
Chapter 1

Introduction

Every scienti�c analysis builds upon a set of implicit or explicit assumptions.

The validity of these assumptions can have important consequences for the

validity of the �nal research results. Results are called robust if they are not

a�ected much by (small) changes in the assumptions.

Robustness is an intriguing subject from both a theoretical and a practical

point of view. From a theoretical perspective, the question of robustness stim-

ulates researchers to determine the crucial assumptions underlying their re-

sults. The practical relevance of robustness is easily illustrated by considering,

for example, the development of policy recommendations based on economic

models. If the advice alters dramatically when the model or the assumptions

underlying the model are changed only slightly, the policy maker might be just

as well o� as without any advice.

The above interpretation of the concept of robustness is generally applica-

ble. In this thesis, however, I consider a more restricted notion of robustness.

In order to explain the exact contents of this notion, I �rst restrict the general

concept of robustness to that of statistical robustness. This is done in Section

1.1. In Section 1.2, I relate statistical robustness to the topic of outlier ro-

bustness, a theme that is underlying all remaining chapters of this thesis. In

Section 1.3, I give some possible reasons for the present lack of interaction be-

tween robust statistics, especially outlier robust statistics, and econometrics.

Finally, in Section 1.4, I present a brief summary of the remaining chapters of

this thesis and give some notational conventions that are used throughout this

book.

1.1 Statistical Robustness

Robustness concerns the sensitivity of one's results to deviations in the as-

sumptions that are made to obtain those results. When de�ned like this, ro-

bustness covers the whole broad spectrum of scienti�c research. In this thesis

I am mainly interested in the statistical aspects of certain econometric meth-

ods. Therefore, I restrict the general notion of robustness to that of statistical

robustness.
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Hampel et al. (1986, p. 6) provide the following de�nition of statistical

robustness.

In a broad informal sense, robust statistics is a body of knowledge,

partly formalized into \theories of robustness," relating to deviations

from idealized assumptions in statistics.

This de�nition is clearly covered by the more general de�nition presented ear-

lier. Hampel et al. (1986) also give a second de�nition.

Robust statistics, as a collection of related theories, is the statistics of

approximate parametric models.

Although this de�nition captures most of the literature on robust statistics,

it is much stricter than the �rst de�nition. It excludes, for example, most of

the literature on semiparametric and nonparametric statistics. This is rather

unsettling, because those branches of the statistical literature study procedures

that are robust to, e.g., functional form and distributional misspeci�cation.

Therefore, I prefer the former de�nition to the latter.1

Several departures from idealized assumptions have already been dealt with

in the literature. Much work has been done for the standard linear regression

model. The e�ects of heteroskedasticity, autocorrelation, omitted variables,

measurement error, and several other types of misspeci�cation have been stud-

ied extensively (see, for example, standard econometric textbooks like Judge

et al. (1988) and Davidson and MacKinnon (1993)). Procedures have been

developed that give results (e.g., parameter estimates) that are robust to the

mentioned departures. Some nice examples are the heteroskedasticity consis-

tent covariance matrix estimator of White (1980) and Huber (1981) and its

autocorrelation consistent extension by Newey and West (1987). These esti-

mators can be used to construct inference procedures that are robust to certain

types of heteroskedasticity and autocorrelation (see MacKinnon (1992) and the

references cited therein).

Other types of robustness that receive much attention in the literature,

nowadays, concern the robustness of estimation and inference procedures to

distributional assumptions and functional form speci�cation. Consider the

following simple example. Assume that the model generating the data is

yt = g(x>
t
�) + "t; t = 1; . . . ; T; (1:1)

where yt and "t are scalars, xt and � are k-dimensional column vectors, >

denotes transposition, g(�) is a smooth, real-valued function, and T denotes

the number of observations. Assume that f"tg
T

t=1
is a set of independently

and identically distributed (i.i.d.) random variables with zero mean and �nite

variance. If g(�) is the identity function, g(x>
t
�) = x>

t
�, then (1.1) is a stan-

dard linear regression model and the parameter � can be estimated by means

1 Strictly speaking, the second de�nition also excludes the work in outlier robust non-

parametric analysis as in, e.g., Boente and Fraiman (1990, 1991), Koenker and Ng (1992),

and Wang and Scott (1994).
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of the ordinary least-squares (OLS) estimator. If g(�) is unknown, however,

it becomes di�cult to estimate �. Therefore, researchers in the area of semi-

parametric statistics have developed tools that allow one to simultaneously

estimate � and g(�). Conditions can be found under which the estimators for

� and g(�) are consistent. These estimation procedures are, therefore, robust

to the exact speci�cation of g(�) in (1.1). Related to the estimation of the

link function g(�) is the estimation of the density of the errors "t. One can

estimate this density along with the other unknown quantities and functions

in the model. In this way one can try to exploit certain properties of the error

distribution without having to postulate a particular parametric form for it

(see Manski (1984)). In the nonparametric context, researchers proceed even

further and replace (1.1) by yt = g(xt)+ "t. The objective then becomes to es-

timate the function g(�), which is now a function from IRk to IR instead of from

IR to IR. For an introduction into nonparametric statistics, I refer to H�ardle

(1990). For the semiparametric literature, one can start, for example, with the

review article of Robinson (1988) or the lecture notes of Stoker (1991).

Another important departure from idealized assumptions in statistics is

that of the occurrence of outlying observations. This topic is discussed in the

next section.

1.2 Outlier Robustness

Outlier robustness plays an important role in this thesis. As implied by the

term itself, outlier robustness is concerned with the construction of procedures

that are robust to the occurrence of outliers in the data. The term outlier is

mostly used rather informally. It often denotes observations that do not �t

into a postulated model or that have some other `surprising' characteristics.

Davies and Gather (1993) attempt to de�ne the outlier concept more formally.

One of their main conclusions is that outliers are de�ned with respect to a

model. As a consequence, observations might be outliers in one model, and,

at the same time, be perfectly regular observations in another model.

Consider the following example. One has a sample of ten drawings from

a mixture of normals. With probability (1 � p), the drawing comes from the

standard normal distribution, and with probability p, the drawing comes from

a normal with mean 100 and unit variance. For p = 0:1, the sample could look

something like this:

0:619 �0:126 �0:641 �0:687 100:562

0:493 �0:681 �0:904 �0:148 �0:159:

Most researchers would be inclined to regard the observation of 100.562 to be

an outlier, because it is extremely large compared with the other observations.

Indeed, if we assume that the above sample consists of i.i.d. drawings from a

standard normal distribution, then the probability of drawing a number like

100.562 is extremely low. The observation is, thus, an outlier with respect to



4 1. INTRODUCTION

the model that the "t are i.i.d. standard normal for t = 1; . . . ; 10. If one relaxes

the i.i.d. assumption, however, and considers the model that really generated

the data, then all ten observations are perfectly regular.

The simple example above illustrates two points. First, outliers are always

identi�ed with respect to a speci�c benchmark or null model. Second, there

exists a tradeo� between model simplicity and the number of outliers one is

willing to tolerate. If one selects a simple model, e.g., that the sample in the

example above consists of i.i.d. drawings from a normal distribution with mean

� and variance �2, then observations are more easily classi�ed as outliers than

in a larger model, e.g., the mixture of normals in the example.

The objective underlying the techniques presented in this thesis is to con-

struct a model for the majority of the data. This formalizes the common

practice in econometric model building (see also Section 2.1). Given this mod-

eling objective, outlier robustness is an important topic.2 When confronted

with the possibility of outliers in the data, one should employ procedures that

are not a�ected much by these anomalous observations. This brings us into

the realm of outlier robust statistics.

One of the key techniques in outlier robust statistics is to reweight ob-

servations on the basis of their `outlyingness' with respect to the postulated

model. If an observation does not �t the model, then less weight is assigned

to that particular observation. In the extreme case, the observation might be

discarded completely. The use of such a weighting strategy implies that one

tries to �nd a model that `adequately' captures the features of the bulk of the

data. One might object that this is an unsound modeling philosophy and that

one should, instead, look for a model that �ts all of the observed data. Three

arguments can be raised against this critique.

First, there are many conceivable situations in which describing the bulk of

the data is the best one can achieve. This can, for example, be due to the lack

of additional information on the observations that are identi�ed as outliers.

Alternatively, if the data set is known to contain many recording errors, dis-

carding these errors seems a reasonable strategy for most modeling purposes.

Moreover, in the example above with the mixture of normals, extremely large

samples are needed in order to estimate the parameters of the second compo-

nent of the mixture reliably if p is close to zero. In such cases, it might also be

useful to disregard the observations from the second mixture component and

to focus on modeling the remaining observations.

Second, �nding a model for the bulk of the data can also be viewed as

an intermediate goal in the process of model speci�cation. Robust techniques

sometimes provide stronger signals of model misspeci�cation and more clearly

indicate directions for model respeci�cation than methods that accommodate

all observations (see, e.g., Machado (1993) and Ronchetti and Staudte (1994)).

2Of course, also if one is reluctant to reweight or discard a part of the sample, robust

methods are still useful tools for data analysis. For example, diagnostic measures based on

robust estimators are good indicators of certain types of model failure (see also Subsection

1.2.2).
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Third, also when trying to �nd a model for all available observations, one

sometimes implicitly uses weighting procedures. For example, consider the

simple location model

yt = �+ "t; t = 1; . . . ; T; (1:2)

where � is the unknown location parameter, and the "t's are i.i.d. standard

Cauchy. If one uses the maximum likelihood estimator in order to estimate

�, one is implicitly calculating the arithmetic mean of the reweighted sample

f~ytg
T

t=1
, where

~yt = yt(1 + "2
t
)�1=(T�1

P
T

i=1
(1 + "2

i
)�1): (1:3)

Thus, the asymptotically optimal estimator for the model that generated the

data can in this case be reinterpreted as a simpler estimate, namely the arith-

metic mean,3 computed on a reweighted sample.

I conclude the discussion of outlier robustness by describing its relation to

three other branches of the statistical literature. In Subsection 1.2.1, I brie
y

relate outlier robustness to semiparametric and nonparametric statistics. In

Subsection 1.2.2, the relation to the diagnostics school is discussed. Finally,

in Subsection 1.2.3, some remarks can be found on the link between outlier

robustness and the common practice of including dummy variables in order to

correct for anomalous observations.

1.2.1 Outlier Robustness and Semiparametrics or Non-

parametrics

The goals of outlier robust and semiparametric statistics (as in, e.g., Robin-

son (1988) and Stoker (1991)) or nonparametric statistics (as in, e.g., H�ardle

(1990)) partially overlap. In all three research areas methods are studied that

are robust to misspeci�cation of the model. There are, however, two main dif-

ferences. First, in the semiparametric and nonparametric literature almost no

distributional assumptions are made. Using only some regularity conditions

on the existence of certain moments of the distribution and on the smoothness

of the functions that are studied, one is usually able to obtain quite strong

results (see Manski (1984)). In the literature on outlier robustness, however,

quite precise distributional assumptions are often made. Given these assump-

tions, one then tries to develop procedures that give satisfactory results even if

the assumptions are only approximately satis�ed. Second, semiparametric and

nonparametric analyses are, in general, concerned with modeling all observa-

tions without discarding the possibly aberrant ones.4 This contrasts with the

3Note that the mean of the ~yt's cannot be computed directly, as the "t's in (1.3) are

not observed. Therefore, the maximum likelihood estimator for � has to be obtained by

means of nonlinear optimization. At the maximum likelihood estimate �̂, however, �̂ can

be interpreted as the mean of the ~yt sample, with "t in (1.3) replaced by yt � �̂. For more

details, see the discussion on M estimators in Chapter 2.
4Although some researchers claim that nonparametric procedures automatically provide

protection to outliers, other researchers stress the need to correct for anomalous observations



6 1. INTRODUCTION

philosophy underlying the robustness literature, where one assigns less weight

to those observations that do not seem to �t into the postulated model.

An advantage of the semiparametric estimators is that they produce con-

sistent estimates under more general conditions than outlier robust estimators.

Robust estimators are, however, designed in such a way that the asymptotic

bias is small. Moreover, it can be argued that consistency is only one out of

many possible criteria for evaluating the performance of estimators. If one also

takes account of the asymptotic variance of the estimator, robust estimators

can easily dominate semiparametric estimators in a neighborhood of the null

model (see, Peracchi (1990, reply)).

It is also known that semiparametric and nonparametric techniques usu-

ally require many observations in order to work reasonably well (compare the

simulation results in Section 3.3). Outlier robust statistical techniques, in con-

trast, mostly make use of parametric models and, therefore, require much less

observations to produce useful results.

1.2.2 Outlier Robustness and Diagnostics

The outlier robustness school and the diagnostics school (see, e.g., Belsley et

al. (1980), Cook and Weisberg (1982), and Cook (1986)) consider the outlier

problem from a di�erent perspective. Perhaps this has been the reason for

the fact that, until recently, not much interaction was taking place between

both �elds of research. The diagnostics school tries to develop procedures for

detecting outlying and in
uential observations. After these observations have

been detected, one can correct for them, either by assigning less weight to them

or by discarding them altogether. `Corrected' versions of standard estimates

or tests result in conclusions that are more robust. The chief goal of the di-

agnostics school, however, is to detect , i.e., to identify outliers and in
uential

observations. Numerous di�culties can arise during the outlier identi�cation

stage. The most notorious one is the masking e�ect (see, e.g., Rousseeuw and

van Zomeren (1990)). If there are several outliers grouped close together in a

region of the sample space far away from the bulk of the data, most nonro-

bust outlier detection methods fail to identify these observations as outliers.

In other words, the outliers mask one another. The robust statistics school,

in contrast, tries to develop procedures that are insensitive to anomalous ob-

servations. Its chief goal is to protect (see Huber (1991)). Robust statistical

procedures automatically include the identi�cation of outliers into the estima-

tion stage. The discordant observations can often be identi�ed in a second

stage as a byproduct of the �rst analysis. This facilitates the task for the re-

searcher. Moreover, robust statistical procedures are designed such that they

can cope with the masking e�ect described above.

The approaches mentioned above need not be mutually exclusive.5 First,

in the nonparametric context as well. This leads to a branch of the literature called `(outlier)

robust nonparametrics' (see the references mentioned in Footnote 1).
5Not everyone agrees on this statement, see, for example, Fieller (1993, comment, last
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outlier robust methods can provide excellent tools for identifying outliers and

in
uential observations (see Rousseeuw and van Zomeren (1990) and Fung

(1993)). Second, every statistician, including those of the robust statistics

school, should be interested in whether there are any observations that do not

�t into the model and whether there is any particular reason for this lack of

�t. This, in general, leads to a better understanding of the phenomenon that

is studied. It is, therefore, not remarkable that some reconciliation has taken

place. The two approaches can be regarded as being complementary (see, e.g.,

Huber (1991) and Davies and Gather (1993, rejoinder)).

1.2.3 Outlier Robustness and Dummy Variables

A �nal point worth mentioning is the relation between robust statistics and

the use of dummy variables6 (see, e.g., Box and Tiao (1975)). Robust sta-

tistical procedures are designed to be insensitive to outliers. Procedures that

use dummy variables also possess this property in some situations, e.g., when

dummies are used to correct for individual aberrant observations. Therefore,

procedures that use dummy variables can be considered as informal robust

procedures. There are, however, three important di�erences between the two

approaches.

First, when using the dummy approach, the outlying observations have

to be identi�ed in advance. This indicates that there is a link between the

dummy approach and the diagnostics school that was described in the previous

subsection. As mentioned in Subsection 1.2.2, the identi�cation of outliers can

be very di�cult if one uses nonrobust techniques.

Second, because the robustness school incorporates the identi�cation of

outliers formally into the rest of the analysis, it also allows for a more formal

treatment of the e�ects of discarding or reweighting observations. This is

especially relevant for the construction of con�dence intervals.

Third, most formal robust procedures use a more gradual form of weighting

than the dummy approach. The latter classi�es each observation as either fully

trustworthy or untrustworthy. Put di�erently, an observation receives either

weight one or weight zero. Smoother weight functions can easily be thought

of and are commonly used in robust statistics. As a consequence, observations

can be classi�ed as dubious, i.e., neither completely trustworthy nor totally

untrustworthy. This can lead to substantial e�ciency gains, as is illustrated

sentence), who calls \robust outlier identi�cation" an oxymoron.
6Dummies are used for both time series and cross-sectional data. A related technique that

can be applied in the cross-section context is that of prescanning/screening the data. Using

simple techniques, one tries to identify anomalous observations and data inconsistencies

beforehand. All discordant observations are removed from the data set. The main analysis

is then performed using the remaining observations. As the focus in this thesis is on time

series models, I restrict my attention in the remaining discussion to the use of dummy

variables only. It should be kept in mind, however, that the points raised against the use of

dummy variables apply equally well to the use prescanning/screening techniques for dealing

with outliers.
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in, e.g., Relles and Rogers (1977).

More on the distinction between formal outlier robust statistics and the

dummy approach can be found in Huber (1981, p. 4,5) and Hampel et al.

(1986, Section 1.4).

1.3 Outlier Robust Statistics and Economet-

rics

At present, there is not much interaction between outlier robust statistics and

econometrics. There are at least �ve possible explanations for this.

A �rst possible reason is that some econometricians tend to consider outlier

robust statistics as a black-box procedure in which the observations are manip-

ulated or weighted in such a way that the postulated model almost invariably

�ts the data.7 This view is too simplistic. It ignores the fact that every serious

econometrician inspects the data and often introduces dummy variables for the

observations that seem to be outlying. As mentioned in Subsection 1.2.3, this

corresponds to the introduction of a zero-one weighting scheme for the observa-

tions. More gradual weighting schemes are, therefore, not that uncomfortable

to live with. Moreover, outlier robust procedures are conceptually more ap-

pealing, as they incorporate the outlier identi�cation stage into the estimation

procedure. The fact that outlier robust procedures assign weights to observa-

tions is not suspicious, but should rather be regarded as an additional source

of information. The weights are available after the estimation stage and can be

subjected to further analysis (see Franses and Lucas (1995)). In this way one

can obtain insight into which observations one is actually describing with the

estimated model. Also note that weighting can arise naturally if one considers

non-Gaussian regression errors (see Section 1.2). Finally, after computing the

outlier robust estimates, adapted versions of the usual diagnostic measures are

available for assessing model adequacy and for detecting the outliers (see, e.g.,

Machado (1993), Markatou and He (1994), Ronchetti and Staudte (1994), and

Rousseeuw and van Zomeren (1990)). When the discordant observations have

been identi�ed, the researcher can decide whether to leave these observations

out in a second stage, whether to assign less weight to them, or whether to

incorporate them in a standard analysis after all. It is also possible that a

particular pattern emerges from the anomalous observations, such that the re-

searcher is motivated to reformulate the initial model. Note that the identi�ed

outliers need not be bad observations in some absolute sense. It might well

be the case that the observations that are not captured by the model are the

really interesting ones. For example, when predicting asset returns, extreme

above-average returns can be very interesting for investors. Concluding, when

applied with care, outlier robust methods provide useful additional information

to the information obtained with the standard econometric toolkit.

7This impression is based on an oral discussion with professor S. van Wijnbergen and

professor A. Kapteijn during the AIO presentation day held in Amsterdam, March 1994.



1.3. OUTLIER ROBUSTNESS AND ECONOMETRICS 9

A second explanation for the lack of interest among econometricians in

robust methods is the availability of semiparametric and nonparametric tech-

niques. These techniques are very 
exible, which makes them attractive for

econometricians. As mentioned in Subsection 1.2.1, however, these methods

generally require much more observations to work reasonably well. Moreover,

also for these 
exible modeling techniques, robustness considerations remain

important (see Stahel (1991) and the references mentioned in Footnote 1).

A third reason for the low level of interaction between econometrics and out-

lier robustness is that outlier robust procedures are not standardized enough.

They leave the modal user with too many degrees of freedom. For example, in

the case of M estimators, the user can choose between several di�erent func-

tional forms of the pseudo likelihood. Moreover, for a speci�c chosen functional

form, he or she has to set several tuning constants. Often a method for es-

timating certain nuisance parameters, like scale, has to be provided as well.

Part of these choices can be automated, e.g., if users are willing to specify the

e�ciency loss they are willing to tolerate at a certain benchmark model. The

lack of attention paid to these problems, however, has probably prevented the

incorporation of advanced robust techniques into large scale standard statisti-

cal software packages, which is one of the main conditions for the widespread

use of a statistical technique. Some software packages for performing an outlier

robust analysis are the S-plus language, which has several macros for outlier

robust estimation and testing, PROCOVIEW, a program for computing least

median of squares and minimum volume ellipsoid estimators (see Rousseeuw

and Leroy (1987)), and RIPE, an interactive estimation program that incor-

porates low-breakdown and high-breakdown linear regression estimators.8

A fourth, important reason for the lack of interest among econometricians

in robust methods is the underdevelopment of diagnostic tests and model eval-

uation procedures for outlier robust �tting techniques. The development of

appropriate testing procedures is something that requires much attention in

the near future.

A �fth and �nal possible reason for the lack of interest in outlier robust

procedures among economists and econometricians, is that the computational

e�ort required to compute robust estimators is higher than for traditional

methods, like OLS. This argument does not apply to all robust estimators.

Moreover, the argument becomes less important as parallel computing becomes

more popular and the speed of computers increases. It will remain an impor-

tant topic for at least some time, however, for most high breakdown methods

like the least median of squares (Rousseeuw (1984)) and the minimum volume

ellipsoid estimator (Rousseeuw (1985)). Some progress in reducing the com-

puting time of these estimator has recently been made (see Atkinson (1994)

and Woodru� and Rocke (1994)).

Although the interaction between econometrics and robust statistics has

8The S-plus language is a commercial product. PROCOVIEW and RIPE, however, are

public domain programs and can be obtained from the authors, namely Peter Rousseeuw

for PROCOVIEW and Andr�e Lucas for RIPE, respectively.
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not been overwhelming over the last decades, some applications of robust

techniques to econometric modeling can be found in the literature. For re-

view articles, one can look at the papers by Koenker (1982), Krasker et al.

(1983), and Peracchi (1990, 1991b). For the linear regression model, some

references on estimators with a bounded in
uence function are Krasker (1980)

and Krasker and Welsch (1982). In the �eld of simultaneous equations and

outlier robustness, work has been done by, e.g., Krasker and Welsch (1985)

and Furno (1988). Bierens (1981) discusses the asymptotic theory of robust

procedures in nonlinear econometric models. Furthermore, Koenker and Port-

noy (1990) and Peracchi (1991a) discuss the use of outlier robust estimators for

seemingly unrelated regressions. Also the papers of Koenker and Basset (1978,

1982) and Basset and Koenker (1978, 1982, 1986) on quantile regression, which

includes least-absolute-deviations estimation, demonstrate that some interac-

tion has taken place between outlier robustness and econometrics. The same

holds if one also includes applications of the Student t distribution, as in, e.g.,

Prucha and Kelejian (1984). These references are only a few out of the many

articles on outlier robustness that are of possible interest to econometricians.

Especially if one also considers articles from the statistical literature that deal

with problems that are of potential interest to econometricians, the number of

references becomes much too large to treat satisfactorily in this thesis.

1.4 Summary of the Contents

This thesis quite naturally falls into three parts. The �rst part consists of

Chapters 1, 2 and 3, and forms an introduction to robust statistics. This part

is discussed in Subsection 1.4.1. The second part, which consists of Chapters

4 through 6, deals with the application of robust statistics to the univariate

unit root testing problem. This part is described in Subsection 1.4.2. The

�nal part, consisting of Chapters 7 and 8, discusses the usefulness of robust

procedures for the multivariate unit root or cointegration testing problem.

This part is dealt with in Subsection 1.4.3. Finally, Subsection 1.4.4 presents

some notational conventions that are adopted throughout this thesis.

1.4.1 An Introduction into Robust Techniques

The �rst part of this thesis comprises Chapters 1 through 3. The present chap-

ter, Chapter 1, contains a general discussion on the notion of robustness. It also

presents the notion of robustness that is the focus of this thesis, namely outlier

robustness. Moreover, it discusses the relation between outlier robustness and

several other statistical techniques that are often applied in the econometric

literature.

Chapter 2 provides a more technical and more detailed introduction into

robust statistics. It discusses several of the main concepts that can be used for

assessing the robustness of statistical procedures. Moreover, it presents several

well known outlier robust estimators. The material in this chapter is not new
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and mainly serves as an introduction for econometricians who are not familiar

with the outlier robust strand of the statistical literature.

Chapter 3 tries to bridge the gap between the introductory Chapters 1 and

2 and the more technical Chapters 4 through 8. It presents some results on the

maximum likelihood estimator based on the Student t distribution. This esti-

mator is sometimes used in the econometric literature as a �rst alternative to

the Gaussian maximum likelihood estimator. Using the concepts introduced in

Chapter 2, it is shown that the Student t based maximum likelihood estimator

quali�es as a nonrobust estimator, at least if the degrees of freedom parameter

is estimated from the data. This result contrasts with the regular view of the

Student t based estimator as being outlier robust. A simulation experiment is

provided, comparing the performance of the Student t based maximum likeli-

hood estimator to that of other estimators. It turns out that even though the

Student t based maximum likelihood estimator is nonrobust, its performance

in �nite samples is good under a variety of circumstances. This demonstrates

that statements about the robustness or nonrobustness of a procedure based

on the concepts put forward in Chapter 2, should always be supplemented with

evidence, e.g., simulations, that illustrate the relevance of the robustness (or

nonrobustness) in situations that are of practical interest.

1.4.2 Univariate Unit Root Testing

The second part of this thesis discusses the autoregressive unit root testing

problem for univariate time series. It comprises the Chapters 4 through 6.

The literature on testing for autoregressive unit roots has exploded over

the last decade. Most research in the classical context has concentrated on

the least-squares estimator and the associated t-test statistic (see, e.g., Fuller

(1976), Said and Dickey (1984), Phillips (1987), Phillips and Perron (1988),

Diebold and Nerlove (1990), Campbell and Perron (1991), Stock (1994), and

the references cited in these articles). The aim of this second part of my

thesis is to propose some outlier robust unit root tests and to evaluate their

performance using both simulated and empirical data.

Chapter 4 discusses unit root tests with a low breakdown point, i.e., tests

that can stand up to only a small number of outliers. The chapter is based

on Hoek, Lucas, and van Dijk (1995). The proposed test is a simple Wald

test based upon pseudo maximum likelihood estimates of the parameters in

the model. The pseudo likelihood that is chosen is the Student t. It is proved

that the Student t based pseudo likelihood estimator has a bounded in
uence

function in the autoregressive time series context. Moreover, the unit root test

based on this estimator also has some robustness properties. The performance

of these tests relative to the tests that are used in Chapter 5 is, however,

somewhat disappointing. Due to their computational ease, the low breakdown

tests still deserve some attention.

Another part of Chapter 4 is devoted to the robustness of the unit root

testing problem in the Bayesian setting. It is argued that Bayesian posterior
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unit root inference based on 
at priors is extremely sensitive to outliers if

a Gaussian likelihood is used to describe the data. Again, it is investigated

whether this problem is (partially) solved if the Gaussian likelihood is replaced

by the Student t likelihood. It turns out that this is the case.

Chapter 5 discusses the use of high breakdown methods for the unit root

testing problem. The chapter is based on Lucas (1995a). A problem with

high breakdown methods is that they are very computer intensive. The results

reveal, however, that the additional computation time can be worthwhile. In

several settings the robust unit root test performs better than both the stan-

dard Dickey-Fuller test (see Fuller (1976)) and its extension by Phillips and

Perron (1988). The high breakdown methods are also used in an empirical ex-

ample, using fourteen economic time series for the U.S. For some of the series,

the robust and nonrobust methods give di�erent results, both in terms of unit

root inference and in terms of model selection. The outliers that cause the

discrepancy between the two methods can, in some cases, be visualized using

partial regression techniques. This is also explained in Chapter 5.

Chapter 6 focusses on the asymptotic distribution of maximum likelihood

type (M) estimators in the context of random walk models. It builds upon

the material presented in Lucas (1995b). The asymptotic distribution of unit

root test statistics is, in general, nonstandard under the hypothesis of a unit

root. For the OLS estimator, this has been acknowledged quite some time

ago (see, e.g., White (1958, 1959)). For other estimators than OLS, some

recent references are Cox and Llatas (1991), Knight (1989, 1991), and Herce

(1993). Chapter 6 contributes to this literature in several ways. First, in

contrast to Knight (1989, 1991), it treats the case of �nite variance errors.

Second, in contrast to Herce (1993), it treats the case of smooth M estimators.

Third, in contrast to Cox and Llatas (1991) and Herce (1993), it allows for

deviations from the i.i.d. assumption. Fourth, the asymptotic distribution of

the unit root t-test is derived for regression models that may contain quite

general deterministic functions of time as additional regressors. One of the

�ndings of Chapter 6 is that particular linear combinations of unit root tests

based upon the OLS estimator and upon an M estimator, are asymptotically

normally distributed. This �nding was simultaneously established for the LAD

estimator by Herce (1993). The particular linear combination depends upon

the (long term) correlation between the error term and the pseudo score that

de�nes the M estimator. This fact can be exploited for constructing unit root

tests that have standard asymptotic distributions. Again the performance of

several unit root tests is evaluated by means of simulation for several data

generating processes. A major conclusion from the simulation experiments is

that part of the nonrobustness of the OLS based unit root test can be removed

by using heteroskedasticity consistent standard errors, as in White (1980).
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1.4.3 Multivariate Unit Root Testing

The third part of this thesis consists of Chapters 7 and 8. It deals with the

problem of cointegration or multivariate unit root testing (see, e.g., Engle and

Granger (1987), Johansen (1988, 1991), and Stock and Watson (1988)). Both

the theoretical and empirical literature in this area has been expanding rapidly.

Again, most attention is paid to Gaussian (pseudo) maximum likelihood esti-

mation of the model parameters. Using similar arguments as in the univariate

case, one can expect that the use of outlier robust estimators for constructing

multivariate unit root tests helps to improve the properties of these tests in

terms of, e.g., size or power if there are outliers.

The research on robust statistical procedures for multivariate observations

has mostly concentrated on the joint estimation of location and scatter (see,

e.g., Hampel et al. (1986, Chapter 5), Lopuha�a (1990), Maronna (1976), and

Tyler (1983, 1991)). Applications to multivariate regression models are scarce

(see, e.g., Koenker and Portnoy (1990), Peracchi (1991a)). The procedures pre-

sented in this part of the thesis combine the research areas of robust statistics,

multivariate time series analysis, and unit root econometrics.

Chapter 7 discusses the use of pseudo maximum likelihood estimators for

constructing cointegration tests. The asymptotic theory of these tests is de-

rived for the case of i.i.d. innovations. Only for the Gaussian pseudo maximum

likelihood estimator, the asymptotic distribution of the (pseudo) likelihood ra-

tio test is shown not to depend on nuisance parameters, asymptotically. For all

other choices of the pseudo likelihood, nuisance parameters enter the asymp-

totic distribution. In contrast to the derivations in Chapter 6, Chapter 7 also

considers the asymptotic distribution of the test statistics under the alternative

hypothesis of cointegration (or stationarity). It is proved that for non-Gaussian

innovations, power can be gained by exploiting the nonnormality of the inno-

vations in the estimation procedure. This �nding is supported by simulation

evidence.

A disadvantage of proposing new unit root tests is that for every test new

critical values are required. These are mostly obtained by means of simula-

tion. Setting up a simulation experiment for every (nonlinear) estimator in

a multivariate time series context is very time consuming. Therefore, a sim-

ple Bartlett type correction for the cointegration tests is proposed in Chapter

7, such that only one table with critical values is required. The procedure

appears to work reasonably well in some simulation experiments (Gaussian

innovations), but not in others (e.g., truncated Cauchy innovations).

Chapter 8 investigates a second possibility for constructing outlier robust

cointegration tests. Instead of starting from the likelihood ratio test of Jo-

hansen (1988, 1991), the point of departure is the Wald cointegration test of

Kleibergen and van Dijk (1994). In contrast to Chapter 7, Chapter 8 devotes

much more attention to the presence of deterministic drift terms in either the

data generating process or the regression model.

Compared to the likelihood ratio based approach proposed in Chapter 7, an
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advantage of the Wald test is that less nuisance parameters enter the limiting

distribution of the test. The main problem with the approach of Kleibergen

and van Dijk is that the variables have to be ordered according to their long

run causality relationships. Chapter 8 shows that it is, as yet, not possible

to check for the validity of the ordering by means of a pretesting procedure.

Moreover, the e�ect of an incorrect ordering of the variables can have dra-

matic e�ects for the size of the test. Some possibilities to resolve the ordering

problem are brie
y discussed in Chapter 8. The main conclusion that emerges

from this discussion is that the Lagrange Multiplier test seems the most suit-

able candidate for outlier robust cointegration testing. It has less nuisance

parameters than the likelihood ratio based tests proposed in Chapter 7, and it

is not sensitive to the ordering of the variables.

Chapter 9 concludes this thesis. It summarizes the main �ndings of the

di�erent chapters and presents interesting directions for future research.

1.4.4 Notational Conventions used in this Thesis

The following notation is used throughout this thesis. The abbreviation i.i.d.

stands for independently and identically distributed. Furthermore, I make

quite extensive use of the notion of weak convergence as described in Billingsley

(1968). If XT weakly converges to X for T !1, this is denoted as XT ) X.

Most of the test statistics used in this thesis weakly converge to ran-

dom variables that can be represented as functionals of stochastic processes.

Let B(s) denote a stochastic process de�ned on the unit interval, e.g., a

Brownian motion or an Ornstein-Uhlenbeck process. Then integrals with re-

spect to Lebesgue measure are denoted in the following way:
R
B denotes

R
1

0
B(s)ds. A similar convention is adopted for stochastic integrals, with

R
BdB denoting

R
1

0
B(s)dB(s). For vector stochastic processes, the de�nitions

are extended quite easily, with
R
BdB> =

R
1

0
B(s)(dB(s))> and

R
BB> =

R
1

0
B(s)(B(s))>ds, where > denotes transposition.

Especially in Chapters 7 and 8 of this thesis, I use the orthogonal comple-

ment of a matrix. Let M denote a k � r matrix of full column rank r, with

k > r. Then M? denotes the orthogonal complement of M , i.e., a k � (k � r)

matrix of full column rank, such that M>

?
M = 0. If k is equal to r, then M?

is left unde�ned.

Finally, the end of an example is marked by a 4, while the end of a proof

is marked by a 2.


