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Econometrics of high-frequency financial data

Introduction & Motivation
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The need for joint dynamics in returns and their dependency structure

Introduction & Motivation

Increasing availability of intraday financial data can lead to the
development of more accurate forecasting models for the
conditional covariance of daily returns :

• univariate
• model for three latent volatility processes:

Engle and Gallo (2006)
• joint model for daily returns and realized volatility:

Shephard and Sheppard (2010), Brownlees and Gallo (2010),
Hansen et al. (2011)

• multivariate
• parsimonious models for realized measures:

Andersen et al. (2003), Voev (2008),
Chiriac and Voev (2011) and Bauer and Vorkink (2011)

• joint model for daily returns and realized covariance:
Noureldin et al. (2011)
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The need for joint dynamics in returns and their dependency structure

Introduction & Motivation

The contributions of this paper are :

• simultaneous modeling of returns and their covariance
structure in a coherent manner

• potential use of multiple measures of realized covariance

• parsimonious model while still allowing for cross-assets
effects or volatility spillover effects

• straightforward estimation of parameters in
high-dimensional model

• generalized autoregressive score modeling framework
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Generalized autoregressive score models

Introduction

� Observation model and parameter updating mechanism :

yt ∼ p(yt |Yt−1, ft ; θ), t = 1, 2, . . . ,T , (1)

ft+1 = ω + βft + αst , (2)

where:

• yt denotes dependent variable; Yt = [y1, . . . , yt ]
′

• ft is the time-varying parameter of interest

• θ collects static parameters

• st is a scaled score based on ∂ln p(yt |Yt−1, ft ; θ)/∂ft .
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New approach: joint modeling of returns and realized covariance

Score Model

We consider k ≥ 1 assets and assume conditional densities:

daily returns : rt |Ft−1 ∼ Nk(0,Pt), Normal

realized measure : Rt |Ft−1 ∼ Wk(ν,Vt/ν), Wishart
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Link between observation densities

Score Model

The link between the Normal and Wishart densities can be
established naturally via the relation

Pt = Λ1/2VtΛ
1/2.

Here Λ1/2 can capture a correction for overnight variation if
returns rt are close-to-close.

When returns are open-to-close, Λ can be close to an identity
matrix.

7 / 20



Multiple observation densities

Score Model

The score vector takes an additive form given by

∇t =
m∑
i=1

∇i ,t =
m∑
i=1

∂ln pi (y
i
t |Yt−1, ft ; θ)

∂ft
,

which corresponds to the sum of individual scores. The scaling
term is based on the individual information matrices as given by

It =
m∑
i=1

Ii ,t =
m∑
i=1

E[∇i ,t∇′i ,t |Ft−1].

It leads to a flexible modeling framework for time series with
different characteristics; see Creal, Schwaab, K&L (2011) for an
application in credit risk.
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Definition of score-based innovation

Score Model

We define the dynamics for vechtorized Cholesky decomposition:

ft = vech(Ct), Vt = CtC
′
t , Vt = unvech(ft) unvech(ft)

′.

Proposition
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where ⊗ is Kronecker product, Dk is duplication matrix, Kk is
commutation matrix, V̇t is derivative of Cholesky decomposition.
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Definition of score-based innovation

Score Model

For scaled score, focus is on the term(
ν
[
vec(Rt)− vec(Vt)

]
+
[
vec(rtr

′
t)− vec(Vt)

])
.

� The updating mechanism for covariance process utilizes two
(possibly more) realized measures.

� Since ν ≥ k the main driving force is ν
[
vec(Rt)− vec(Vt)

]
while

relatively less information is taken from rtr
′
t . This is in contrast to

BEKK which purely relies on rtr
′
t realized measure.

� Each element of ∇t exploits the full log-likelihood information.
Hence for any model specification, including the scalar formulation
ft+1 = ω+βft +αst , cross-asset effects are incorporated. This is in
contrast to scalar BEKK and scalar HEAVY where the cross-asset
effects have vanished. We regard this as an important result !
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More insights from the special univariate case with k = 1

Score Model

� rt daily return, Rt realized variance, Vt true latent daily
variance, we obtain

rt |Ft−1 ∼ N(0,Vt), Rt |Ft−1 ∼ Gamma(ν,Vt/ν).

� To ensure the variance process be positive at all times, we
model log-variance defined as ft = logVt to obtain
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.

� In this way we obtain a new realized (E)GARCH model

ft+1 = ω + βft + α

{
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)
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,

where daily variance is driven by sum of squared returns and
realized variance measure, cf. Hansen, Huang & Howard (2011).
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Design of the Monte Carlo exercise

Simulation Study

The primary focus is on the information extraction and the role of
ν. Let us consider this setup :

• we simulate price path with n intraday observations,
n ∈ [5, 10, 15, 20, 30, 50, . . .], for T = 1000 trading days

• the variance process is near random walk process and has its
own source of error (GAS in not MC DGP)

• we compute daily returns rt and realized variances Rt with n
intraday observations

• there is no microstructure noise in this setup

• we estimate the new model in its scalar specification,
θ = [ω, α, β, ν]

• we repeat the simulation & estimation M times
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The role of ν

Simulation Study

Figure 1: ML estimates of θ vs sampling frequency n

Recall the score expression

αst ∝ α
(
ν
[
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]
+

[
vec(rt r

′
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])
,

and note increasing relevance of Rt relative to rt r
′
t as n increases;

√
n(Rt − Vt )→ MN(0, 2IQt ).
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Findings from the Monte Carlo studies

Simulation Study

ML estimation is based on the BFGS algorithm (Ox) with numerical
derivatives (the closed-form derivatives are at hand but for ν):

• the scaling with St = I−1/2
t appears to be preferred one

(which is a bit unfortunate from computational viewpoint as it
entails inverse of a matrix of order O(k2) at each step ... due
to this finding this step may call for some further
computational improvements)

• the simulation density of the degrees of freedom in Wishart
density behaves very well, which might be surprising given
that model is highly nonlinear in this parameter

• the simulation density of AR coefficient β is left-skewed
indicating tendency to underestimate the persistence of the
processes

• but in the scalar model formulation, the increasing dimension
k helps to reduce the (downward) bias of β
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Different perspective

Score Model

� We notice that

rt |Ft−1 ∼ Nk(0,Vt) → rtr
′
t |Ft−1 ∼ SWk(1,Vt),

where SWk denotes singular Wishart (df=1) with density
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see Srivastava (2003).

� Then define the measurement densities as

outer product of daily returns : rtr
′
t |Ft−1 ∼ SWk(1,Vt),

realized measure : Rt |Ft−1 ∼ Wk(ν,Vt/ν),

we obtain the same updating equation for ft .

15 / 20



Combining multiple covariance (realized) measures

Score Model

Proposition

Consider multiple noisy measures of daily equity covariances:
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with ν1, ν2, . . . , νm as df’s (notice ν i ≡ 1 if R i
t = rtr

′
t).
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Overview of empirical study

Empirical Illustrations

We evaluate the performance of the new modeling framework
against GARCH and EWMA:

• 15 equities (AA AXP BA CAT GE HD HON IBM JPM KO
MCD PFE PG WMT XOM) from TAQ through WRDS

• different dimensions: 2× 2, 5× 5 and “full” model with
dimension 15× 15 (dimension restriction due to RFS and not
due to model !)

• data cleaned following guidelines of BNHLS (2008)
• we consider the score model with different scalings
• we apply close-to-close and close-to-open returns separately to

quantify overnight variation
• different realized measures: subsampled 5min realized

covariance, 15min realized covariance, BNHLS Kernel-based
realized covariance

• we evaluate the models using one-step ahead forecasts using
RMSE and quasi-likelihood loss function
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Overview of MLE results

Empirical Illustrations
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Figure 2: Histograms β and α coefficients (close-to-open returns), 2× 2 case

• β estimates range 0.97-0.98 (estimate in 15× 15 case: 0.9828)

• α estimates range 0.05-0.10 (estimate in 15× 15 case: 0.0268)

• similarities of β and α estimates support scalar model: does not rule
out cross-equity effects

• to pool/group β’s and α’s, by risk domicile countries or by
industries, etc.
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Parameter stability

Empirical Illustrations
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Figure 3: Panels i) to iv) score model, panel v) and vi) GARCH-BEKK for the
15× 15 scalar case. 19 / 20



Summary

Summary & Conclusions

Summary of deliverables :

• we have developed a dynamic model for both multiple returns
and realized measures of covariance

• it enables signal extraction of covariance structure from
multiple measures (different frequency, different robustness
properties, ...)

• it allow for cross-asset effects with a small number of static
parameters

• it enables to extract daily time-varying “betas” as measures of
systematic risk

• is based on stable and manageable estimation routines

• we can add other risk factors, e.g. oil shocks to the equity
universe
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