An Analytic Approach to Credit Risk of Large Corporate Bond and Loan Portfolios

André Lucas‡§ Pieter Klaassen†‡
Peter Spreij¶ Stefan Straetmans‡

This version: March 4, 2002

*We thank Laurens de Haan, Bernard Hanzon, Herbert Rijken, Ronald van Dijk, and two anonymous referees for useful comments and suggestions. André Lucas also thanks the Dutch Organization for Scientific Research (N.W.O.) for financial support. Correspondence to: alucas@econ.vu.nl, Pieter.Klaassen@nl.abnamro.com, spreij@wins.uva.nl, or sstraetmans@econ.vu.nl.

‡Dept. Finance and Financial Sector Management, Vrije Universiteit, De Boelelaan 1105, NL-1081HV Amsterdam, the Netherlands
§Tinbergen Institute Amsterdam, Keizersgracht 482, NL-1017EG Amsterdam, the Netherlands
†ABN-AMRO Bank NV, Financial Markets Risk Management, P.O.Box 283, NL-1000EA Amsterdam, the Netherlands
¶Korteweg-de Vries Institute, University of Amsterdam, Plantage Muidergracht 24, NL-1018TV Amsterdam, the Netherlands
Proof of Theorem ??: Along the lines of the previous proof, we have to consider
\[P(C > \pi^* - u_1) = P \left[\bigcup_{G \in \mathcal{G}} \left\{ \sum_{j \in G} \lambda_j \pi_j \Phi \left(\frac{s - |\hat{R}_j | \hat{v}^\top_j Y}{\sqrt{1 - \hat{R}_j^2}} \right) > \pi^* - u_1 \right\} \right]. \quad (1) \]

The first step is to prove that the events inside the square brackets are disjoint. To see this for \(u_1 \downarrow 0 \), let
\(G_1, G_2 \in \mathcal{G} \) with \(G_1 \neq G_2 \). Consider \(u_1 \) arbitrarily small and a region for \(Y \) such that for \(j = 1, 2 \),
\[\sum_{j \in G_i} \lambda_j \pi_j \Phi \left(\frac{s - \hat{R}_j | \hat{v}^\top_j Y}{\sqrt{1 - \hat{R}_j^2}} \right) > \pi^* - u_1 \]. \quad (2)

As there is no subset \(G_{s_2} \) of \(G_2 \) such that the inequality (2) is also satisfied for \(G_{s_2} \), there must be a constant \(k > 0 \) such that
\[\sum_{j \in G_2 \setminus G_1} \lambda_j \pi_j \Phi \left(\frac{s - \hat{R}_j | \hat{v}^\top_j Y}{\sqrt{1 - \hat{R}_j^2}} \right) > k, \]
implying
\[\sum_{j \in G_2 \setminus G_1} \lambda_j \pi_j \Phi \left(\frac{s - \hat{R}_j | \hat{v}^\top_j Y}{\sqrt{1 - \hat{R}_j^2}} \right) > \pi^* + k - u_1, \]
in the region for \(Y \) considered. This, however, contradicts the definition of \(\pi^* \).

We now have for \(u_1 \downarrow 0 \),
\[P(C > \pi^* - u_1) = \sum_{G \in \mathcal{G}} P \left[\sum_{j \in G} \lambda_j \pi_j \Phi \left(\frac{s - \hat{R}_j | \hat{v}^\top_j Y}{\sqrt{1 - \hat{R}_j^2}} \right) > \pi^* - u_1 \right]. \quad (3) \]

Define \(a_j = s/\sqrt{1 - \hat{R}_j^2} \) and \(b_j = \hat{R}_j | \hat{v}_j | \sqrt{1 - \hat{R}_j^2} \), and \(\lambda_j = \lambda_j \pi_j \). Then the probabilities inside the sum in (3) simplify to
\[P \left[\sum_{j \in G} \lambda_j \Phi (a_j - b_j^\top Y) > \pi^* - u_1 \right]. \quad (4) \]

Now split \(Y \) in polar coordinates, \(Y = R \theta \), with \(R^2 \) a \(\chi_m^2 \) variate, and \(\theta \) uniform on a hyperglobe. The variates \(R \) and \(\theta \) are independent. Now rewrite (4) as
\[\int P \left[\sum_{j \in G} \lambda_j \Phi (a_j - R b_j^\top \theta) > \pi^* - u_1 \mid \theta \right] P(d\theta). \quad (5) \]

Define \(\bar{\Phi}(x) = 1 - \Phi(x) \). Then rewrite (5) as
\[\int P \left[\sum_{j \in G} \lambda_j \Phi (a_j - R b_j^\top \theta) < u_1 \mid \theta \right] P(d\theta). \quad (6) \]
Now first consider the probabilities inside the integral. Define Θ as the set θ’s for which $b_j^\top \theta < 0$ for all $j \in G$. Note that Θ constitutes the only set of θ’s of interest. For other θ’s, the probability inside the integral equals zero for $u_1 \downarrow 0$.

Next, make a subdivision of Θ into Θ_j, $j = 1, \ldots, m$, such that we have $|b_j^\top \theta| < |b_i^\top \theta|$ for all $i \neq j$ and $\theta \in \Theta_j$. The Θ_j’s are disjoint. Therefore, we can rewrite (6) as

$$\sum_{j \in G} \int_{\Theta_j} P \left[\hat{\lambda}_j \Phi \left(a_j - R b_j^\top \theta \right) < u_1 \right] d\theta. \quad (7)$$

Simplify the probability inside the integral as

$$P \left[R^2 > \left(\Phi^{-1} \left(\frac{u_1}{\hat{\lambda}_j} \right) + a_j \right) \frac{1}{b_j^\top \theta} \right]. \quad (8)$$

From (6.5.4) and (6.5.32) in Abramowitz and Stegun (1970) we have

$$\int_x^\infty e^{-t} t^{a-1} dt = x^{a-1} e^{-x} (1 + O(x^{-1}))$$

for $x \to \infty$. Then from (26.4.19) from Abramowitz and Stegun it follows that for large x

$$P(R^2 > x^2) = \frac{(x/2)^{m/2-1} e^{-x^2/2}}{\Gamma(m/2)} (1 + O(x^{-2})).$$

We also have

$$\exp(-\Phi^{-1}(x)^2/2) \approx x \cdot L(x)$$

for $x \uparrow \infty$. Combining all these results and using the independence of R and θ, we can approximate (asymptotically) (8) by

$$\left(\frac{u_1}{\hat{\lambda}_j} \right)^{1/(b_j^\top \theta)^2}. \quad (9)$$

Again combining all results, we have for $u_1 \downarrow 0$

$$P(C > \pi^* - u_1) = \sum_{G \in \mathcal{G}} \sum_{j=1}^m \int_{\Theta_j} \left(\frac{u_1}{\hat{\lambda}_j} \right)^{1/(b_j^\top \theta)^2} P(d\theta). \quad (10)$$

As we are only interested in

$$\alpha = \lim_{u_1 \downarrow 0} \frac{\ln P(C > \pi^* - u_1)}{\ln u_1},$$

if follows from (10) that

$$\alpha = \min \min \text{ess inf}_{\theta \in \Theta_j} (b_j^\top \theta)^{-2} = \min \min \text{ess inf}_{\theta \in \Theta_j} \frac{1 - \hat{R}_j^2}{R_j^2(v_j^\top \theta)^2}, \quad (11)$$

where, to be precise, $\Theta_j = \Theta_j(G)$.

Remark: It is only a visual illusion that this result does not seem to nest the result for homogenous v_j. Indeed, there is a min over j rather than the max derived in the previous
theorem. However, consider the case of homogenous \(v_j \). In that case, we can simplify to a one-factor model by considering \(v^\top Y \) instead of \(Y \). Note that \(\theta \) can only be 1 or \(-1\) now. Using the proof of the present and the previous theorem, it is easy to see (focus for example on the case \(m = 2 \)) that only one of the \(\Theta_j \)'s will be non-empty, and this non-empty \(\Theta_j \) will contain either only 1 or only \(-1\). The non-empty \(\Theta_j \) is characterized by precisely that \(j \) for which \(|b_j| \) is at its minimum, or \((1 - \hat{R}_j)^2/\hat{R}_j^2 \) is at its maximum, see just above (7). So the minimum over \(j \) in (11) is correct, but one has to bear in mind that several of the \(\Theta_j(G) \)'s may be empty. We can easily accommodate this by defining the ess inf over an empty set to be \(+\infty\).

Note that (11) can be simplified further. Define

\[
\Theta^*(G) = \bigcup_{j \in G} \Theta_j(G),
\]

then the minimum over \(j \) and the infimum over \(\theta \) can be integrated. Note that conditional on a \(\theta \in \Theta^* \), \(j = j(\theta) \) is determined by the smallest \(|b_j^\top \theta| \), i.e., by the maximum \((b_j^\top \theta)^{-2} \).

Therefore, we have an equivalent expression for (11), namely

\[
\alpha = \min_{G \in \mathcal{G}} \inf_{\theta \in \Theta^*} \max_{j \in G} \frac{1 - \hat{R}_j^2}{\hat{R}_j^2 (v_j^\top \theta)^2}.
\]

(12)

This completes the proof. \(\blacksquare \)