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1 Introduction

In this study we are interested in rare-event probabilities in Markovian queues with time-varying ar-
rival rates (nonhomogeneous Poisson arrivals) and time-varying service rates. Time-varying queues
as they are called, act as important models for service systems such as call centers, for communca-
tion systems such as wireless networks, for road intersection control in traffic management, for
hospital admissions in health care logistics (Schwarz et al. (2016)). All these systems should op-
erate properly under many situations, meaning that unwanted events, such as breakdown, failure,
congestion, or overflow, happen rarely. In order to quantify and analyse the occurence of a disaster,
we investigate here a simple, specific case. Namely we consider an M; /M, /1 queue which is stable
on average, but that reaches a high level in a short time interval, representing the unwanted event.

The program that we pursue, is to analyse the behaviour of the queue during this interval, in
other words “how does the rare event occur?”, and secondly, to compute efficiently the probability
of occurrence. This will be executed in three steps. First, we apply fluid scaling (Mandelbaum and
Massey (1995)) to observe the regular behaviour, also called most likely behaviour, of the queue
which should indicate that indeed the unwanted event is rare, meaning an exponential decaying
probability of occurrence. Next, large deviations arguments from Dupuis and Ellis (1995); Shwartz
and Weiss (1995) give us the most likely behaviour of the queue during the interval to the rare
event. Finally, for estimating the rare-event probabilities, we propose an importance sampling
simulation algorithm which is efficient in the sense that it has subexponential complexity (Juneja
and Shahabuddin (2006)).
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Figure 1: The rate functions (left), the most likely sample path (middle), and the optimal path to
overflow (right).

2 Problem Statement

We shall describe the model and the problem in more detail. The arrival process at the M;/M;/1
queue is a nonhomogeneous Poisson process with rate function «(t), and the exponential server
works at time-dependent rate function /3(¢). For instance, these rate functions are periodic, as
illustrated in Figure 1. Scaling time and space gives the scaled queueing processes { X () (t):t >
0},n = 1,2,... with rate functions na(t), and nj3(t), and where the queue content is divided
by n. Letting n — oo, these processes converge almost surely to a deterministic function z(¢) =
T+ fot a(s)ds— fg B(s)I{x(s) > 0} ds, called the typical behaviour or most likely path, see Figure
1. It shows that when the queue follows this regular behaviour, it will never reach high levels. The
rare event is that the scaled queue reaches from an initial state > 0, an overflow level y > =
at a finite, fixed horizon 7T'. Its probability, £, = P(X (1) > 75| X™(0) = 7) satisfies a large
deviation asymptotics, implying that /,, is a rare event probability; i.e., lim,_, % log ¢,, = —J for
some J > 0.

For reaching high overflow levels y at small horizon 7', the queue should build up rapidly,
contrary to its regular behaviour, as illustrated in Figure 1. The rate functions are biased by an
exponential tilt to become a*(t) = a(t)e?, and 5*(t) = B(t)e~?, where the tilting factor § > 0,
is computed in the same way as for the M /M /1 queue, which is thoroughly analysed in Shwartz
and Weiss (1995). Then we obtain for small overflow horizon T, that the rare event happened most
likely because the scaled queue builds up along the path x(¢) = f—l—fg a*(s) ds—f(f B*(s)I{x(s) >
0} ds, on the interval [0, T'].

For computing numerically the rare event probabilities ¢,,, we have implemented an importance
sampling algorithm that simulates the M; /M, /1 queue having the biased rate functions na*(t) and
nB*(t). For accurate estimates we execute so many runs until the standard error of the estimator
is about 2.5% of the estimated value. When we would implement this requirement for standard
Monte Carlo simulations, the required sample sizes would grow exponentially (in n); see Figure
2. However for the implemented importance sampling algorithm the sample sizes grow subexpo-
nentially, which leads to the conjecture that the importance sampling estimator is asymptotically
efficient. The importance sampling estimates are verified (i) by running standard Monte Carlo
simulations for small overflow levels, and (ii) by applying numerical procedures for computing
transient probabilities in finite nonhomogeneous Markov chains (Ingolfsson et al. (2007)). Figure
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Figure 2: Left: numerical approximations, and confidence intervals for the overflow probabilities
by simulation. Middle and right: required sample sizes for standard Monte Carlo and for the
importance sampling.

2 gives a visual overview of results.

3 Discussion

When we inspect the numerical results of Figure 2 (left), and when we assume that the Monte Carlo
simulations give the true values, we observe that the numerical approximations slighlty underesti-
mate these, possibly due to state space truncation and numerical roundoffs. Secondly, the impor-
tance sampling gives even further underestimates. This is a well-known issue of importance sam-
pling, which could be caused by small likelihood ratios when there is overbiasing (Smith (2001)),
or by missing part of the rare event set (Glasserman and Wang (1997)). Moreover, difficulties arise
for obtaining efficient importance sampling algorithms for processes with boundaries, which is il-
lustrated by the counter examples in Asmussen et al. (2002); Glasserman and Kou (1995). These
difficulties will arise when the rare event would involve large horizons 1. However, for small hori-
zons the boundary plays no role, but this needs further investigation and thorough analysis. Next,
future work will be to consider rare events in more complex and realistic time-varying queues.
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