnLt
∂λ2

) (
0 0 1−φ

1−a
)

E
(
∂ lnLt
∂λ2

∂ lnLt
∂λ′2

)
 .
(14)
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Proof of consistency and asymptotic normality follows from Harvey (2011);
see appendix for more details. The condition b < 1 needs to be satisfied and
this imposes constraints on κ. Provided these constraints are satisfied and
κ 6= 0, the ML estimators of ψ and λ2, denoted ψ̃ and λ̃2, are consistent
and the limiting distribution of

√
T (ψ̃

′
−ψ′, λ̃2−λ2)′ is multivariate normal

with mean vector zero and covariance matrix

V ar(ψ̃, λ̃2) = I−1(ψ,λ2). (15)

3 Generalized gamma distribution

The pdf of a gamma variable, gamma(α, γ), is

f(g) = α−γgγ−1e−g/α/Γ(γ), 0 ≤ g <∞, α, γ > 0, (16)

where α is the scale parameter. When the conditional distribution of yt in
(5) is gamma(α, γ), with εt standardized by setting its scale equal to one, the
exponential link function αtpt−1 = exp(λtpt−1) = µtpt−1/γ, t = 1, .., T, yields
the log-density for the t− th observation as

ln ft(ψ, γ) = −γλtpt−1 +(γ−1) ln yt−yt exp(−λtpt−1)− ln Γ(γ), t = 1, ...., T.

The conditional score is then

ut = yt/ exp(λtpt−1)− γ = εt − γ, t = 1, ...., T,

with σ2
u = γ. Thus the score variables are just the centered IID standardized

gamma variables of (5).
The pdf of of the Weibull distribution is

f(y;α, υ) =
υ

α

( y
α

)υ−1

exp (−(y/α)υ) , 0 ≤ y <∞, α, υ > 0.

where α is the scale and υ is the shape parameter. The mean is µ = αΓ(1 +
1/υ) and the variance is α2Γ(1 + 2/υ)− µ2. Since F (y) = exp[−(y/α)υ], the
expression in Definition 1 is exp[y/α−(y/α)υ]. Hence theWeibull distribution
has a heavy tail when υ < 1 and in this case a plot of the score shows that
large observations are discounted.
The properties of the gamma model are relatively easy to derive. How-

ever, most of them are given as a special case of the generalized gamma
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distribution, as are the properties of the Weibull distribution. The general-
ized gamma (GG) distribution is

f(y;α, γ, υ) =
υ

αΓ(γ)

( y
α

)υγ−1

exp (−(y/α)υ) , 0 ≤ y <∞, α, γ, υ > 0,

The mean is αΓ(γ+1/υ)/Γ(γ). A full description is given in Kleiber and Kotz
(2003, ch 5). The gamma distribution is obtained for υ = 1, while setting
γ = 1 with υ > 0 yields the Weibull distribution. Setting both parameters
equal to one gives the exponential distrbution.

Remark 3 For a gamma distribution, the coeffi cient of variation is 1/γ.
Thus there is overdispersion if γ < 1. Similarly the Weibull distribution dis-
plays overdispersion when υ < 1. As shown earlier, a Weibull distribution
has a heavy tail when υ < 1. However, a gamma distribution never has a
heavy tail and this feature is consistent with its linear score function.

The log-density for the t−th observation when αtpt−1 is time-varying with
an exponential link function is

ln ft(λ, γ,υ) = ln υ − λtpt−1 + (υγ − 1) ln(yte
−λtpt−1)− (yte

−λtpt−1)υ − ln Γ(γ)

giving a score of

∂ ln ft
∂λtpt−1

= ut = υ(yte
−λtpt−1)υ − υγ = υ(ευt − γ) (17)

The following result, which can be proved directly by change of variable,
enables the properties of the model to be obtained relatively easily.

Proposition 4 For the generalized gamma distribution, the variables gt =
ευt = (yte

−λtpt−1)υ are IID as gamma(1, γ) at the true parameter values.

3.1 Moments

Proposition 5 For the generalized gamma model defined by (5) and (9),
and ut as in (17), the m − th moment exists if and only if ψj < 1/υm, for
all j = 1, 2, ..., and is given by the expression

E (ymt ) =
Γ(γ +m/υ)

Γ(γ)
em(ω−γυΣψj)

∞∏
j=1

(1−υmψj)−γ, ψj < 1/υm, m > 0.

(18)
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Proof. In (10) ut = υ(ευt − γ) and the formula for the moment generating
function of a standardized gamma variate is γγ(c) = E(ecg) = (1 − c)−1/γ.
Since c = υmψj, the result follows.
Conditional moments of forecasts can be computed in a similar way. It is

easy to simulate the multi-step predictive distribution simply by generating
independent gamma variates.

3.2 Asymptotic distribution of ML estimators

Since

∂2 ln ft

∂λ2 = −υ2(yte
−λ)υ = −υ2gt, t = 1, ..., T,

both the score and its derivative depend on gt. Hence a, b and c are easily
evaluated.

The information matrix is given in Kleiber and Kotz (2003, p 157).
When the scale parameter is replaced by its logarithm, λ, the information
matrix is independent of λ and given by

I

 λ
γ
υ

 =

 υ2γ υ −1− γψ(γ)
υ ψ′(γ) −ψ(γ)/υ

−1− γψ(γ) −ψ(γ)/υ υ−2{1 + ψ(γ)[2 + ψ(γ)] + γψ′(γ)}


where ψ(γ) and ψ′(γ) are the digamma and trigamma functions respectively.

Proposition 6 Consider the first-order model, (6), with unknown parame-
ters ψ =(κ, φ, ω)′. Provided that |φ| < 1 and b < 1, the limiting distribution
of
√
T (ψ̃

′
− ψ′, γ̃ − γ, υ̃ − υ)′ is multivariate normal with zero mean and

covariance matrix given by the inverse of (14) with λ2 = (γ, υ)′ and D(ψ)
is as in (13) with

a = φ− γυ2κ

b = φ2 − 2φκυ2γ + κ2υ4(1 + γ)γ

c = −κυ3γ,

and σ2
u = υ2γ.
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Proof. Since gt ∼ gamma(1, γ),

E

[(
∂ut
∂λ

)k]
= (−1)kυ2kΓ(k + γ)

Γ(γ)
, k = 1, 2, .,

To find a and b, note that, from the formula above, E(u′t) = −υ2γ and
E(u′2t ) = υ4(1 + γ)γ, while for c

E

[
ut

(
∂ut
∂λ

)]
= υ3E

[
g2
t − γgt

]
= −υ3γ.

For the exponential distribution, given by setting γ = υ = 1, V ar
(
ψ̃
)

=

D−1(ψ), while the expression for b is b = φ2−2φκ+2κ2. The constraint that
b < 1 permits a wide range of admissible values of κ and the same is true for
gamma and Weibull distributions. As will be seen later, estimates obtained
in practice are typical quite small.

4 Generalized beta distribution

The generalized beta distribution (of the second kind)

f(y) =
ν(y/α)νξ−1

αB(ξ, ς) [(y/α)ν + 1]
ξ+ς

, α, ν, ξ, ς > 0 (19)

where α is the scale parameter, ν, ξ and ς are shape parameters and B(ξ, ς)
is the beta function.
If all three shape parameters are unrestricted, the model is diffi cult to esti-

mate. However, the GG distribution is extremely useful from the theoretical
point of view as it contains many important distributions as special cases.
These include the log-logistic and Burr distributions. The F-distribution is
closely related. Many of these distributions have been found useful as models
of income and wealth and losses in insurance; see Kleiber and Kotz (2003,
ch. 6). All have potential in financial econometrics,
The log-logistic distribution contains only one shape parameter and so,

like the gamma and Weibull distributions, it is relatively easy to handle. We
therefore begin by examinating this distribution before embarking on the
general case.
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4.1 Log-logistic distribution

The pdf for the log-logistic distribution is

f(y) = (ν/α)(y/α)ν−1(1 + (y/α)ν)−2, ν, α > 0.

A time-varying scale with an exponential link function gives a log-density of

ln ft(ψ, ν) = ln ν−νλtpt−1+(ν−1) ln yt−2 ln(1+(yte
−λtpt−1)ν), t = 1, ..., T,

and so
∂ ln ft
∂λtpt−1

= ut =
2ν(yte

−λtpt−1)ν

1 + (yte−λtpt−1)ν
− ν = 2νbt(1, 1)− ν, (20)

where

bt(1, 1) =
(yte

−λtpt−1)ν

1 + (yte−λtpt−1)ν

is distributed as beta(1, 1). This result may be shown directly from the change
of variable. Since a beta(1, 1) distribution is a standard uniform distribution,
it is immediately apparent that the expectation of ut is zero. Furthermore
σ2
u = ν2/3.
The asymptotic theory for the log-logistic distribution is not complicated.

Differentiating the score gives

∂ut
∂λtpt−1

= −2ν2bt(1− bt).

Provided that b < 1, the limiting distribution of
√
T (ψ̃

′
− ψ′, ν̃ − ν)′ for a

stationary first-order dynamic equation, (6), is multivariate normal with zero
mean and covariance matrix

V ar

(
ψ̃
ν̃

)
=

[
(3/ν2)D−1(ψ) 0

0 ν2/1.430

]
, (21)

whereD(ψ) is as in (13) with σ2
u = ν2/3, a = φ−κν2/3, b = φ2−(2/3)ν2φκ+

2κ2ν4/15 and c = 0.

4.2 Asymptotic theory for the generalized beta distri-
bution

The log-density for the generalized beta (GB2) distribution with an expo-
nential link function for the scale is

ln ft(ν, ξ, ς) = ln ν−νξλtpt−1+(νξ−1) ln yt−(ξ+ς) ln((yte
−λtpt−1)ν)+1)−lnB(ξ, ς),
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and so

∂ ln ft
∂λtpt−1

= ut = ν(ξ + ς)
(yte

−λtpt−1)ν

(yte−λtpt−1)ν + 1
− νξ (22)

= ν(ξ + ς)bt(ξ, ς)− νξ,

where

bt(ξ, ς) =
(yte

−λtpt−1)ν

(yte−λtpt−1)ν + 1
, t = 1, ..., T,

Since 0 ≤ bt(ξ, ς) ≤ 1, it follows that as y → ∞, the score approaches an
upper bound of νς.
The following result can be proved directly.

Proposition 7 At the true parameter values, the variable bt(ξ, ς) is IID with
a beta(ξ, ς) distribution.

The static information matrix can be found in Kleiber and Kotz ( 2003,
p194). Adapting it to the exponential link function gives

I


λ
ν
ξ
ς

 =


ν2ξς

1+ξ+ς
I12

νς
ξ+ς

−νξ
ξ+ς

I21 I22 I23 I24
νς
ξ+ς

I23 ψ′(ξ)− ψ′(ξ + ς) −ψ′(ξ + ς)
−νξ
ξ+ς

I24 −ψ′(ξ + ς) ψ′(ς)− ψ′(ξ + ς)

 , (23)

where

I21 = I12 =
ξ − ς − ξς (ψ(ξ)− ψ(ς))

1 + ξ + ς

I23 = I32 = −ς (ψ(ξ)− ψ(ς))− 1

ν(ξ + ς)

I24 = I42 = −ξ (ψ(ς)− ψ(ξ))− 1

ν(ξ + ς)

and

I22 =
1

ν2(1 + ξ + ς)

[
1 + ξ + ς + ξς (ψ′(ξ) + ψ′(ς)) +

(
ψ(ς)− ψ(ξ) +

ξ − ς
ξς

)2

−
(
ξ2 + ς2

ξ2ς2

)]
.
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The proposition below follows from proposition 7 on the score and the
fact that its derivative is

∂ut
∂λtpt−1

=
−ν2(ξ + ς)(yte

−λtpt−1)ν

((yte−λtpt−1)ν + 1)2
= −ν2(ξ + ς)bt(1− bt). (24)

The following result is used for a beta (α, β) variable:

E(bh(1− b)k) =
B(α + h, β + k)

B(α, β)
, h > −α, k > −β. (25)

A proof of consistency and asymptotic normality of the ML estimator poses
no serious problems because of the boundedness of the score and its deriva-
tives.

Proposition 8 For a conditional GB2 distribution with a first-order station-
ary dynamic model with b < 1, the limiting distribution of

√
T (ψ̃

′
−ψ′,ν̃−ν,

ξ̃ − ξ, ς̃ − ς)′ is multivariate normal with covariance matrix given by the in-
verse of (14) with the static information matrix given by (23) and a, b and c
obtained using (25) to evaluate

E

[
∂ut
∂λ

]
= −ν2(ξ + ς)E(bt(1− bt)) =

−ν2ξς

ξ + ς + 1
,

E

[
∂ut
∂λ

]2

= ν4(ξ + ς)2E[b2
t (1− bt)2] =

ν4(ξ + ς)ξς (ς + 1) (ξ + 1)

(ς + ξ + 3)(ς + ξ + 2)(ς + ξ + 1)

and

E

[
ut
∂ut
∂λ

]
= ν3(ξ + ς)2E[b2

t (1− bt)]− ν3(ξ + ς)E[bt(1− bt)]

=
ν3ξς(ξ + ς) (ξ + 1)

(ς + ξ + 2)(ς + ξ + 1)
− ν3ξς

(ξ + ς + 1)
.

Corollary 9 For the log-logistic distribution, ξ = ς = 1, and the result in
(21) follows because

I11 = ν2/3, I12 = 0 and

I22 =
1

3ν2
[3 + ψ′(1) + ψ′(1)− 2] =

1

3ν2

[
π2

3
+ 1

]
= 1. 430 0/ν2.
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4.3 Moments and forecasts for the generalized beta
distribution

Expressions for unconditional moments and ACFs of observations raised to
any positive power can be derived, as can the conditional expectations needed
for forecasts.The unconditional expectation of exp(mλtpt−1) is needed but this
can be found from the MGF of a beta variate. Suppose b has a beta(α, β)
distribution and c is a finite number. Then

Mβ(c;α, β) = E(ecb) = 1 +
∞∑
k=1

(
k−1∏
r=0

α + r

α + β + r

)
ck

k!
, α, β > 0 (26)

The above expression is Kummer’s (confluent hypergeometric) function, 1F1(α; β; c),
and it is available as a standard routine in many packages.

Proposition 10 For the generalized beta model defined by (5) and (9), and
ut as in (22), the m − th moment exists if and only if ψj < 1/νm, for all
j = 1, 2, ..., and is given by the expression

E(ymt ) = E(εmt )E exp(mλtpt−1), −νξ < m < νς,

where the moments of the standardized variable are

E(εmt ) =
Γ(ξ +m/ν)Γ(ς −m/ν)

Γ(ξ)Γ(ς)
, −νξ < m < νς,

and

E exp(mλtpt−1) = em(ω−νξΣψj)
∞∏
j=1

Mβ(ν(ξ + ς)mψj; ξ, ς). (27)

with Mβ(c;α, β) denoting the MGF of a standardized beta variate, (26).

Proof. In (10) ut = ν(ξ+ς)bt−νξ and from (26) by setting c = ν(ξ+ς)mψj.

The optimal predictor of the scale is

αT+`pT = ET
(
eλT+`pT+`−1

)
= eλT+`pT em(ω−ν(ξ+ς)mΣψj)

∞∏
j=1

eνξmΣψjMβ(ν(ξ + ς)mψj; ξ, ς),
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while the predictor of level is

µT+`pT =
Γ(ξ + 1/ν)Γ(ς − 1/ν)

Γ(ξ)Γ(ς)
αT+`pT , ` = 2, 3, .., νς > 1.

The volatility of the volatility can be similarly found as can the predic-
tor of the variance of yT+`. It is easy to simulate the multi-step predictive
distribution by generating independent beta variates in (11).

4.4 Burr distribution

The generalized (Type XII) Burr distribution, also known as the Singh-
Maddala distribution, is obtained by setting ξ = 1. There are a number of
different parameterizations; see, for example, Tadikamalla (1980) and Gram-
mig and Maurier (2000). But the one based on the GB2 distribution is most
convenient. The Weibull distribution can be obtained by letting ς → ∞.
Indeed the Burr distribution is sometimes called the compound Weibull.
The log-logistic distribution is a special case of the Burr distribution

obtained by setting ς = 1. When a Burr distribution is fitted, a Wald test of
ς = 1 is straightforward.
The CDF, and hence the PIT, of a Burr variate has, as Kleiber and Kotz

(2003, p198) put it, the ‘pleasantly simple form’

F (y) = 1−
[(
ye−λtpt−1

)ν
+ 1
]−ς

. (28)

The quantile function is equally simple, namely

F−1(τ) = expλtpt−1[(1− τ)−1/ς − 1]1/ν , 0 < τ < 1.

The PIT for the unrestricted GB2 distribution is more complicated; see
Kleiber and Kotz (2003, p188).
The fact that the survival function, F (y), is [(y/α)ν + 1]

−ς makes it easy
to see that the Burr distribution is long-tailed, and therefore heavy-tailed,
since in Definition 2

F (y + x)

F (y)
=

[
(y/α)ν + 1

(y + x)/α)ν + 1

]ς
→ 1 as y →∞.

As noted below (22), the score for all GB2 distributions discounts large ob-
servations as it approaches an upper bound of νς as y →∞.
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The coeffi cient of variation can indicate overdispersion or underdispersion.
For a Burr distribution the variance, and hence the CV, goes to zero as
νς →∞. It only exceeds one if νς is suffi ciently small, but recall that when
νς ≤ 2 the variance does not exist as Γ(ς − 2/ν)→∞ as νς → 2.

4.5 F-distribution

The F (ν1, ν2)-distribution with ν1 = ν2 is a special case of the GB2 distri-
bution obtained by setting ξ = ς = ν1/2 = ν2/2 and ν = 1. Even though
F -distributions with different degrees of freedom do not fall within the GB2
class, the score has a beta distribution and the properties of the model may
be derived along similar lines.
When εt in (5) is from an F (ν1, ν2) distribution, the logarithm of the pdf

for the conditional distribution of the t-th observation in (5) is

ln ft(ψ,ν1, ν2) =
ν1

2
ln ν1yte

−λtpt−1 +
ν2

2
ln ν2 −

ν1 + ν2

2
ln(ν1yte

−λtpt−1 + ν2)

− ln yt − lnB(ν1/2, ν2/2).

Hence the score is

∂ ln ft
∂λtpt−1

=
ν1 + ν2

2
bt(ν1/2, ν2/2)− ν1

2
,

where

bt(ν1/2, ν2/2) =
ν1yte

−λtpt−1/ν2

1 + ν1yte−λtpt−1/ν2

=
ν1εt/ν2

1 + ν1εt/ν2

.

Since εt depends on the ratio of independent chi-square variables, bt(ν1/2, ν2/2)
is distributed as beta(ν1/2, ν2/2). Taking expectations confirms that the
score has zero mean since E(bt(ν1/2, ν2/2)) = ν1/(ν1 + ν2).
The moments of the dynamic F -distribution can be found from the prop-

erties of the beta distribution. As regards the asymptotic distribution, dif-
ferentiating the score gives

∂ut
∂λtpt−1

= −ν1 + ν2

2
bt(1− bt).

Hence

Et−1

[
∂ut

∂λtpt−1

]2

=

(
ν1 + ν2

2

)2

E(b2
t (1− bt)2)
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and

Et−1

[
ut

∂ut
∂λtpt−1

]
= −

(
ν1 + ν2

2

)
E(b2

t (1− bt)) +
ν1

2
E(bt(1− bt)).

are easily found. The formulae for a, b and c are similar to those for the Burr
distribution.

5 Lognormal

If, in the UC model (2) and (1), the disturbance term, ln εt, and the distur-
bance driving λt are both Gaussian, the model is linear and can be handled
effi ciently by the Kalman filter. The log-likelihood function is constructed
from the prediction error decomposition. The log-density is

ln ft = − (1/2) ln 2π − 1

2
lnσ2

t −
1

2σ2
t

(ln yt − λtpt−1)2, t = 1, ..., T,

= − (1/2) ln 2π − 1

2
lnσ2

t −
1

2σ2
t

(ln yte
−λtpt−1)2

where σ2
t is the prediction error variance. Here λtpt−1 is a time-varying

conditional mean for ln yt but the logarithm of a conditional scale for yt.
The parameters are V ar(ln εt), δ, φ and σ2

η ( or the signal-noise ratio q =
σ2
η/V ar(ln εt). However, the parameters could also be taken to be as in the
steady-state Kalman filter, so they become2 σ2, δ (or ω), φ and κ. The model
is then within the DCS class, with conditional score

∂ ln ft
∂λtpt−1

=
ln(yt exp(−λtpt−1))

σ2

Dividing by the information quantity gives

ut = ln(yt exp(−λtpt−1)) = ln εt, t = 1, ..., T.

The distribution of yt is lognormal, and from this point of view the model
is seen to be within the DCS class for non-negative variables. Using obvious
notation, the likelihood function for the y′ts is

lnL(y) = lnL(ln y)−
∑

ln yt,

2When the KF is run, σ2t will normally be time-varying because of the initialization,
but will tend towards a constant as t→∞.
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thereby allowing a direct comparison of the fit achieved with other distribu-
tions.

6 Monte Carlo experiments

A set of Monte Carlo experiments was carried out to determine the small
sample properties of ML estimators. For samples of size 1000 and 10,000, the
means and standard deviations of the estimates from 5,000 replications were
obtained for gamma (γ = 6), Weibull (υ = 2), log-logistic (ν = 4) and Burr
(ν = 4, ς = 0.75). The dynamic parameters were set to φ = 0.98 and κ = 0.1,
both of which are typical of what might be expected in practice. According
to the asymptotic theory the large sample distribution of all estimators is
independent of ω, which was therefore set to zero.
The averages of the ML estimates were close to the true values. The

standard deviations for ω, φ and κ shown in Table 1 tend to be slightly
bigger than the asymptotic standard errors (ASEs). In almost all cases the
figures are closer for T = 10, 000 than for T = 1, 000. No problems were
encountered in maximizing the log-likelihood functions using the FMINCON
routine in Matlab.
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Gamma Model Weibull Model
Parameters 1,000 ASE 10,000 ASE 1,000 ASE 10,000 ASE

ω 2.51 1.91 0.58 0.60 6.21 4.24 1.40 1.34
φ 2.51 1.89 0.57 0.60 1.24 0.85 0.28 0.27
κ 2.00 1.86 0.59 0.59 0.83 0.81 0.25 0.26

ν or υ 10.56 10.53 3.27 3.33 5.04 6.01 1.50 1.90

Lognormal Model Log-Logistic Model
Parameters 1,000 ASE 10,000 ASE 1,000 ASE 10,000 ASE

ω 2.69 2.01 0.66 0.63 2.69 2.01 0.66 0.63
φ 1.10 0.80 0.27 0.25 1.10 0.80 0.27 0.25
κ 1.31 1.32 0.43 0.42 1.31 1.32 0.43 0.42

σ or ν 10.57 10.58 3.43 3.35 10.57 10.58 3.43 3.35

Burr Model F Model
Parameters 1,000 ASE 10,000 ASE 1,000 ASE 10,000 ASE

ω 3.10 2.21 0.68 0.70 2.84 2.07 0.69 0.66
φ 1.26 0.84 0.31 0.27 1.17 0.81 0.27 0.26
κ 1.50 1.60 0.58 0.50 1.56 1.38 0.46 0.44

ν or ν1 8.88 9.86 2.36 3.12 28.24 13.93 9.00 4.40
ς or ν2 20.96 22.31 6.22 7.05 65.18 32.64 27.50 10.32
Table 1 Estimated standard deviations of ML estimates (×100) for

T = 1000 and T = 10, 000 from 5,000 replications

7 Leverage and components

Leverage effects are likely to play a prominent role for variables associated
with stock returns. They may be included in the DCS models by adding
the variable sgn(returnt)(ut + E(ut)) to the dynamic equation. An alterna-
tive, but equivalent formulation takes the additional leverage variable to be
I(returnt < 0)(ut + E(ut)), where I(returnt < 0) is an indicator taking the
value one when the return is negative and zero otherwise.
Alizadeh, Brandt and Diebold (2002, p 1088) argue strongly for two com-

ponent (or two factor) stochastic volatility dynamics, in both equity and
foreign exchange. They model such components using a SV framework while
Engle and Lee (1999) proposed a two component GARCH model. In both
papers, volatility is modeled with a long-run and a short-run component, the
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main role of the short-run component being to pick up the temporary in-
crease in volatility after a large shock. Such a model can mimic long memory
behaviour.
The DCS two-component model is

λtpt−1 = ω+λ1,tpt−1+λ2,tpt−1, with λi,t+1pt = φiλi,tpt−1+κiut, i = 1, 2,

Note that the score appears in the equations for both components. The
formulae for moments and ACFs can be obtained as before since the moving
average representation is

λtpt−1 = ω +
∞∑
k=1

ψ1,kut−k +
∞∑
k=1

ψ2,kut−k = ω +
∞∑
k=1

ψkut−k

where ψk = ψ1k+ ψ2k, k = 1, 2, ...
The long-term component, λ1,tpt−1, will usually have φ1 close to one, or

even set equal to one. The short-term component, λ2,tpt−1, will have higher
κ combined with lower φ. Hence the constraint 0 < φ2 < φ1 < 1 is typically
imposed to ensure identifiability (and stationarity) and κ1 may be forced to
be less than or equal to κ2. In the context of GARCH models, Engle and
Lee (1999, p 487) find that the leverage effect is mainly restricted to the
short-run component. Similar results tend to be found when DCS model are
fitted.

8 Tests and model selection

Model selection requires decisions to be made about the distribution and the
form of the dynamic equation for the scale. The starting point is testing
against serial correlation using a portmanteau or Box-Ljung statistic con-
structed from the sample autocorrelations of the observations. But just as
squared observations may be unduly influenced by outliers in returns, so the
observations themselves may not be robust here. A square root or logarith-
mic transformation may be better, but since the observations are independent
under the null hypothesis, any transformation can be used.
If a distribution is specified at the outset, the Lagrange multiplier (LM)

principle suggests tests based on the score. When the distribution is gamma,
the LM test simply uses the observations, the y′ts. For distributions from the
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generalized gamma family, the LM test will use the autocorrelations for yυt ,
where the shape parameter, υ, is estimated.
When there is no prior guidance as to the form of the conditional dis-

tribution, it may be useful to fit an unobserved components dynamic model
to the logarithm of the observations. The measurement equation is (2) and
this is combined with a suitable transition equation. The simplicity of the
estimation procedure, which assumes a linear model, offers the opportunity
to experiment with various dynamic specifications. Examining the distribu-
tion of the residuals may suggest which distributions are likely to prove most
useful. Indeed a test of normality may indicate that the lognormal model fits
the data in which case there is no need to proceed any further.
When a DCS model is fitted, diagnostic tests of serial correlation and

distribution can be based on the scores, the residuals, that is yt exp(−λtpt−1),
the PITs of the residuals and the normalized PITs. As with the exponen-
tial distribution, the PITs for a Weibull distribution are given by a simple
formula, namely

PIT (yt) = 1− exp[−(yte
−λtpt−1)υ], t = 1, ...., T.

Computing the PIT for an observation from a gamma or generalized gamma
distribution is a little more complicated in that it requires the evaluation of an
incomplete gamma function. Similarly for some members of the generalized
beta family, including the F−distribution, finding the PIT requires a routine
for computing a regularized incomplete beta function. However, there is a
closed form expression, (28), for the PIT of a Burr distribution, and hence
for the log-logistic as well.
The Lagrange multiplier test principle suggest that the scores be used

to test against serial correlation. However, a test based on the residuals
may also be informative. An attraction of making the probability integral
transformation to the residuals is that it may yield serial correlation tests
which are more robust. Furthermore the PITs are comparable for different
conditional distributions and their histograms are very useful for assessing
goodness of fit. Figure 1 shows the PIT from fitting a DCS gamma model
to the range data for the DOW Jones described in Section 9. The gamma
distribution is clearly unsatisfactory: the fit near the origin is poor and the
high values close to one indicate that a heavy-tail is not being captured. The
parallel lines on the graph are such that, if the PITs were independent and
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Figure 1: PITs from fitting a DCS gamma model to trade duration data for
Boeing

uniformly distributed3, only 1% of them would lie outside the range.
While an inspection of the histogram of PITs or normalized PITs is often

suffi cient to eliminate a distribution from further consideration, the choice
between competing candidates is best made by goodness of fit criteria. The
AIC or BIC may be used within the sample, while outside the sample, the
predictive likelihood (sometimes called the log-score) is simple and effective.
Looking at the post sample residuals, scores and PITs may also provide
valuable information. Mitchell and Wallis (2011) provide a recent discussion
of the issues involved.

3Even if the model is correct, this assumption does not hold when parameters are
estimated. Thus the lines serve to indicate goodness of fit rather than providing the basis
for a formal test.
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9 Estimating volatility from the range for CAC
and Dow-Jones

Although it requires monitoring the price throughout the day, the range, that
is the difference between the highest and lowest log prices in a day, is very
easy to obtain and has long been reported. When price movements within
the day can be represented by Brownian motion, the distribution of the
logarithm of the range can be shown to be approximately normal. The mean
of the logarithm of the range is a linear function of volatility - as measured
by scale - and so when volatility changes over time it can be extracted using
the Kalman filter. Alizadeh, Brandt and Diebold (2002) study this estimator
in some detail and make a convincing case for its use. To be more specific

lnRt = λt + vt, t = 1, ..., T, (29)

where Rt is the range in day t and λt follows an unobserved components
volatility model, such as (6).

There is a weakness in the case for using a Gaussian UC model to extract
volatility from the range and this stems from the fact that intra-day price
movements may not be well-approximated by Brownian motion because of
occasional jumps. Consequently the Gaussian approximation to the loga-
rithm of range may not always be satisfactory. The favorable evidence for
Gaussianity reported in Alizadeh, Brandt and Diebold (2002) is for exchange
rates. For equities it is arguably less convincing. The DCS approach offers
a wide variety of distributional options for modeling the range itself (rather
than its logarithm). Just as there is no theory leading from intra-day models
of price movements to t-distributions for daily returns, so there is no theory
for suggesting what distributions for the range might arise when intra-day
movements are not fully described by Brownian motion. Thus the choice
between candidate distributions such as gamma, Weibull, lognormal, Burr
and F is a matter for empirical investigation.
Support for using the range instead of the logarithm of the range comes

fromChou (2005). He develops the Conditional Autoregressive Range (CARR)
model based on the MEM approach. However, he only investigate conditional
exponential, gamma and Weibull distributions. In a related study, Chou and
Wang (2007) show the effectiveness of the CARR model for FTSE data.
Two datasets were used to estimate DCS models for the range. These
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are the Paris CAC 40 index and the Dow-Jones4. The slow decline in the
correlograms of the raw data on range and its logarithm for both CAC and
Dow-Jones indicates long memory effects that may be best captured by a
two component model. The two components interpretation is that after a
very large movement, there will typically be after-shocks for a few periods.
One and two component models were fitted to gamma, Weibull, lognor-

mal, Burr, log-logistic and F-distributions. Both numerical (based on the in-
verse of the Hessian matrix) and analytic expressions for the standard errors
of the estimates were calculated. It was found that the numerical standard
errors were not always reliable and could be very dependent on starting val-
ues. As was apparent from Table 1, the analytic standard errors seem to be
rather accurate for moderate sample sizes.
Table 2 shows the estimates for both indices from fitting various distri-

butions. The parameters labeled (a) are γ, ν, ν1 or σ2, while those labeled
(b) are ς or ν2. The last column shows three measures of goodness of fit:
the maximized log-likelihood, the AIC and the BIC. In the case of the CAC,
the logarithm of the range is close to being normal and hence the lognormal
DCS model fits well5. On the other hand, as already shown, the logarithm of
the range is far from being normal for Dow-Jones and the Burr, log-logistic
and F all fit better. The fit with the Weibull distribution was particularly
bad. The reason is that in order to have a long tail, the Weibull must have
considerable mass near zero and the range has near zero mass at the origin.
As might be expected from the correlograms of the raw data, fitting two

first-order components, with the short-run component containing a leverage
term, gave a much better fit than a simple one component model. The results
are shown in Table 4.

4The data were taken from the Yahoo finance webpage. First, the range was constructed
for the CAC40 index between 1st March 1990 and 17th August 2011 (approximately 5400
observations). The in-sample estimation period runs until first of January 2008. Similarly,
the daily high-low range is constructed for the Dow Jones index between the 1st of October
1975 and the 17th of August 2011. The out-of-sample period starts on the 1st of January
2009.

5The logarithm of a log-logistic variable has a logistic distribution. This distribution
is symmetric with an excess kurtosis of 6/5.
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ω φ κ a b Fit
Gamma -0.070 0.984 0.144 6.785 - 17279

(0.014) (0.003) (0.008) (0.140) - -34550
(0.022) (0.004) (0.006) (0.158) - -34555

Weibull -0.130 0.969 0.046 2.379 - 16802
(0.023) (0.006) (0.004) (0.039) - -33597
(0.398) (0.004) (0.125) (0.060) - -33602

Lognormal -0.061 0.986 0.152 0.148 - 17382
(0.013) ( 0.003) ( 0.008) (0.000) - -34757
(0.038) (0.003) (0.012) (0.031) - -34763

Log-Logistic -0.059 0.987 0.095 4.519 - 17324
(0.012) (0.003) (0.005) (0.056) - -34641
(0.010) (0.005) (0.018) (0.066) - -34646

Burr -0.059 0.987 0.095 1.000 4.519 17324
(0.013) (0.003) (0.006) (0.064) (0.116) -34639
(0.008) (0.001) (0.021) (0.011) (0.010) -34646

F -0.059 0.987 0.022 36.503 22.773 17381
(0.013) (0.003) ( 0.001) (532.788) (332.386) -34753
(18.677) (0.019) (26.158) (11.802) ( 43.695) -34759

Table 2a ML estimates for DCS models fitted to CAC data. Numbers in
first brackets give analytic standard errors, figure below is the
corresponding numerical SE. ‘Fit’lists lnL, AIC and BIC

26



ω φ κ a b Fit
Gamma -0.078 0.980 0.237 22.091 - 34160

(0.010) (0.002) (0.007) (0.339) - -68313
(0.010) (0.001) (0.005) (0.058) - -68318

Weibull -0.194 0.950 0.035 3.261 - 31724
(0.023) (0.006) (0.001) (0.000) - -63440
(0.051) (0.001) (0.016) (0.006) - -63445

Lognormal -0.067 0.983 0.244 0.045 - 34259
(0.009) (0.002) (0.008) (0.001) - -68511
(0.084) (0.001) ( 0.134) (0.003) - -68517

Log-Logistic -0.063 0.984 0.088 8.844 - 34624
(0.008) (0.002) (0.003) (0.081) - -69240
(0.012) (0.002) (0.141) (0.007) - -69245

Burr -0.060 0.985 0.096 0.757 9.880 34655
(0.010) (0.002) (0.007) (0.078) (0.423) -69300
(0.004) (0.002) (0.100) (0.005) (0.918) -69307

F -0.068 0.983 0.011 86.092 96.190 34292
(0.009) (0.002) (0.000) (0.000) (0.000) -68574
(0.023) (0.002) (0.045) (10.208) (9.833) -68581

Table 2b ML estimates for DCS models fitted to Dow-Jones data. Num-
bers in first brackets give analytic standard errors, figure below is the corre-
sponding numerical SE. ‘Fit’lists lnL, AIC and BIC
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Scores PITs εt
Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE

CAC Range
Gamma 13.81 61.92 5.78 56.16 13.81 61.92 1.09
Weibull 17.12 52.11 172.12 500.17 93.57 295.53 0.97
Lognormal 9.72 65.67 6.60 56.54 24.77 71.54 1.17
Log-Logistic 6.10 52.92 6.00 52.83 74.10 119.18 1.18

Burr 6.10 52.89 6.00 52.83 74.06 119.14 1.18
F 8.71 66.61 6.37 56.47 35.19 81.43 1.20

DOW Range
Gamma 75.18 169.00 66.23 161.38 75.18 169.00 1.02
Weibull 15.71 52.28 3212.10 8408.01 2292.53 5749.02 0.96
Lognormal 70.97 171.81 71.82 164.65 98.77 190.29 1.05
Log Logisic 70.04 166.25 69.97 165.94 189.39 283.25 1.06
Burr 71.12 171.25 70.06 167.45 237.58 329.87 1.10
F 72.60 172.59 70.41 163.14 99.03 191.35 1.05

Table 3a Diagnostics for one component DCS models fitted to CAC and
Dow-Jones.

Scores PITs εt log-score
Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE

CAC Range
Gamma 25.97 61.36 16.30 61.44 25.97 61.36 1.14 -34566.02
Weibull 26.83 52.51 50.92 109.03 40.48 80.79 1.05 -33613.05
Lognormal 26.55 66.16 13.75 57.73 46.96 78.72 1.24 -34773.82
Log -Logistic 20.37 63.01 20.42 64.50 111.26 142.03 1.25 -34657.23

Burr 20.37 63.00 20.41 64.49 111.22 141.98 1.25 -34659.23
F 25.53 65.29 14.60 58.00 62.48 93.32 1.26 -34773.01

DOW Range
Gamma 14.56 45.27 11.88 45.28 14.56 45.27 1.04 -68329.32
Weibull 0.21 1.18 737.84 1259.44 574.30 819.92 0.95 -63456.30
Lognormal 18.05 48.87 9.66 45.73 19.73 51.18 1.08 -68527.93
Log-Logistic 8.26 48.78 8.27 49.09 44.05 76.00 1.09 -69256.46

Burr 8.35 49.87 8.28 49.52 57.45 88.82 1.14 -69320.71
F 16.47 47.66 9.30 45.75 20.04 51.58 1.07 -68594.65

Table 3b Post-sample diagnostics for one component DCS models fitted
to CAC and Dow-Jones.
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ω φL φS κL κS κLev a b Fit
Gamma -4.559 0.996 0.904 0.062 0.090 0.045 6.877 - 17310

(0.251) (0.005) (0.091) (0.119) (0.130) (0.125) (0.144) - -34607
Weibull -4.297 0.989 0.701 0.022 0.038 0.080 2.420 - 16860

(0.022) (0.004) (0.049) (0.005) (0.027) (0.024) (0.047) - -33707
Lognormal -4.818 0.997 0.953 0.046 0.104 0.038 0.146 - 17409

(0.141) (0.001) (0.012) (0.014) (0.015) (0.007) (0.000) - -34804
Log-Logistic -4.828 0.998 0.962 0.025 0.066 0.039 4.545 - 17349

(0.054) (0.002) (0.009) (0.010) (0.009) (0.031) (0.034) - -34685
Burr -4.821 0.998 0.962 0.025 0.065 0.039 4.517 1.018 17350

(0.401) (0.001) (0.018) (0.197) (0.174) (0.097) (0.250) (0.011) -34684
F -4.859 0.998 0.958 0.006 0.015 0.038 36.462 23.184 17406

(0.050) (0.001) (0.001) (0.001) (0.001) (0.002) (0.129) (0.096) -34796
Table 4a ML estimates for two component DCS models fitted to CAC

data. Numbers in first brackets give analytic standard errors, figure below is
the corresponding numerical SE. ‘Fit’lists lnL and AIC

ω φL φS κL κS κLev a b Fit
Gamma -4.013 0.997 0.866 0.087 0.166 0.033 22.609 - 34259

(0.075) (0.001) (0.016) (0.059) (0.066) (0.015) (0.313) - -68504
Weibull -3.922 0.990 0.744 0.009 0.037 0.037 3.279 - 31857

(0.071) (0.002) (0.028) (0.001) (0.004) (0.012) (0.037) - -63700
Lognormal -4.027 0.997 0.884 0.091 0.167 0.032 0.044 - 34345

(0.079) (0.001) (0.012) (0.016) (0.015) (0.004) (0.012) - -68676
Log-Logistic -3.983 0.997 0.909 0.032 0.058 0.028 8.922 - 34697

(0.004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.008) - -69381
Burr -3.998 0.997 0.913 0.035 0.062 0.028 9.952 0.759 34727

(0.085) (0.002) (0.066) (0.110) (0.069) (0.029) (0.718) (0.192) -69439
F -4.022 0.997 0.884 0.004 0.007 0.031 85.361 101.23 34374

(0.029) (0.002) (0.005) (0.001) (0.001) (0.002) (0.457) (0.876) -68732
Table 4b ML estimates for two component DCS models fitted to Dow-

Jones data. Numbers in first brackets give analytic standard errors, figure
below is the corresponding numerical SE. ‘Fit’lists lnL and AIC
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Diagnostics are shown in Table 3 for the one component model and in
Table 5 for two components with leverage. These are based on (i) scores;
(ii) PITs; and (iii) standardized residuals, that is yt exp(−λtpt−1). Box-Ljung
statistics are shown for all three, though it should be noted that ten lags is
not enough for the chi-square approximation to be effective as the loss in de-
grees of freedom is relatively large, particularly in the two component model.
However including more lags risks diluting the effect of any residual serial
correlation. Following the suggestion of Diebold et al (1998), we computed
the autocorrelations of the squared PITs and the corresponding Ljung-Box
statistics. Since the Ljung-Box statistics were not very different from those
reported for the PITs themselves, they are not shown. However, the fact that
they are similar probably indicates that there are no higher-order nonlinear
effects.
For CAC, the values of the coeffi cients show a pattern that is not unusual

for volatility data. The first component is highly persistent, and little would
be lost by simply setting φ1 to unity. As regards the short-term component,
the effect of leverage is that κ is often close to zero for positive returns. The
PITs, and hence the scores, indicate very lttle serial correlation, but this
is not the case with the standardized residuals, where some positive serial
correlation remains.
The log-normal distribution gives the best fit for both one and two com-

ponent models. The estimates for Burr and log-logistic are not very different,
but the maximized log-likelihoods are slighly smaller. The closeness of the
log-likelihoods for Burr and log-logistic is reflected in the estimates of ς. In
the two component model the estimate of ς is 1.018, with a SE of 0.011.
Neither the likelihood ratio test nor the Wald test would reject the null hy-
potheses of a log-logistic distribution (ς = 1) at any conventional level of
significance.
Unlike CAC, the lognormal model does not fit DJ well and is beaten in

terms of goodness of fit by Burr, log-logistic and F. However, a LR or Wald
test of ς = 1 would clearly reject the log-logistic.
Overall the Burr seems a good choice. The graphs of the PITs, shown

in Appendix ?? for the two component model, support this conclusion. Al-
though the fit at the extremes is not perfect, the graph is much closer to the
uniform than it is for any of the others.
The two-component model removes some, but not all, of the serial cor-

relation in the PITs and scores, as well as in the residuals. Although, the
autocorrelations are rather small when set against those for the raw data,
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there may be a case for adding AR and/or MA component to the long-run
and/or short-run equations. In the short-run equation there is the additional
possibility of augmenting the MA term by a lagged leverage variable.

Scores PITs εt
Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE

CAC Range
Gamma 11.95 52.43 10.09 50.04 11.95 52.43 1.09
Weibull 20.08 46.57 140.31 274.51 90.77 177.81 0.97
Lognormal 8.60 57.37 7.39 50.70 21.43 60.37 1.17
Log Logisic 6.81 47.95 6.50 47.77 59.08 97.71 1.18
Burr 6.80 47.95 6.50 47.80 59.26 97.67 1.17
F 7.99 59.04 6.73 50.21 30.52 68.87 1.19

DOW Range
Gamma 30.44 103.49 41.30 111.42 30.44 103.49 1.02
Weibull 15.98 34.40 3147.75 7524.46 2309.23 5514.21 0.96
Lognormal 27.67 108.73 42.83 116.42 52.46 127.31 1.05
Log Logisic 42.92 121.65 42.92 121.49 152.23 233.03 1.05
Burr 45.24 127.07 42.26 122.71 209.37 293.47 1.10
F 29.55 109.39 41.41 114.43 50.88 126.03 1.05

Table 5a Post-sample diagnostics for two component DCS models fitted
to CAC and Dow-Jones.
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Scores PITs εt AIC
Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE

CAC Range
Gamma 20.93 54.92 18.91 60.85 20.93 54.92 1.12 -6459.77
Weibull 32.00 60.69 53.25 95.92 38.75 74.53 1.02 -6316.42
Lognormal 22.11 60.78 21.00 64.36 45.40 77.22 1.22 -6496.26
Log Logisic 6.85 59.78 35.03 76.61 107.15 135.70 1.23 -6441.49
Burr 16.89 59.81 34.77 76.51 105.53 135.17 1.22 -6439.80
F 21.42 60.32 23.32 65.58 60.63 91.49 1.24 -6466.72

DOW Range
Gamma 15.04 47.41 20.34 56.19 15.04 47.41 1.03 -5065.67
Weibull 0.24 0.98 1435.52 3671.75 565.28 1220.34 0.90 -3976.68
Lognormal 14.41 45.89 19.58 56.58 23.58 55.59 1.06 -5187.84
Log Logisic 9.60 47.23 17.52 54.54 57.69 87.16 1.08 -5153.20
Burr 10.09 48.97 18.71 56.04 70.98 100.02 1.13 -5161.93
F 13.28 45.23 18.47 55.25 23.70 55.69 1.06 -5145.81

Table 5b Post-sample diagnostics for two component DCS models fitted
to CAC and Dow-Jones.

10 Duration

Duration models are widely used in financial econometrics to capture the
changing intensity governing the time between events. Thus they may used,
for example, to model the times between trades of an asset. In this context
here is a relationship with volatility in that higher volatility tends to be
associated with more trades.
Bauwens et al (2004) investigate a wide range of autoregressive condi-

tional duration models for price, volume and trade duration data6. Diurnal
effects are removed prior to estimation. In their conclusion they argue that
price durations are perhaps the most interesting duration processes due to
their close links to market microstructure and options pricing. They find that
employing the basic MEM specifications with the exponential and Weibull

6A trade duration is given by the time interval between two consecutive trade events. A
price duration is measured by the time interval between two bid-ask quotes during which
a cumulative change in the mid-price of at least $0.125 is observed. A volume duration
denotes the time interval between two bid-ask quotes during which the cumulative traded
volume amounts to at least 25,000 shares.
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distributions is not advisable. An exponential link function gives much bet-
ter results for the Weibull distribution. However, their preference is for the
generalized gamma and Burr distributions, again with exponential link func-
tions. Their ‘log-ACD’specification has the conditional mean in (5) set to
µtpt−1 = exp(λ∗tpt−1), where

λ∗t+1pt = δ+ βλ∗tpt−1 +α ln yt or λ∗t+1pt = δ+ βλ∗tpt−1 +αyt exp(−λ∗tpt−1).

The first of the dynamic equations corresponds to the DCS model for a
lognormal distribution, while the second is the DCS model for a gamma
distribution. Neither resembles the DCS equation for any member of the
generalized beta family, where the conditional score takes the form (7).
Bauwens et al (2004) reach similar conclusions regarding the best models

when volume duration data is used. Table 6 shows the results of fitting vari-
ous DCS models to their volume duration data7 for Boeing. The (asymptotic)
standard errors were computed analytically for the one component model.
The first 1200 observations were used for estimation with the remaining 376
were reserved for post-sample evaluation. Diagnostics and post-sample di-
agnostics are given in tables 7 and 8 respectively. Some associated figures
are shown in Appendix 12.2.
On the whole the gain from fitting a two component model is small and

the diagnostics for the one component model seem perfectly fine. The Burr
distribution gives the best fit, followed closely by Weibull. The Weibull
shape parameter is greater than one, meaning that the distribution has a
humped shape. The log-logistic distribution does not give a good fit and
the hypothesis that the second shape parameter in the Burr, ς, is unity is
easily rejected using a LR test. The gamma and F-distributions8 are only
marginally worse than the Weibull, but the lognormal fit is very bad. The
results are consistent with those reported by Bauwens et al (2004) for a range
of companies.

7We are grateful to Luc Bauwens for providing us with his dataset

8The fitted gamma and F -distributions are quite close as a gamma distribution with
γ = ν1/2 is obtained from an F -distribution in which ν2 →∞.
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ω φ κ a b Fit
Gamma -0.001 0.966 0.118 2.133 - -1012

(0.003) (0.009) (0.014) (0.071) - 2033
(0.003) (0.013) (0.019) (0.082) - 2028

Weibull 0.002 0.971 0.067 1.551 - -1014
(0.003) (0.009) (0.009) (0.033) - 2036
(0.003) (0.010) (0.011) (0.034) - 2031

Lognormal -0.011 0.961 0.102 0.589 - -1092
(0.004) (0.012) (0.014) (0.022) - 2193
(0.005) (0.015) (0.018) (0.889) - 2188

Log-Logistic -0.010 0.952 0.162 2.316 - -1064
(0.004) (0.013) (0.020) (0.049) - 2136
(0.005) (0.017) (0.028) (0.056) - 2131

Burr 0.036 0.971 0.082 1.679 8.006 -1010
(0.001) (0.001) (0.011) (0.012) (0.084) 2030
(0.013) (0.010) (0.012) (0.043) (0.751) 2023

F -0.001 0.967 0.054 4.256 1000.03 -1012
(0.003) (0.009) (0.007) (5.419) (1273.5) 2035
(0.004) (0.004) (0.013) (0.016) (7.607) 2029

Table 6a: ML estimates for DCS models fitted to Boeing volume duration.
Numbers in first brackets give analytic standard errors, figure below is the
corresponding numerical SE. ‘Fit’lists lnL and AIC

ω φL φS κL κS a b Fit
Gamma -0.078 0.995 0.943 0.025 0.096 2.123 - -1012

(0.177) (0.008) (0.035) (0.026) (0.028) (0.083) - 2036
Weibull 0.018 0.995 0.948 0.016 0.054 1.552 - -1013

(0.126) (0.006) (0.029) (0.012) (0.016) (0.034) - 2039
Lognormal -0.312 0.994 0.934 0.020 0.087 0.522 - -1091

(0.147) (0.010) (0.036) (0.021) (0.026) (0.001) - 2195
Log-Logistic -0.258 0.994 0.915 0.029 0.143 2.319 - -1063

(0.123) (0.009) (0.044) (0.026) (0.034) (0.056) - 2138
Burr 1.201 0.995 0.949 0.019 0.067 1.680 8.001 -1009

(0.412) (0.008) (0.033) (0.015) (0.029) (0.058) (0.751) 2033
F -0.079 0.995 0.943 0.012 0.045 4.257 1178.5 -1012

(0.004) (0.001) (0.019) (0.002) (0.005) (0.108) (3.033) 2038

Table 6b: ML estimates for DCS models fitted to Boeing volume duration.
Numbers in first brackets give analytic standard errors, figure below is the
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corresponding numerical SE. ‘Fit’lists lnL and AIC.
Scores PITs εt

Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE
Gamma 12.74 39.77 15.47 44.96 12.74 39.77 1.20
Weibull 8.20 32.78 17.32 47.97 10.59 37.52 1.08
Lognormal 16.13 46.00 17.05 47.28 14.94 42.92 1.56
Log Logistic 15.13 46.52 15.26 46.76 14.07 43.23 1.46

Burr 11.58 38.08 15.72 44.53 12.67 39.12 1.33
F 12.81 39.97 15.46 44.97 12.77 39.81 1.21

Table 7a: In-sample diagnostics for one component DCS models fitted to
Boeing volume duration

Scores PITs εt AIC out
Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE

Gamma 7.15 49.17 6.09 43.02 7.15 49.17 1.18 -2017.56
Weibull 10.39 53.37 9.64 38.34 9.97 53.25 1.07 -2020.69
Lognormal 3.42 41.04 4.01 43.14 6.47 46.83 1.52 -1939.65
Log Logistic 3.41 39.91 3.81 38.84 5.35 45.06 1.40 -2120.69

Burr 8.72 50.69 7.33 44.28 7.97 50.39 1.38 -2010.69
F 7.09 49.07 6.04 42.94 7.11 49.11 1.18 -2015.86

Table 7b: Post-sample diagnostics for one component DCS models fitted
to Boeing volume duration

Scores PITs εt
Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE

Gamma 11.38 39.63 14.40 44.33 11.38 39.63 0.67
Weibull 7.25 32.96 16.76 47.95 9.16 37.64 1.05
Lognormal 15.31 46.09 15.56 45.82 12.46 40.62 1.27
Log Logistic 13.92 45.30 14.02 45.49 11.78 40.82 0.58

Burr 10.58 38.01 14.78 44.07 11.35 39.09 0.89
F 11.44 39.74 14.39 44.32 11.40 39.66 1.00

Table 8a: In-sample diagnostics for two component DCS models fitted to
Boeing volume duration
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Scores PITs εt AIC out
Q(10) Q(50) Q(10) Q(50) Q(10) Q(50) RMSE

Gamma 7.50 47.14 5.82 43.01 7.50 47.14 1.20 -2012.53
Weibull 10.89 51.81 9.40 48.35 10.82 51.98 1.09 -2015.49
Lognormal 3.09 39.52 4.03 43.74 7.20 45.11 1.55 -2171.66
Log Logistic 3.69 38.86 3.79 39.66 5.37 42.45 1.43 -2114.48

Burr 9.16 48.77 7.06 44.12 8.39 48.53 0.33 -2005.79
F 7.46 47.07 5.78 42.97 7.47 47.09 1.20 -2010.79

Table 8b: Post-sample diagnostics for two component DCS models fitted
to Boeing volume duration

One particularly interesting feature of the results is that although the
maximized likelihood function for the Weibull distribution is only marginally
worse than that of the Burr distribution, its shape parameter of 1.57 means
that, in contrast to the Burr distribution, it does not have a heavy tail. The
QQ plots indicates that there are six or seven observations that are outliers
for the Weibull, but not for the Burr. The corresponding graphs for the
scores tell the same story, but the outlying Weibull observations do not show
up in the histogram of the PITs.
Although all Burr distributions have a heavy tail, a value of less than one

for the ς scale parameter means that the distribution of the logarithm of the
variable is skewed to the left. Figure 2 shows the histogram of the residuals
from the fitted Burr model, together with the histogram of their logarithms.

The diagnostics give little indication of residual serial correlation. In
contrast to the Q-statistics for the Dow-Jones range data, the Q-statistics
here are all rather similar for scores, residuals and PITs. The same is true
in the post-sample period.
The duration literature tends to emphasize the estimation of location,

but since the full conditional distribution may be very different for different
types of data, this is unwise. Furthermore, the evidence showing a poor fit
for the exponential distribution cautions against the use of QML.

11 Conclusions

Letting the dynamics for the scale in a time series model for a non-negative
variables be driven by the score yields a class of models that can be applied to
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Figure 2: Histograms of Burr residuals and their logarithms for Boeing vol-
ume duration data.

a wide range of distributions. The generalized beta and generalized gamma
distributions play a unifying role. The statistical properties of the models
can be found because the scores are either beta or gamma distributed. For a
first-order model, an analytic expression can be derived for the information
matrix and we present Monte Carlo evidence showing that resulting asymp-
totic standard errors provide a good approximation in moderate size samples.
Indeed they often appear to be more reliable than numerical standard errors.
The practical value of our dynamic conditional score models was illus-

trated by fitting them to data on range and duration. A wide range of
diagnostics were applied to check for goodness of fit of the distribution and
a lack of serial correlation. The Burr distribution featured prominently for
both range and duration. This has important implications for model per-
formance since the response of dynamic conditional score models to large
observations is bounded for generalized beta distributions.
Dynamic conditional score models can be used to model realized volatility,

the case for their use being the same as for the range. Measures of realized
volatility can be biased by market microstructure and so their logarithms
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may not be normally distributed. For example, Taylor (2005, pp 327-42)
notes there appears to be significant skewness and kurtosis.
The structure of dynamic conditional score models is such that they can

be extended to include time-varying trend and seasonal effects. For intra-day
data, the seasonality translates into a diurnal effect; see Brownlees et al (2010,
p 11). The usual approach in the literature is to remove such effects prior
to any estimation. However, there is evidence to suggest that the diurnal
effect is time-varying and future work will attempt to capture such effects
within the model by using a limited number of trigonometric terms or by a
time-varying periodic spline as in Harvey and Koopman (1993).
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12 Appendix

12.1 Diagnostic Figures Range Models
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12.2 Diagnostic Figures Boeing Volume DurationMod-
els
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Appendix: Asymptotic properties of the ML
estimator

This appendix explains how to derive the information matrix of the ML es-
timator for the first-order model and outlines a proof for consistency and
asymptotic normality for models from the GB2 family. The proofs of con-
sistency and asymptotic normality for the GG family require a little more
work; full details can be found in Harvey (2012).
As noted in the text, if the model is to be identified, κ must not be zero

or such that the constraint b < 1 is violated. A more formal statement is
that the parameters should be interior points of the compact parameter space
which will be taken to be |φ| < 1, |ω| < ∞ and 0 < κ < κu, κL < κ < 0
where κu and κL are values determined by the condition b < 1.
The first step is to decompose the derivatives of the log density wrt ψ

into derivatives wrt λtpt−1 and derivatives of λtpt−1 wrt ψ, that is

∂ ln ft
∂ψ

=
∂ ln ft
∂λtpt−1

∂λtpt−1

∂ψ
, i = 1, 2, 3.

Since the scores ∂ ln ft/∂λtpt−1 are IID(0, σ2
u) and so do not depend on λtpt−1,

Et−1

[(
∂ ln ft
∂λtpt−1

∂λtpt−1

∂ψ

)(
∂ ln ft
∂λtpt−1

∂λtpt−1

∂ψ

)′]
=

[
E

(
∂ ln ft
∂µ

)2
]
∂λtpt−1

∂ψ

∂λtpt−1

∂ψ′

= σ2
u

∂λtpt−1

∂ψ

∂λtpt−1

∂ψ′
.

Thus the unconditional expectation requires evaluating the last term. In
order to do this, we recall that the first derivative of the conditional score
is as in (24), that is −ν2(ξ + ς)bt(1 − bt). Since, like ut, this depends only
on a beta variable, it is also IID. Hence the distribution of ut and its first
derivative are independent of λtpt−1. All moments of ut and ∂ut/∂λ exist for
the t-distribution and the expressions for a, b and c are as in (12).
The derivative of λtpt−1 wrt κ is

∂λtpt−1

∂κ
= φ

∂µt−1pt−2

∂κ
+ κ

∂ut−1

∂κ
+ ut−1, t = 2, ..., T.

However,
∂ut
∂κ

=
∂ut

∂λtpt−1

∂λtpt−1

∂κ
,
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Therefore
∂λtpt−1

∂κ
= xt−1

∂µt−1pt−2

∂κ
+ ut−1 (30)

where

xt = φ+ κ
∂ut

∂λtpt−1

, t = 1, ...., T. (31)

Taking conditional expectations of xt gives

Et−1(xt) = φ+ κEt−1

(
∂ut

∂λtpt−1

)
= φ+ κE

(
∂ut
∂µ

)
,

where the last equality follows because ∂ut/∂λtpt−1 is IID and so unconditional
expectations can replace conditional ones. The unconditional expression de-
fines the general expression for the quantity ‘a’in (12).
When the process for λtpt−1 starts in the infinite past and |a| < 1, tak-

ing conditional expectations of the derivatives at time t − 2, followed by
unconditional expectations gives

E

(
∂λtpt−1

∂κ

)
= E

(
∂λtpt−1

∂φ

)
= 0 and E

(
∂λtpt−1

∂ω

)
=

1− φ
1− a .

The derivatives wrt φ and ω are found in a similar way.
To derive the information matrix, square both sides of (30) and take

conditional expectations to give

Et−2

(
∂λtpt−1

∂κ

)2

= Et−2

(
xt−1

∂µt−1pt−2

∂κ
+ ut−1

)2

= b

(
∂µt−1pt−2

∂κ

)2

+ 2c
∂µt−1pt−2

∂κ
+ σ2

u. (32)

Taking unconditional expectations gives

E

(
∂λtpt−1

∂κ

)2

= bE

(
∂µt−1pt−2

∂κ

)2

+ 2cE

(
∂µt−1pt−2

∂κ

)
+ σ2

u

and so, provided that b < 1,

E

(
∂λtpt−1

∂κ

)2

=
σ2
u

1− b.
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Expressions for other elements in the information matrix may be similarly
derived; see Harvey (2012). Fulfillment of the condition b < 1 implies |a| < 1.
That this is the case follows directly from the Cauchy-Schwartz inequality
E(x2

t ) ≥ [E(xt)]
2 .

Consistency and asymptotic normality can be proved by showing that the
conditions for Lemma 1 in Jensen and Rahbek (2004, p 1206) hold. The main
point to note is that the first three derivatives of λtpt−1 wrt κ, φ and ω are
stochastic recurrence equations (SREs); see Brandt (1986) and Straumann
and Mikosch (2006, p 2450-1). The condition b < 1 is suffi cient9 to ensure
that they are strictly stationarity and ergodic at the true parameter value.
Similarly b < 1 is suffi cient to ensure that the squares of the first derivatives
are strictly stationary and ergodic.
Let ψ0 denote the true value of ψ. Since the score and its derivatives wrt

µ in the static model possess the required moments, it is straightforward to
show that (i) as T →∞, (1/

√
T )∂ lnL(ψ0)/∂ψ →N(0, I(ψ0)), where I(ψ0)

is p.d. and (ii) as T → ∞, (−1/T )∂2 lnL(ψ0)/∂ψ∂ψ′
P→ I(ψ0). The final

condition in Jensen and Rahbek (2004) is concerned with boundedness of the
third derivative of the log-likelihood function in the neighbourhood of ψ0.
The derivatives of ut, as well as ut itself, are affi ne functions of terms of the
form b∗t = bht (1− bt)k, where h and k are non-negative integers. Since

bt = h(yt;ψ)/(1 + h(yt;ψ)), 0 ≤ h(yt;ψ) ≤ ∞,

where h(yt;ψ) depends on yt and ψ, it is clear that, for any admissible ψ,
0 ≤ bt ≤ 1 and so 0 ≤ b∗t ≤ 1. Furthermore the derivatives of λtpt−1 must be
bounded at ψ0 since they are stable SREs which are ultimately dependent on
ut and its derivatives. They must also be bounded in the neighbourhood of
ψ0 since the condition b < 1 is more than enough to guarantee the stability
condition E(ln |xt|) < 0.
Unknown shape parameters, including degrees of freedom, pose no prob-

lem as the third derivatives (including cross-derivatives) associated with them
are almost invariably non-stochastic.

9The necessary condition for strict stationarity is E(ln |xt|) < 0. This condition is
satisfied at the true parameter value when |a| < 1 since, from Jensen’s inequality,
E(ln |xt|) ≤ lnE(|xt|) < 0 and as already noted b < 1 implies |a| < 1.
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