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Econometrics of high-frequency financial data

Introduction & Motivation
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The need for joint dynamics in returns and their dependency structure

Introduction & Motivation

Increasing availability of intraday financial data can lead to the
development of more accurate forecasting models for the
conditional covariance of daily returns :

e univariate

e model for three latent volatility processes:
Engle and Gallo (2006)

e joint model for daily returns and realized volatility:
Shephard and Sheppard (2010), Brownlees and Gallo (2010),
Hansen et al. (2011)

e multivariate

e parsimonious models for realized measures:
Andersen et al. (2003), Voev (2008),
Chiriac and Voev (2011) and Bauer and Vorkink (2011)

e joint model for daily returns and realized covariance:
Noureldin et al. (2011)



The need for joint dynamics in returns and their dependency structure

The

Introduction & Motivation

contributions of this paper are :

simultaneous modeling of returns and their covariance
structure in a coherent manner

potential use of multiple measures of realized covariance

parsimonious model while still allowing for cross-assets
effects or volatility spillover effects

straightforward estimation of parameters in
high-dimensional model

generalized autoregressive score modeling framework



Generalized autoregressive score models

Introduction

B Observation model and parameter updating mechanism :

yth(yf|Yf*17fl“;9)v t:1727"'7T7 (1)
fey1 = w + By + ast, (2)
where:

y: denotes dependent variable; Y; = [y1,..., ]

f; is the time-varying parameter of interest

0 collects static parameters

st is a scaled score based on 0In p(y¢|Yi—1, fz; 0)/Of;.
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New approach: joint modeling of returns and realized covariance

Score Model

We consider kK > 1 assets and assume conditional densities:
daily returns : re|Fe—1 ~ Nk(0,P:),  Normal
realized measure :  R¢|Fi—1 ~ Wi (v, Vi/v), Wishart

where

1 1
Nk—exp{ — Ztr(P7irr! },
(27)3 | P2 3 tr(Peinere)

and
u—k—l

Wy = [Rel exp{—ytr(Vt_lRt)},
2%y % |Ve|5T (%) 2

with degrees of freedom v > k and multivariate Gamma function

rk()_w“Hr( 1—,)/2)

6

20



Link between observation densities
Score Model

The link between the Normal and Wishart densities can be
established naturally via the relation

P, = N2VAY2,

Here A'/2 can capture a correction for overnight variation if
returns r; are close-to-close.

When returns are open-to-close, A can be close to an identity
matrix.



Multiple observation densities

Score Model

The score vector takes an additive form given by

m

m on pi(vi|Ye-1, f; 0)
Vi = Zvi,t = Z of. ’
i=1 i=1

which corresponds to the sum of individual scores. The scaling
term is based on the individual information matrices as given by

m m
Ty =Y Tie =Y E[Vi:V | Feal
i=1 i=1

It leads to a flexible modeling framework for time series with
different characteristics; see Creal, Schwaab, K&L (2011) for an
application in credit risk.
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Definition of score-based innovation
Score Model

We define the dynamics for vechtorized Cholesky decomposition:

f; = vech(C;), Vi= G C/, V= unvech(f;)unvech(f;).

Proposition

For our model, score vector has dimension (k(k +1)/2) x 1

1.
Ve = SVIDj x

(Vito vt (y[vec(Rt) — vec( Vi) + [vec(rer}) — vec( Vt)}),

1 .
T, = E[V.V] |Fioa] = + =YD (Vi @V (et Ki) Dy Vi

where ® is Kronecker product, Dk is duplication matrix, Ky is
commutation matrix, V; is derivative of Cholesky decomposition.



Definition of score-based innovation

Score Model

For scaled score, focus is on the term
(u [vec(R:) — vec( V)] + [vec(reri) — vec( Vt)}>.

B The updating mechanism for covariance process utilizes two
(possibly more) realized measures.

M Since v > k the main driving force is v[vec(R;) — vec(V;)] while
relatively less information is taken from rer;. This is in contrast to
BEKK which purely relies on r;r{ realized measure.

B Each element of V; exploits the full log-likelihood information.
Hence for any model specification, including the scalar formulation
frr1 = w+ Bf; + as, cross-asset effects are incorporated. This is in
contrast to scalar BEKK and scalar HEAVY where the cross-asset
effects have vanished. We regard this as an important result !
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More insights from the special univariate case with k = 1

Score Model

B r; daily return, R; realized variance, V; true latent daily
variance, we obtain

rt|ft7]_ ~ N(O, Vt)7 Rt|ft71 ~ Gamma(l], Vt/l/).

B To ensure the variance process be positive at all times, we
model log-variance defined as f; = logV; to obtain
1

Vt:2—vt

(V(Rt—vt)Jr(rE—vt)) and Ty ="

B In this way we obtain a new realized (E)GARCH model

f + Bfe + R )4 (f
== 1/ —_— —_—
t+1 w t T N1 V; V. )

where daily variance is driven by sum of squared returns and
realized variance measure, cf. Hansen, Huang & Howard (2011).

_1+1/
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Design of the Monte Carlo exercise

Simulation Study

The primary focus is on the information extraction and the role of
v. Let us consider this setup :

e we simulate price path with n intraday observations,
n € [5,10,15,20,30,50,...], for T = 1000 trading days

e the variance process is near random walk process and has its
own source of error (GAS in not MC DGP)

e we compute daily returns r; and realized variances R; with n
intraday observations

e there is no microstructure noise in this setup

e we estimate the new model in its scalar specification,
0 =|w,a,B,V]
e we repeat the simulation & estimation M times
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The role of v

Simulation Study
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Figure 1. ML estimates of 6 vs sampling frequency n

Recall the score expression
ast o< o (1/ [vec(Re) — vec(Ve)] + [vec(rer]) — vec(Vt)]),

and note increasing relevance of R; relative to rtrt' as n increases; \/n(Ry — Vi) — MN(0, 2/Q:).



Findings from the Monte Carlo studies

Simulation Study

ML estimation is based on the BFGS algorithm (0x) with numerical
derivatives (the closed-form derivatives are at hand but for v):

e the scaling with §; = 1;1/2 appears to be preferred one
(which is a bit unfortunate from computational viewpoint as it
entails inverse of a matrix of order O(k?) at each step ... due
to this finding this step may call for some further
computational improvements)

e the simulation density of the degrees of freedom in Wishart
density behaves very well, which might be surprising given
that model is highly nonlinear in this parameter

e the simulation density of AR coefficient § is left-skewed
indicating tendency to underestimate the persistence of the
processes

e but in the scalar model formulation, the increasing dimension
k helps to reduce the (downward) bias of

14 /20



Different perspective

Score Model

B We notice that
rt|ft_1 ~ Nk(o, Vt) — rtr£|./7t_1 ~ SWk(]., Vt),
where SW) denotes singular Wishart (df=1) with density

—k
tr(rer]) 2 1
7r(rtkrt) ’ T exp{ - = tr(Vt_lrtr;)},
(2m)z| Vil 2

see Srivastava (2003).

B Then define the measurement densities as

outer product of daily returns :  rer|Fr—1 ~ SWk(1, V4),
realized measure :  Ry|Fi_1 ~ Wi (v, Vi/v),

we obtain the same updating equation for f;.
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Combining multiple covariance (realized) measures
Score Model

Proposition
Consider multiple noisy measures of daily equity covariances:

. 12 + 1/2 . . .
RE = ViV e i i),
where R! is a noisy measure of daily realized covariance matrix, for
i=1,...,m. Then
m

Vom BUOL(V e v ) (S v et - e ).
i=1

' - — S
T, = E[V:V{ |Fea] = ViDL (Vi @ Vi) (he+Ki) Di Ve 21217

with VY, V2, ... v™ as df's (notice v’ = 1 if Rl = rr]).
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Overview of empirical study

Empirical lllustrations

We evaluate the performance of the new modeling framework
against GARCH and EWMA:

15 equities (AA AXP BA CAT GE HD HON IBM JPM KO
MCD PFE PG WMT XOM) from TAQ through WRDS
different dimensions: 2 x 2, 5 x 5 and “full” model with
dimension 15 x 15 (dimension restriction due to RFS and not
due to model !)

data cleaned following guidelines of BNHLS (2008)

we consider the score model with different scalings

we apply close-to-close and close-to-open returns separately to
quantify overnight variation

different realized measures: subsampled 5min realized
covariance, 15min realized covariance, BNHLS Kernel-based
realized covariance

we evaluate the models using one-step ahead forecasts using
RMSE and quasi-likelihood loss function
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Overview of MLE results

Empirical lllustrations
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Figure 2: Histograms 8 and a coefficients (close-to-open returns), 2 x 2 case

3 estimates range 0.97-0.98 (estimate in 15 x 15 case: 0.9828)
e « estimates range 0.05-0.10 (estimate in 15 x 15 case: 0.0268)

e similarities of 8 and « estimates support scalar model: does not rule
out cross-equity effects

e to pool/group f's and «'s, by risk domicile countries or by
industries, etc. 18750



Parameter stability

Empirical lllustrations
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Figure 3: Panels i) to iv) score model, panel v) and vi) GARCH-BEKK for the

15 X 15 scalar case.
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Summary

Summary & Conclusions

Summary of deliverables :

e we have developed a dynamic model for both multiple returns
and realized measures of covariance

e it enables signal extraction of covariance structure from
multiple measures (different frequency, different robustness
properties, ...)

e it allow for cross-asset effects with a small number of static
parameters

e it enables to extract daily time-varying “betas” as measures of
systematic risk

e is based on stable and manageable estimation routines

e we can add other risk factors, e.g. oil shocks to the equity
universe
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