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1. Introduction
Despite extensive research in the area of stochastic pro-
gramming, analytic solutions to multistage stochastic pro-
grams are rare. The main contribution of this paper is
twofold. First, we analytically characterize the solution to
a basic multistage financial planning model and study its
robustness. Our setup shares the main characteristics with
more elaborate applied models that are widely used in the
financial industry. As such, our second contribution is to
highlight some of the key mechanisms and potential pitfalls
of practical financial planning models with downside-risk
measures.
Over the past decade, we have witnessed a growing lit-

erature on financial planning models. Such models can
assist financial institutions like pension funds, insurance
companies, and banks in their asset/liability management
(ALM), as illustrated in the book by Ziemba and Mulvey
(eds.) (1998). The key component in these models con-
cerns the trade-off between risk and return. It is therefore
of paramount importance which risk measure is put into
the model. Traditionally, the variance or standard devia-
tion has been the prominent measure of risk, with the main
(and perhaps only) advantage being its computational sim-
plicity. As argued by Sortino and Van der Meer (1991),
however, the variance is an inadequate measure of risk
in many practical circumstances. The main criticism to
the use of the variance is its symmetric nature, whereas
risk is typically perceived as an asymmetric phenomenon.

Asymmetric or downside-risk measures are generally more
difficult to work with, both analytically and computation-
ally. Given the current state of computer technology, how-
ever, their use in both theoretical and empirical financial
planning models has increased rapidly.
Downside-risk measures are currently used extensively

in the area of ALM. Recent research typically incorporates
these risk measures in a multistage stochastic programming
(MSP) approach, as in Consigli and Dempster (1998), Mul-
vey and Thorlacius (1998), Cariño et al. (1994), Boender
(1997), and Dert (1998). The main advantage of the MSP
approach relative to the more traditional static mean-
variance oriented approach is that the explicit dynamic
nature of financial decisions can better be taken into
account. For example, a decision now may be followed by
recourse actions in the future. Moreover, different prefer-
ences and (dynamic) constraints can be modeled directly.
As a result, the MSP approach generally produces signif-
icant improvements over static mean-variance-based deci-
sions. These improvements can be exploited when the MSP
model is implemented in practice, as in Cariño et al. (1994).
The interaction between the formulation of an MSP

model and the resulting decisions is generally badly under-
stood. In this paper, we solve a basic model analytically
and present the solution as decision rules in feedback form.
These rules have a nice economic interpretation. Parametric
decision rules have also been derived for models formulated
in continuous time as in Merton (1969) and Sethi (1998) for
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the consumption/investment problem and Ingersoll (1987)
for the general portfolio optimization problem. See also
Basak and Shapiro (2001), who optimize expected utility
of terminal wealth under a constraint on downside risk.
By contrast, our model is set in discrete time, for which
few analytic results are available.
The solution to our model is found to be a set of V-shaped

rules: risk taking increases for both increasingly high and
increasingly low wealth levels. The exact shape depends on
the return distributions and the time to the horizon. More-
over, assuming independently distributed returns across
time, we find increasing risk-taking behavior when the dis-
tance to the horizon increases. The increased risk taking
for low wealth levels may appear undesirable from a nor-
mative or practitioner point of view. We show, however,
that this phenomenon is surprisingly robust over variations
in the specification. As a side result of our paper, these
findings lead to some fundamental questions regarding the
typical use of loss-averse preferences in financial optimiza-
tion problems.
The remainder of this paper is organized as follows.

In §2, the multistage model is introduced. Section 3 gives
the solution to the multistage model and the corresponding
optimal decision rules. It also gives a number of interest-
ing consequences that follow from the solution. Section 4
gives some generalizations of the model using an alterna-
tive objective function. Concluding remarks are given in §5.
The appendix contains the proofs.

2. A Downside-Risk Model
In formulating a simple downside-risk model, we draw on
a number of existing articles that formulate variants of
downside-risk models. For ease of exposition, we first give
the formulation of our basic ALM model and then explain
how it is representative of existing empirical models.
Let Wt denote wealth at time t = 0� � � � � T . At each time t

there are two investment opportunities: a risk-free asset
with certain return rf in each period, and a risky asset with
uncertain return ut over period t. Restricting the invest-
ment categories to only two assets may appear restrictive at
first. However, as shown by Merton (1990) for example, if
two-fund separation holds in an economy, all efficient asset
allocations are completely covered by investments in the
risk-free asset and the market portfolio only. In this case,
our ut would represent the return on the market portfolio,
i.e., a portfolio that holds all available securities in propor-
tion to their market values. See Cass and Stiglitz (1970) for
a general discussion of separation theorems. An important
feature of the model is that the exact distribution of ut can
be left unspecified.
With the two investment categories given, wealth

evolves as

Wt+1 =Wt · rf +Xt · 
ut+1− rf �� t = 0� � � � � T − 1� (1)

where Xt is the amount invested in the risky asset at
the beginning of period t. The returns u1� � � � � uT are in-
dependent, though not necessarily identically distributed

with absolute continuous distribution functions Gt+1
·�
on 0���. We assume that Ɛtut+1� > rf , with Ɛt
·� =∫ · dGt+1, i.e., the expected return on the risky asset always
exceeds the risk-free return.
Incorporating a downside-risk measure relative to a

benchmark level of final wealth WB
T , the objective function

is given by

max
X0�����XT−1

Ɛ0WT �−� · Ɛ0
WB
T −WT �

+�� (2)

with � > 0 the risk-aversion parameter, and 
y�+ denoting
the maximum of 0 and y. In words, the objective (2) aims
to maximize expected final wealth with a penalty of � for
each dollar shortfall below a reference wealth level WB

T at
time T .
Model (2) resembles the formulation of the stochastic

programming example for a financial planning model in
Birge and Louveaux (1997). There the setting is given by
parents who wish to provide for a child’s college education
T years from now. WB is the tuition goal and � the (total)
cost of borrowing if the goal is not met. The example is
used to show how stochastic programming can be used to
numerically solve the problem. This paper shows that an
analytic solution can be obtained.
Our utility function with WB ≡W0 is discussed in Sharpe

(1998) to show that the then-used Morningstar rating for
mutual fund performance evaluation could lead to extreme
investment strategies. This also follows directly from our
subsequent analysis. However, Sharpe’s critique only holds
for W0 ≡ WB, which in our setting can be considered a
special case. Also, our robustness analysis in §4 shows that
for a quadratic penalty, this behavior disappears.
Bertsimas et al. (2004) analyze the properties and use

of expected shortfall as a risk measure, showing how the
mean-shortfall approach as in (2) can have advantages over
mean variance. Many studies consider the numerical prop-
erties of problems with a comparable objective. Hiller and
Eckstein (1993) use the same objective function as (2) in
a stochastic dedication model for fixed-income portfolios.
(2) also resembles the objective function of Cariño et al.
(1994), albeit that they use a piecewise linear penalty func-
tion in terms of the expected loss, where we have a linear
one. In addition, they argue that in the context of banks and
insurance companies, risk measures as in (2) can easily be
justified, as these companies are faced with specific costs if
reserves fall below critical threshold levels. The risk mea-
sure in (2) in terms of returns is used by Rockafellar and
Uryasev (2000) in a static stochastic portfolio optimization.
Basak and Shapiro (2001) also use expected shortfall as the
risk measure in a constraint for a continuous-time dynamic
portfolio optimization model.
Almost exactly the same objective is often used in practi-

cal ALM studies for pension funds, and fixed income invest-
ment studies for corporate treasuries. ALM is foremost a
practical science. Cariño et al. (1994) describe an imple-
mented ALM model where downside risk is incorporated
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as a stepped penalty function accommodating for the spe-
cific thresholds at which risks become effective. Boender
(1997) describes the details of an ALM model that is used
empirically for advising defined benefit pension funds. His
objective function contains a quadratic penalty on shortfall.
Both as a robustness check and because quadratic penalty
functions are also often used in practice, we also study how
our results for (2) generalize to a situation with quadratic
shortfall in §4.
An essential feature of the objective in (2) is the need

to specify the reference point WB. It has the advantage of
making risk explicit and for several institutional settings
there is a natural candidate. In the case of defined benefit
pension funds, Wt represents the pension fund’s asset level
and WB the present value of liabilities.
A number of potential drawbacks of the mean-shortfall

model in (2) can be seen already. First, as the objective is
piecewise linear, it gives rise to locally risk-neutral behav-
ior. In a complete markets setting, this may give rise to
unbounded solutions; see Dert and Oldenkamp (2000) and
§3.5. This is generally undesirable from a normative point
of view and empirical models usually incorporate several
types of institutional constraints to prevent this effect, e.g.,
limited investment in specific assets or a nonnegativity con-
straint on wealth. The incorporation of such constraints,
however, only obscures the main drivers and possible pit-
falls of financial planning models based on expected return
and downside risk. Therefore, it is important to stick to
our simple objective function to highlight the model’s basic
mechanisms. Local risk neutrality may be removed by
imposing convex penalties on shortfall as in §4 and concave
utilities to gains. In a discrete-time framework with incom-
plete markets, however, this quickly becomes intractable.
A second property of (2) is that situations of shortfall

are not explicitly excluded. Again, this may appear unde-
sirable from a normative perspective. On closer inspection,
however, the current setup allows for some interesting new
insights. First, it allows us to explicate the incentives for
risk taking provided by mean-downside-risk models in sit-
uations of initial shortfall. This is not always possible if an
explicit constraint on shortfall is included. In that case, a
feasible solution may often not exist. Second, the situation
of an initial negative surplus, though possibly normatively
undesirable, is empirically relevant. Even if explicit prob-
abilistic constraints on shortfall are imposed at a certain
stage of the planning process, a situation of shortfall may
easily arise in subsequent stages. This is due to the fact that
shortfall generally has a strictly positive, though possibly
small, probability at the optimum. The bear stock markets
over the early 2000s have shown that shortfall may indeed
(nearly) arise at many defined benefit pension funds and
insurance companies.

3. Results
Using the special structure of the model, we obtain the
complete solution to (2) up to a set of 2 ∗ T param-
eters that depend directly on the model parameters and

the probability distributions of the risky returns ut+1. We
present the solution and subsequently discuss its financial
implications for (i) the role and interpretation of �, (ii)
risk taking in a shortfall position, and (iii) a result on time
diversification that fits in a behavioral finance perspective.

3.1. Solution to the Multistage Model

Define WB
t = WB

T /r
T−t
f as the risk-free discounted value

of benchmark wealth at time t, and St =Wt −WB
t as the

surplus. The next theorem characterizes the solution to (2).

Theorem 3.1. If there is a bounded solution to the opti-
mization problem in (2) and (1), then it is given by

X∗
t =

rf

rf − ū∗t+1
· St� t = 0� � � � � T − 1� (3)

where ū∗t+1 is smaller than rf for a positive surplus and
larger than rf for a negative surplus, so that X∗

t � 0. Specif-
ically, ū∗t+1 is one out of two possible ūts that solve

Ɛtut+1− rf �= �t · Ɛt
rf − ut+1� · I�ut+1�ū��� (4)

The two solutions to (4) are labeled ū+t+1 < rf and
ū−t+1 > rf . Further, �t is defined by

�t =
� · 
p−

t+1−p+
t+1�

1+� ·p+
t+1

� (5)

where for k = t + 1� � � � � T − 1, p+
k and p−

k are defined
recursively by

p−
k = p−

k+1 ·Gk+1
ū
−
k+1�+p+

k+1
1−Gk+1
ū
−
k+1��� (6)

p+
k = p−

k+1 ·Gk+1
ū
+
k+1�+p+

k+1
1−Gk+1
ū
+
k+1��� (7)

and p−
T ≡ 1� p+

T ≡ 0.
Proof. See the appendix.

Equation (3) shows that X∗
t , the optimal amount invested

in the risky asset, is a piecewise linear function of the sur-
plus St . There is one “kink” at zero surplus. The slope of
the decision rule is only affected by the sign of the surplus,
which determines ū∗t+1 through Equation (4). Note that the
right-hand side of (4) is unimodal in ū. The maximum is
reached at ū= rf . If

�t ·Ɛt
[

rf −ut+1�·I�ut+1�rf ��>Ɛtut+1−rf

]
�

t=0�����T −1� (8)

then (4) has two distinct solutions: one smaller and one
larger than rf . Consequently, (8) is a sufficient condition
for having a bounded solution. Effectively, it puts a lower
bound on the risk-aversion parameter �. The economic
interpretation of the lower bound is that if � is too small,
the marginal expected loss of an extra unit invested in the
risky asset is always smaller than the risk premium �− rf .
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Figure 1. Solving the first-order condition.
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Notes. The solid line “lhs” represents Ɛut+1 − rf �/�t , the left-hand side
of (4) scaled by �t . The dashed curve “rhs” represents Ɛt 
rf − ut+1� ·
I�ut+1�ū��, the right-hand side of (4), also scaled by �t . The points of
intersection are the ūs that solve the first-order condition. The risk-
free rate rf is 1�04, �t = 2�4, and the uncertain return u is distributed
log-normal
0�085�0�16�, representing a typical stock return with a mean
return of 10% and standard deviation of 17%.

Hence, without the lower bound investment in the risky
asset can be infinite, which we want to exclude. Note that
without a specification for G
·�, an expression of condi-
tion (8) in primitives is not possible.
Under (8), solving Equation (4) can be visualized as

in Figure 1. It boils down to evaluating the conditional
first moments of Gt+1
·�. This can be done very efficiently.
If (8) is not met, either ū∗t+1 = rf or (4) has no solu-
tion, corresponding to the horizontal solid line in Figure 1
just touching or lying completely above the dashed curve.
In both cases, the optimal decision X∗

t in (3) is unbounded.
From the definition of �t in (5), it follows that its value

is determined by � and future values of ū∗k� k > t + 1.
Consequently, the model can be solved by sequentially
solving Equation (4) for t = T −1� � � � �0, giving the param-
eters ū∗t+1. An important property of the optimal solution
is that (3) and (4) represent the solution to a static model
(T = 1), with risk-aversion parameter � equal to �t . The
multistage problem thus resembles a myopic model: it can
be solved by solving a sequence of static problems. Only
in this case the static problems are linked through the time-
varying risk-aversion parameter �t .
The piecewise linearity of the optimal decision rule

for Xt in Theorem 3.1 holds for any set of absolute-con-
tinuous distribution functions Gt+1
·�� t = 0� � � � � T − 1.
Gt+1
·� only enters the optimal decision rule through the
values of ū+t+1 and ū−t+1, which follow easily from Equa-
tion (4). Theorem 3.1 thus provides the solution to the
dynamic investment problem for standard assets such as a
stock or bond index. Even if Gt+1 is the return distribution
of a complicated derivative instrument, piecewise linearity
of X∗

t still holds.

Figure 2. Optimal investment in the risky asset.
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Notes. For a one-period model, this figure shows the optimal investment
in the risky asset, X∗

0 , as a function of initial surplus, S0. rf = 1�04, u has
a log-normal distribution, with � = 0�085, and � = 0�16, representing a
typical stock return with a mean of 10% and standard deviation of 17%.

3.2. Risk Taking Under Shortfall

For relevant parameter values and varying values of �,
Figure 2 plots the typical shape of the decision rule X∗

t .
Risk taking is decreasing in the surplus when the surplus
is negative, and increasing in the case it is positive. The
optimality of a V-shaped portfolio policy is not confined
to the specific mean-shortfall formulation. Similar effects
were found based on a Kahneman-Tversky behavioral value
function; see Berkelaar and Kouwenberg (2000a). More-
over, in §4 we show that the V-shape persists for quadratic
shortfall. The mean-shortfall objective and its solution thus
explicitly characterize in a multistage setting the optimal-
ity of nonmonotonic investment policies that drive more
general mean-downside-risk investment problems.
The shape of the investment policy for a positive surplus

is intuitively clear. If wealth increases, more money can be
invested in the risky asset at the cost of only a marginal
increase in downside risk. This induces a positive relation
between the surplus and the investment in the risky asset.
Note that the results do not tend to risk-neutral allocations
for large surplus values. Because ūt in (3) is fixed, the
fraction invested in the risky asset tends to the constant
rf /
rf − ū∗t � for large St . The outcome of a constant frac-
tion is very similar to that of models with a constant rel-
ative risk-aversion (CRRA) utility function, such as power
utility.
The most striking feature of Figure 2 is the increased risk

taking if the surplus becomes increasingly negative. Such
outcomes are generally normatively undesirable in practice.
As the nonmonotic pattern of the investment policy appears
to be robust for a variety of downside-risk preferences, we
comment on it in more detail.
First, the decreasing left-hand side of the V shape

does not disappear for � diverging to infinity, i.e., for
large penalties on shortfall. Formally, this is clear from
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Theorem 3.1. Dividing the left-hand side and the right-hand
side of Equation (4) by �t , the first-order condition for
�→� becomes

Ɛt
rf − ut+1� · I�ut+1�ū��= 0� (9)

The solution of (9) corresponds to the intersection of the
dashed curve in Figure 1 with the horizontal axis. Given a
finite value for u∗t+1, risk taking will be nonzero. The intu-
itive explanation is that for large values of �, the optimal
solution under shortfall simplifies to the minimum-shortfall
strategy. Given the assumption of a positive equity premium
Ɛu� − rf , the investment in the risky asset converges to
a nonzero value for �→�. Hence, the risk taking under
shortfall (see, for example, Figure 1) is not due to consid-
ering only unrealistically low values for �. Moreover, as
mentioned earlier, the pattern is also robust to putting a
convex rather than a linear penalty on shortfall; see §4.
Second, it is important to realize that risk taking is not

caused by convexity of the utility function in general, or
convexity in losses (as in the Kahneman-Tversky specifi-
cation), in particular. Instead, the result arises despite the
explicit (and possibly large or increasing) penalty on losses.
One may argue that in practice institutional constraints

mitigate the increased risk taking under shortfall, and
thus the concerns of practitioners on the use of mean-
downside-risk optimization models. Such constraints can
take the form of maxima on fractions invested in (classes
of) risky assets, required stress tests, etc. Such institutional
restrictions, however, obscure the key drivers of the basic
models.
Another line of argument could be that increased risk

taking under shortfall can be prevented by maximizing
expected return subject to an explicit constraint on shortfall
risk. If such constraints take the form of minimum return
guarantees such that shortfall is prevented altogether, only
the right-hand side of the V-shaped policy becomes rele-
vant. In many cases, however, such constraints are only of
a probabilistic nature, such that there remains a nonzero
probability of ending up in a negative surplus situation at
some point in time. If such a situation happens to arise,
the results in Theorem 3.1 make explicit the perhaps prac-
tically undesirable risk incentives induced by the use of a
mean-downside-risk modeling framework.
Putting the results for positive and negative surplus

together, our findings contrast with the general results for
Hyperbolic Absolute Risk Aversion (HARA) utility func-
tions. HARA utilities lead to a fraction invested in risky
assets that is either monotonically increasing, decreasing,
or constant in wealth. Here we find both decreasing and
increasing behavior simultaneously.

3.3. Risk Aversion and Value-at-Risk

The model’s solution yields a specific relation between
probabilities of shortfall and the optimal investment in the
risky asset. The following corollary gives an important
property of the solution with respect to �.

Corollary 3.1. If the optimal solution is bounded and ini-
tial surplus is positive, then there is a unique �+ such that
under the optimal policies X∗

t � t = 0� � � � � T − 1, PrWT <
WB� is fixed. For a negative initial surplus, there is a
unique �− associated with the probability PrWT >WB�.

Proof. See the appendix.

Corollary (3.1) states that a shortfall probability can be
associated at the optimum with a unique value for the risk-
aversion parameter �. Of course, the choices for the proba-
bilities are limited by condition (8), which ensures that the
optimal decisions X∗

t are finite. For example, starting from
a negative surplus the shortfall probability has a minimum
value corresponding to the strategy that gives a positive
final surplus with the highest probability, i.e., a minimum-
risk strategy.
The financial industry widely uses the concept of value-

at-risk (VaR), which is intimately related to the short-
fall probabilities and benchmark wealth levels; see Jorion
(2000). In a static context, Rockafellar and Uryasev (2000)
propose a technique for stochastic portfolio optimization in
which mean-shortfall (or CVaR) is optimized and VaR is
calculated simultaneously. As such, Corollary 3.1 presents
a similar result for the multistage optimization problem.

3.4. Time Diversification

Below we present two corollaries connecting our results
in Theorem 3.1 to the phenomenon of time diversification.
In essence, the proponents of time diversification claim that
risky assets (e.g., stocks) become more attractive for longer
investment horizons, because of the diversification of losses
over time and the positive premium earned on holding risky
assets. There is no consensus among academics, however,
whether time diversification is fully in line with people’s
preferences, or whether it is an irrational or behavioral phe-
nomenon. Using the multistage mean-downside-risk frame-
work as our benchmark for loss averse preferences, we
obtain the following results. The next section illustrates
numerically how these results generalize toward a setting
with quadratic shortfall.

Corollary 3.2. If (2) has a bounded solution and T is
fixed, the values of �t are increasing in t.

Proof. See the appendix.

Corollary 3.3. If the uts are identically distributed, the
absolute slope rf /�ū∗t+1 − rf � of the optimal decision rules
in (3) is monotonically increasing in the time to maturity
T − t.

Proof. See the appendix.

As �t represents the investor’s risk aversion at time t,
Corollary 3.2 states that in the multistage setting the
investor becomes less risk averse the longer the time to
maturity T − t. The effect of �t on the investment policy X

∗
t

is illustrated in Figure 2. As a direct result, Corollary 3.3
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concludes that the optimal policies are more sensitive to
changes in surplus for longer planning horizons. Moreover,
the increasing slopes of the decision rules also imply a
higher level of risky investments for longer planning peri-
ods and given initial surplus.
The intuition given by proponents of time diversifica-

tion for the decrease in risk aversion for longer planning
horizons is straighforward: in the long run the increased
uncertainty due to a more risky portfolio is more than com-
pensated by the higher expected return. Some base this
view on the obvious observation that the probability of a
lower than risk-free return decreases with a longer horizon.
However, Samuelson (1994), Kritzman and Rich (1998),
and Merton and Samuelson (1974) argue that the spread
of the distribution of terminal wealth also widens with the
time horizon. Consequently, whereas the probability of a
loss decreases, the potential magnitude of the loss increases
accordingly. This is used as an argument to claim that
investors might well choose less aggressive portfolios if
their investment horizon increases. Corollary 3.3 highlights
that if wealth is measured against a benchmark level and
the magnitude of a loss is (linearly) taken into account, time
diversification holds for any distribution of the risky returns
with a positive risk premium. Hence, the mean-shortfall
framework, in fact, supports a preference-based explana-
tion of time diversification. The basic driver of this result
appears to be the fact that the model allows for a situation
of shortfall. As explained earlier, a larger shortfall results
in a higher investment in the risky asset. This resembles
a doubling strategy, but with a predetermined number of
bets (equal to the number of remaining decision moments).
If the number of bets increases, it is therefore not surprising
that the asset allocation for a given level of surplus also
becomes riskier.

3.5. Trade Frequency

As mentioned in §2, one of the drawbacks of the mean
shortfall model is the local risk neutrality of the objec-
tive function. In a complete markets setting, this results in

Figure 3. Threshold values for � and risky investment for increasing number of stages.
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undesirable betting behavior, also labeled casino behavior
by Dert and Oldenkamp (2000). Such behavior can only
be controlled by a more complete specification of prefer-
ences or by imposing additional restrictions on the planning
problem.
Our model is set in an incomplete markets framework.

Still, however, the casino effect is important. This is eas-
ily seen if we increase the number of stages, i.e., the
trade frequency for a given length of the planning period.
This effectively amounts to making the market dynamically
complete, thus giving rise to similar degenerate solutions
as in Dert and Oldenkamp (2000). This is illustrated in
Figure 3. For simplicity, we assume that risky return prices
follow a log-Brownian motion with drift on the unit inter-
val. The left-hand panel in Figure 3 shows the minimum
risk-aversion parameter � that satisfies the “finite-solution”
constraint (8) at t = 0. As expected, the risk-aversion
parameter has to increase (more than) exponentially in the
number of decision moments to retain a finite solution. The
right-hand panel in Figure 3 shows a similar effect. For a
given risk-aversion parameter, it shows the amount of risky
investments (on a log scale) as a function of the number of
decision moments in the 0�1� interval. It is clear that the
amount increases more than exponentially in the number of
decision moments.
The results illustrate again one of the problems with

empirical financial planning models based on expected
returns and downside-risk measures. As shown, in a mul-
tistage setting, the key drivers of such models are geared
towards casino-type solutions. The fact that such solu-
tions are not immediately apparent may be due to the fact
that institutional constraints obscure the basic mechanisms
of such models. For a more elaborate dynamic (decision)
specification of the model, however, including more deci-
sion moments, a more complete and nonlinear specifica-
tion of preferences is needed. In the continuous time limit,
strict risk aversion is needed to ensure nondegenerate solu-
tions; see Basak and Shapiro (2001) and Berkelaar and
Kouwenberg (2000a). A similar caveat may apply to many
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of the financial planning models applied in practice that fail
to account for risk aversion in upside potential.

4. Quadratic Shortfall
So far, the analysis was based on a downside-risk mea-
sure that was linear in shortfall. In this section, we analyze
a downside-risk measure that is strictly concave in losses,
i.e., that puts an increasing marginal penalty on losses.
Although this specification is less tractable than the mean-
shortfall model, we are able to corroborate the results and
conclusions from the previous section. We derive analytical
results for the one-period model under quadratic shortfall,
and numerical results on time diversification for the multi-
stage model.
Risk measures that put strictly convex penalties on losses

may be more desirable from a normative financial plan-
ning point of view. Using a risk measure that is concave in
losses is recommended in, for example, Sortino and Van der
Meer (1991) and Harlow (1991). Specifically, they argue
that downside deviation (or semi-deviation, as it is called
by Markowitz 1959), is the risk measure to be used in
investment. See also Boender (1997) and in the practice of
ALM, see Ziemba and Mulvey (1998).
Our aim is to determine if and how the convex, nonmono-

tonic asset allocation policies as a function of the surplus
persist if the risk measure becomes quadratic in shortfall.
To do so, we analyze a one-period investment model as
before, but now with an objective function that penalizes
squared shortfall below a benchmark level of wealth. With
T = 1, the formulation of the objective is
max
X0

ƐW1�− � · Ɛ

WB −W1�
+�2�� (10)

where the variables are the same as in the previous section.
The only exception is the new variable �, representing loss
aversion with respect to the squared shortfall below WB.
The main results for the model with a squared shortfall

objective are in the following theorem.

Theorem 4.1. For � > 0, the optimal solution X∗
0 to prob-

lem (10) has the following properties:
(i) The optimal stock investment X∗

0 for zero surplus

S0 = 0� is positive, decreasing in �, and given by

X∗
0 =

Ɛu− rf �

2� · Ɛ
rf − u�+�2
� (11)

(ii) The optimal decision X∗
0 as a function of S0 has one

minimum for a nonpositive surplus. For any �, the minimum
lies on the straight line characterized by

X0 =
rf

rf − ūm
S0� (12)

where ūm is the ū > rf that solves

∫ ū

0

u− rf �dG= 0� (13)

(iii) For a positive surplus, and �→�, X∗
0 = S0. For a

negative surplus, and �→�, X∗
0 is given by

X∗
0 =

rf

rf − ū∗
S0� (14)

where ū∗ is the ū > rf that solves

∫ ū

0

rf − u�dG= 1

rf − ū

∫ ū

0

u− rf �

2 dG� (15)

Moreover, for any given negative surplus, and �→�, X∗
0 is

smaller than for the mean-shortfall objective with �→�.

Proof. See the appendix.

Theorem 4.1 gives specific properties of the solution,
without completely specifying a parametric decision rule
for the optimal X∗

0 as a function of S0. We now discuss the
results and compare them to the results in Theorem 3.1.
In contrast to the mean-shortfall model, the existence of a
bounded solution does not depend on a lower bound for
the risk-aversion parameter �. In the mean-shortfall model,
the marginal value of gains and losses is fixed. When the
objective is quadratic in losses and linear in gains, there
always exists an allocation where the marginal penalty on
losses exceeds the marginal value of gains.
Theorem 4.1(i) shows that the optimal investment in the

risky asset is nonzero at zero surplus. This is a direct result
of the quadratic penalty function 
WB−W1�

+�2, which has
zero slope at W1 = WB. This is different from the mean-
shortfall objective, where the marginal penalty is constant
and nonzero regardless of the distance to the benchmark.
A large value of �, however, drives X∗

0 at W0 =WB
0 to zero.

In many cases, it will be undesirable from a normative point
of view to allow for positive investments in the risky asset
if the surplus is zero. This is especially concerning given
the use of quadratic downside-risk measures in empirical
financial planning models; see e.g. Boender (1997).
Second, the implication of (ii) is that the optimal invest-

ment in the risky asset has a nonmonotonic convex relation
with the surplus S0. For different values of �, the minimum
stock investments lie on a straight line through the point
with S0 = X∗

0 = 0. Equation (13) resembles the first-order
condition for the mean-shortfall model in Equation (4) with
�t → �. Given that for the mean-shortfall model X0 = 0
for S0 = 0, and given the nonzero minimum investment
Xmin
0 for the quadratic-shortfall case, the implication is that
for each value of � and � there is an area around S0 = 0,
where the investment in the risky asset is higher in the
squared-shortfall model than in the linear-shortfall model.
So despite the concavity in losses, there is a range of initial
negative and positive surplus values for which the mean-
quadratic-shortfall objective results in riskier allocations
than the mean-linear-shortfall objective.
The limiting behavior for X∗

0 when �→� in (iii) shows
that for large values of �, the relation between the risky
investment and surplus becomes piecewise linear again.
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For positive surplus, the optimal X∗
0 is equal to the sur-

plus itself, as the aversion to downside risk has become
too large. For negative surplus, however, the solution con-
verges to an allocation that gives minimum quadratic short-
fall. Although smaller than in the linear-shortfall case, the
investment in the risky asset does not go to zero for nega-
tive surplus. Ex ante intuition might say that high loss aver-
sion induces low-risk allocations. This is clearly not true if
one starts in a situation of shortfall. For the surplus going
to plus or minus infinity, the optimal decision also becomes
a V-shaped function of the surplus; see the proof in the
appendix. This suggests that the solution to the quadratic-
shortfall case can be approximated by a piecewise linear
decision rule.
Figure 4 shows the numerical solutions to model (10)

given three different values of �. It illustrates the results in
Theorem 4.1, and also shows the typical shapes of the opti-
mal decision rules, together with an idea of the sensitivity
of the optimal solution to �.
We see in Figure 4 that the the right-hand side of the

curves is more sensitive to changes in � than the left-hand
side. For � = 10, the curve becomes virtually piecewise
linear as suggested by part (iii) of the theorem.

4.1. Time Diversification

Having established the results on the optimal decisions
under squared shortfall for a one-period model, we now
turn to the robustness of our results on time diversification.
In the case of expected shortfall, we used the special struc-
ture of the objective to solve the multistage model explic-
itly. This is not possible for the quadratic-shortfall model.
Therefore, we solve a two-period model numerically and

Figure 4. Solution for the quadratic-loss objective.
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Notes. For a one-period model, this figure shows the optimal investment
in the risky asset as a function of initial surplus. The objective is to maxi-
mize expected return minus � times quadratic shortfall below a benchmark
asset level WB . The figure displays results for WB = 104, rf = 1�04, and
u∼ log-normal
0�085�0�16�. The added line goes through the minima of
the decision rules.

Figure 5. Multiple periods in the quadratic-loss model.
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Notes. This figure shows the optimal initial investment in the risky asset as
a function of initial surplus for the quadratic-loss objective with a horizon
of one and two periods. Benchmark WB is 104 for T = 1 and 108.16
for T = 2. rf = 1�04, and ut ∼ log-normal
0�085�0�16�. The solution is
computed by discretizing the distribution of ut using 30 evenly spaced
points.

study the effect on our results for time diversification.
Figure 5 shows the solutions to the one- and two-period
models with squared shortfall as the risk measure.
We observe that the general result for the mean-shortfall

model in Corollary 3.3 continues to hold. For a given time-t
surplus, the allocation to the risky asset is larger for the
two-period model than for the one-period model. Also, the
bottom of the U-shaped decision rule is shifted to the upper
left, comparable to the effect of a decreasing �. Note that
due to the convexity of the penalty on losses, the time-
diversification effect for a (large) negative initial surplus
is very limited. This constitutes an important difference
with the case of linear shortfall; see also Figure 2 and
Corollary 3.2. Numerically solving a three-period model
produced computational problems for acceptable sizes of
the discretizations. As the number of periods grow, the sce-
nario tree and hence the problem size increases exponen-
tially. See also Berkelaar et al. (2000, 2002), who introduce
state-of-the-art interior point methods to solve multistage
stochastic programming models, but still only solve prob-
lems for scenario trees of very limited size.

5. Conclusions and Discussion
In this paper, we analytically characterized the solution to
a multistage financial planning model involving a trade-
off between return and downside risk. Our model shares
the basic characteristics of more elaborate empirical models
such as that of Cariño et al. (1994). Downside risk was used
because of its widespread popularity in the financial indus-
try and its use in related academic work. Risk was measured
with respect to a benchmark wealth level. This can be inter-
preted as a liabilitity level in the case of asset/liability man-
agement (ALM) problems. It is also the most realistic form
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of risk measurement emerging from behavioral research; see
Kahneman and Tversky (1979). We have derived the ana-
lytic characterization of the optimal solutions in feedback
form, i.e., as decision rules. This form has a clear-cut eco-
nomic interpretation, which constitutes a valuable addition
to the existing literature where solutions are often derived
numerically rather than analytically.
One of the salient findings of this paper is that the opti-

mal decision rule has a V- or U-shaped relation with the
surplus for either a linear or quadratic penalty on losses.
Moreover, the results do not hinge on the specific prob-
ability distribution of the return on the risky asset. The
distribution only determines the relative steepness of the
decision rule for positive and negative values of the surplus.
Numerical results in Siegmann (2003) further show that
the V-shaped rules persist for restrictions on allocations,
a stochastic benchmark, and a loss-averse utility func-
tion directly taken from Tversky and Kahneman (1992).
See also the results in Berkelaar and Kouwenberg (2000a,
2000b), who solve asset allocation problems in continuous-
time models with log-normal distributed returns and a gen-
eral specification of loss aversion.

Appendix. Proofs
Proof of Theorem 3.1. We solve the optimization prob-
lem as given by Equations (1) and (2) by dynamic pro-
gramming, and begin with the following sequence of value
functions:

Vt
Wt�=max
Xt

ƐtVt+1
Wtrf +Xt
ut+1− rf ����

t = 0� � � � � T − 1� (A1)

VT 
WT �=WT −� · WB
T −WT �

+� (A2)

where Ɛt is defined as the conditional expectation given
ut−1� ut−2� � � � � u1. Given Wt , Vt
Wt� is the expected value
of the objective function when all decisions from time t on
are taken optimally. Clearly, solving the model is equivalent
to finding V0
W0�.
The first-order condition with respect to XT−1 is obtained

by differentiating VT 
WT � to XT−1 and is given by

ƐT−1uT − rf �+� ·
∫ ūT

0

uT − rf �dGT 
uT �= 0� (A3)

where ūT is defined as

ūT = rf +
WB

T −WT−1 · rf
XT−1

� (A4)

As shown in the main text, if condition (8) holds, (A3)
solves for two distinct values of ūT . To prove that the result-
ing X∗

T−1 is optimal, we consider the second-order condi-
tion for the problem at T − 1:
!2VT 
WT �

!X2
T−1

=−�· 
W
B
T −WT−1rf �2

X3
T−1

·gT 
ū
XT−1��<0� (A5)

where gt
·� is defined as the density function of ut for
t = 1� � � � � T .
As � > 0, it follows from (A5) that an optimal X∗

T−1
should be positive at the optimum. Therefore, only a ūT <
rf can be optimal if W

B
T −WT−1rf < 0. Otherwise, X∗

T−1
would be negative. Also, only a ūT > rf can be optimal
if WB

T −WT−1rf > 0. As these two cases correspond to a
positive and a negative surplus, respectively, we define ū+T
and ū−T as the corresponding values of ū.
As Xt−1 influences the objective function only through

the effect on Wt , i.e., there are no direct costs associated
with a choice of Xt−1, the first-order condition with respect
to Xt−1, t < T is

Ɛt−1

[
!Vt
Wt�

!Xt−1

]
= Ɛt−1

[
!Vt
Wt�

!Wt

· !Wt

!Xt−1

]
= 0� (A6)

Let W ∗
t+1 = rfWt + X∗

t · 
ut+1 − rf �, with X∗
t the optimal

decision at time t. This implies that !Wt+1/!Wt = rf , such
that

!Vt
Wt�

!Wt

= Ɛt

[
!Vt+1
Wt+1�

!Wt+1
· !W

∗
t+1

!Wt

]

= rf · Ɛt
[
!Vt+1
Wt+1�

!Wt+1

]
= r2f · Ɛt

[
!Vt+2
Wt+2�

!Wt+2

]

= · · · = rT−tf Ɛt1+� · I�ST <0��� (A7)

where St is defined as the surplus Wt −WB
t at time t, and

IA is the indicator function of the event A. In this case, it
is equal to 1 if ST < 0 and 0 otherwise.
Using (A7) and the fact that !Wt/!Xt−1 = ut − rf , the

first-order condition in (A6) becomes

Ɛt−1

[
!Vt
Wt�

!Xt−1

]
= Ɛt−1r

T−t
f · 
ut − rf ��

+� · Ɛt−1rT−tf · 
ut − rf � · I�ST <0��= 0�
(A8)

Dividing by rT−tf and partitioning based on the sign of St
gives

Ɛt−1ut − rf �+� · Ɛt−1
ut − rf � · I�ST <0�∩�St<0��
+� · Ɛt−1
ut − rf � · I�ST <0�∩�St>0��= 0� (A9)

Note that for given Wt−1, X∗
t−1 is fixed. As the uts are

independent, St only varies monotonically with the realiza-
tion of ut . By absolute continuity of Gt
·�, we do not have
to consider the case St = 0, so we can define a ūt such
that St > 0 for ut > ūt and St < 0 for ut < ūt . This reduces
(A9) to

Ɛt−1ut − rf �+� ·
∫ ūt

0

ut − rf �Pr
ST < 0 � St�dGt
ut�

+� ·
∫ �

ūt


ut − rf �Pr
ST < 0 � St�dGt
ut�= 0� (A10)
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Assume that

Pr
ST < 0 � St�=
{
p+
t if St > 0�

p−
t if St < 0�

(A11)

The above assumption states that the probability of end-
ing up with a negative terminal surplus only depends on
the sign of the time t surplus St and not on its value. This
clearly holds for t = T with p+

T = 0 and p−
T = 1. Equation

(A11) implies that Equation (A10) can be rewritten as

Ɛt−1ut − rf �+� ·p−
t ·

∫ ūt

0

ut − rf �dGt
ut�+� ·p+

t

·
∫ �

ūt


ut − rf �dGt
ut�= 0� (A12)

which simplifies to


1+� ·p+
t � · Ɛt−1ut − rf �+� · 
p−

t −p+
t �

·
∫ ūt

0

ut − rf �dGt = 0� (A13)

or, dividing by 
1+� ·p+
t �,

Ɛt−1ut−rf �+
�·
p−

t −p+
t �


1+�·p+
t �

·
∫ ūt

0

ut−rf �dGt=0� (A14)

Defining �t−1 as

�t−1 =
� · 
p−

t −p+
t �

1+� ·p+
t

� (A15)

we can write (A14) as

Ɛt−1ut − rf �+�t−1 ·
∫ ūt

0

ut − rf �dGt = 0� (A16)

As Equation (A16) is the time-t version of the first-order
condition for the problem at T − 1, we can use the exact
same reasoning as for Equation (A3). So, if condition (8)
holds, this equation solves for two distinct ūt , correspond-
ing to a positive and a negative surplus, respectively. More-
over, the corresponding optimal X∗

t−1 is such that the next
period’s surplus, St , is positive for a realization of the risky
return ut > ūt and negative for ut < ūt . Therefore,

Pr
ST < 0 � St−1�
= Pr
ST < 0 � St < 0� ·Pr
St < 0 � St−1�

+Pr
ST < 0 � St > 0� ·Pr
St > 0 � St−1� (A17)

= p−
t ·

∫ ūt

0
dGt
ut�+p+

t ·
∫ �

ūt

dGt
ut�� (A18)

where ūt = ū+t for St−1 > 0 and ūt = ū−t for St−1 < 0.
As both ū+t and ū

−
t are constant, (A18) clearly shows that

Pr
ST < 0 � St−1� also satisfies (A11). The proof now fol-
lows by induction. �

Proof of Corollary 3.1. Define G−
t and G

+
t by Gt
ū

−
t �

and Gt
ū
+
t �, respectively. Given a value of �, ū

+
T and ū

−
T are

uniquely determined for the decision problem at time T −1.
In turn, ū+T and ū

−
T determine G

+
T and G

−
T which determine

p+
T−1 and p−

T−1. Repeating this procedure for all previous
subproblems finally gives a unique p+

0 or p
−
0 , depending on

whether S0 > 0 or S0 < 0, respectively. This implies that if
a certain p+

0 or p
−
0 is chosen, there is either an unbounded

solution, or a bounded solution with a unique � associated
with it. �

Proof of Corollary 3.2. The risk-aversion parameter at
time t, �t follows from (A15). From (A18) we have that
p+
t and p

−
t are defined recursively as

p−
t = p−

t+1 ·Gt
ū
−
t �+p+

t+1
1−Gt
ū
−
t ��� (A19)

p+
t = p−

t+1 ·Gt
ū
+
t �+p+

t+1
1−Gt
ū
+
t ��� (A20)

and p−
T = 1� p+

T = 0.
As ū−t > ū+t , we have 1>G−

t > G+
t > 0 for any t. Using

(A19) and (A20), we can write

p−
t −p+

t =
p−
t+1−p+

t+1�·
G−
t+1−G+

t+1�� i=0�����n−1�
(A21)

As p−
T > p+

T and 
G
−
t+1 −G+

t+1� < 1 for all t, this implies
that

p−
t −p+

t < p−
t+1−p+

t+1� t = 0� � � � � T − 1� (A22)

i.e., �p−
t − p+

t �
T
0 is a strictly positive and increasing

sequence in t. Moreover, as p−
t > p+

t , it follows from (A20)
that p+

t+1 <p+
t . Using this and (A22), it is easy to see that

the numerator in the definition of �t−1 (A15) is increasing
in t, while the denominator is decreasing in t. Hence, �t is
increasing in t, and thus decreasing in the time to maturity
T − t. �

Proof of Corollary 3.3. With identically distributed
returns ut� t = 1� � � � � T , the solution to (4) depends only
on the value of �t . As can be observed from Figure 1, a
larger value of �t corresponds to a larger distance between
the ūt+1s and rf . This implies that the distance �rf − ū∗t+1�
is increasing in t. Hence, the absolute slope rf /�rf − ū∗t � in
the decision rule for X∗

t is decreasing in t. �

Proof of Theorem 4.1. The maximization problem to
solve is

max
X0

ƐW1�− �Ɛ
�WB −W1�
+�2�� (A23)

where W1 =W0rf +X0 · 
u− rf �. The first-order condition
to this problem can be written as

Ɛu−rf �−2�rf S0
∫ ū

0

u−rf �dG

−2�X0
∫ ū

0

u−rf �2dG=0� (A24)
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where S0 =W0−WB/rf , and ū is defined as

ū=−S0rf

X0
+ rf � (A25)

giving the return for which W1 = WB. The second-order
condition is given by

−2�
∫ ū

0

u− rf �

2 dG< 0� (A26)

which is satisfied for � > 0.
We prove the three parts of the theorem separately.
(i) If S0 = 0, ū= rf , so Equation (A24) simplifies to

Ɛu− rf �− 2�X0
∫ rf

0

u− rf �

2 dG= 0� (A27)

The left-hand side of (A27) is a linear equation in X0, with
solution

X∗
0 =

Ɛu− rf �

2�Ɛ
rf − u�+�2
� (A28)

which establishes that X∗
0 at zero surplus is positive and

decreasing in �.
(ii) Given the first-order condition (A24) and using the

implicit function theorem, the derivative of X∗
0 with respect

to S0 is given by

!X∗
0

!S0
=− !F /!S0

!F /!X0
� (A29)

where we have used F 
·� to denote the derivative of the
objective function with respect to X0, being the left-hand
side of (A24). From the second-order condition in (A26),
we know that the denominator of (A29) is negative. The
numerator is given by

!F

!S0
=−2�rf

∫ ū

0

u− rf �dG� (A30)

which is zero for ū= 0 and some ūm > rf . We can ignore
the case ū= 0, as ū ↓ 0 is only a solution to the first-order
condition (A24) if �→� or �S0�→�. From the definition
of ū in (A25) and the fact that ūm > rf , it follows that
the surplus at which X∗

0 = Xmin
0 lies at a negative surplus.

Combining (A24) with (A30), an alternative expression for
Xmin
0 is given by

Xmin
0 = Ɛu− rf �

2�
∫ ūm

0 
u− rf �
2 dG

� (A31)

From the second-order derivative !2F /!S20 , which is posi-
tive, we find that Xmin

0 is the minimum investment in the
risky asset. With respect to the sign of X∗

0 , note that from (i)
we have X∗

0 
S0 = 0� > 0. Because we have that !X∗
0/!S0 is

a continuous function of S0, and X0 = 0 does not solve the
first-order condition (A24), we find that X∗

0 is positive.

Figure 6. Solutions to Equation (A33).
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Notes. This figure shows the left-hand (1) and right-hand (2) sides of
Equation (A33) as a function of ū. rf = 1�04 and u∼ logN
0�085�0�16�.

(iii) Dividing the left-hand side expression of the first-
order condition (A24) by 2�S0rf gives

Ɛu− rf �

2rf �S0
−
∫ ū

0

u− rf �dG

+ 1
ū− rf

∫ ū

0

u− rf �

2 dG= 0� (A32)

For S0 �= 0 and �→�, the expression in (A32) simpli-
fies to∫ ū

0

rf − u�dG= 1

rf − ū

∫ ū

0

u− rf �

2 dG� (A33)

which depends on rf and G
·� only. As (A33) does not
include terms W0 or X0, we find that in the limit, X

∗
0 is

determined by the ūs that solve (A33). For given parameter
values, Figure 6 shows the left- and right-hand sides of
Equation (A33), as a function of ū. There is a clear point
of intersection for ū > rf . For ū < rf , the left-hand side
of (A33) is smaller than the right-hand side, so for ū < rf
it solves only for ū= 0, corresponding to X∗

0 = S0.
To compare X∗

0 for a negative surplus and � →� with
the one in the mean-shortfall model for �→ �, observe
that in the mean-shortfall case, the limiting first-order
condition is like Equation (A33), but with the right-hand
side equal to zero. With ū− > rf , for a negative surplus the
right-hand side of (A33) is negative, so the limiting ū� is
larger than in the mean-shortfall model. From the definition
of ū, it follows that the limiting X∗

0 is smaller than in the
mean-shortfall model. �
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