Chapter 3

Robustness Properties of the
Student + Based Pseudo
Maximum Likelihood Estimator

In Chapter 2, some concepts from the robustness literature were introduced.
An important concept was the influence function. In the present chapter, the
influence function is used to assess the robustness properties of the Student ¢
based pseudo maximum likelihood estimator with estimated degrees of freedom
parameter. This estimator is often employed in the econometric literature as
a first relaxation of the usual normality assumption (see, e.g., de Jong et
al. (1992), Kleibergen and van Dijk (1993), Prucha and Kelejian (1984), and
Spanos (1994)). In this chapter I show that the estimator is nonrobust in the
sense that it has an unbounded influence function and an unbounded change-
of-variance function! if the degrees of freedom parameter is estimated rather
than fixed a priori. This result can already be established in the setting of the
simple location/scale model and has obvious consequences for other robust
estimators that estimate the tuning constant from the data.

At the basis of the above results lies the observation that the score func-
tion for the pseudo maximum likelihood estimator for the degrees of freedom
parameter is unbounded. As a result, the influence functions of the degrees
of freedom and scale estimator are also unbounded. In contrast, the influence
function of the location parameter is bounded due to the block-diagonality of
the Fisher information matrix under the assumption of symmetry. The change-
of-variance function of the estimator for the location parameter, however, is
unbounded, suggesting that standard inference procedures for the location pa-
rameter are nonrobust if they are based on the Student ¢ pseudo maximum
likelihood estimator with estimated degrees of freedom parameter. These re-
sults illustrate two basic points. First, one should carefully distinguish between
parameters of interest and nuisance parameters when assessing the robustness
properties of statistical procedures. Second, if a parameter can be estimated
robustly in the sense that an estimator can be constructed with a bounded

1See Section 3.2 for a definition of the change-of-variance function.
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influence function, this does not imply that the corresponding inference pro-
cedure for that parameter is also robust.

The chapter is set up as follows. Section 3.1 introduces the model and the
pseudo maximum likelihood estimator based on the Student ¢ distribution.
Section 3.2 derives the influence function and change-of-variance function and
provides a simple finite sample approximation to these functions. Section
3.3 provides a simulation based comparison of several robust and nonrobust
estimators for the simple model of Section 3.1. Section 3.4 concludes this
chapter.

3.1 The Model and Estimator

Consider the simple location/scale model
Y = p + oey, (3.1)

where p is the location parameter, o is the scale parameter, {e1,...,er} is a set
of i.i.d. drawings with unit scale, and T" denotes the sample size. Model (3.1)
is extremely simple, but it suffices to illustrate the problems studied in this
chapter. The difficulties that arise for (3.1) also show up in more complicated
models.

The usual way of estimating g and o in (3.1) is by means of ordinary least-
squares (OLS). This produces the arithmetic sample mean and the sample
standard deviation as estimators for p and o, respectively. As described in the
previous chapter, the standard OLS estimator is sensitive to outliers in the
data. One big outlier is enough to corrupt the estimates completely. In order
to reduce the sensitivity of the results to outliers,? the class of M estimators
was proposed by Huber (1964, 1981). In this chapter a specific element from
this class is studied, namely the pseudo maximum likelihood estimator based
on the Student ¢ distribution (MLT estimator).

As was described in Section 2.3, an M estimator minimizes

T

> oy o5v) (3.2)

t=1

with respect to g and o, with p denoting some smooth function and v > 0
denoting a user specified tuning constant. In this chapter

NN N O AT O
plysip,o3v) = —1 (UP(%)\/E <1+ Vo2 ) )7 (3.3)

?Methods for reducing the possibly bad effects of outliers have a long history, as can be
seen from the references in Section 1.3 of Hampel et al. (1986). One of these references dates
back to Greek antiquity.
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with T'(-) denoting the gamma function, such that v can be interpreted as
the degrees of freedom parameter of a Student ¢ distribution. The first or-
der conditions for the MLT estimators for p and o are Ethl Y, (y:) = 0 and

Ethl Y (y:) = 0, respectively, with

(v + Dy — 1)

Yulye) = = A—E (3.4)
and
bolye) = o (14 (ye — 1) ulye))
_ v e ) (3.5)

o vol+(yi— p)?

Although v in the above setup can be regarded as a user specified tuning
constant that determines the degree of robustness of the M estimator, it is
not unusual to estimate v together with g and o (see the references below).
Several estimators for v are available from the literature. Using the pseudo
log likelihood p, the most obvious estimator for v is given by the (pseudo)
maximum likelihood (ML) estimator, i.e., the value # that solves Ethl Yy (Y1) =
0, with

2
o) = =5 (1 =2 -+ YD - ) o)
vo v

y(v) the digamma function (y(v) = dIn(I'(v))/dv). , and T'(-) the gamma
function. This estimator is used in, e.g., Fraser (1976), Little (1988), and
Lange, Little, and Taylor (1989). Spanos (1994) used an alternative estimator
for v based on the sample kurtosis coefficient. A third estimator used in the
literature is the one proposed by Prucha and Kelejian (1984). They embed the
family of Student ¢ distributions in a more general class of distributions. Their
estimator for v uses an estimate of the first absolute moment of the disturbance
term. Yet another possibility for estimating v is by using tail-index estimators
for the distribution of ¥y, (see, e.g., Groenendijk, Lucas, and de Vries (1995)).?

It is easily checked that the estimator of Spanos (1994) for v is nonrobust.
The nonrobustness of this estimator follows from the nonrobust estimation of
the kurtosis coefficient. Similarly, the estimator used by Prucha and Kelejian

31t is perhaps useful to note here that (3.3) is closely linked to the assumption of i.i.d.
Student ¢ distributed errors in (3.1). Alternatively, one could study (3.1) under the as-
sumption that (¢1,...,¢er) has a multivariate Student ¢ distribution with diagonal precision
matrix, such that the errors are uncorrelated rather than independent. Zellner (1976, p.
402) proved that in this setting 3, ¢, and v cannot be estimated simultaneously by means
of ML if only one realization of {y;}/_, is available. One way to solve this problem is by
using several realizations of {y;}7_,, as is possible in a panel data context. One can then
construct a suitable estimator for the degrees of freedom parameter (see, e.g., Sutradhar

and Ali (1986)).
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(1984, p. 731) for estimating the first absolute moment is also not robust to
outliers, which results in a nonrobust estimator for v. Finally, tail-index esti-
mators in their usual implementation are intrinsically nonrobust, because they
concentrate on observations in the extreme quantiles of the distribution. So
the only remaining candidate? for robust estimation of v is the MLT estimator.
The next section demonstrates, however, that the MLT estimator for v is also
nonrobust.

3.2 A Derivation of the Influence Function

Define 0 = (p,0,v)" and ¥(y:) = (Vu(ye), ¥olyr),u(y:)) 7, then the MLT

N

estimator § = (fi,6,7)" solves Ethl Y(y:) = 0. This section presents the
IF of the MLT estimator. First, some additional notation is needed. Let

V' (y) = Op(y;) /007, with

Pun(y) Puo(ye)  Lw(y)
¢/(yt) = ¢ua(yt) ¢Ua(yt) ¢Uu(yt) ,
¢uu(yt) ¢Uu(yt) ¢uu(yt)

and

= (v+1)(wo? = (g —p))/(vo® + (y: — p)*)?,
= 2wo(v+1)(y: — 1)/ (vo? + (ye — 1)*)?,

(ye — p)(0® = (g — 1))/ (vo? + (ye — p)*)?,
= (g — WVuo(ye) — Yol(ys))/ 0,

= (Yo — 1)Vulye) /o,

4 Of course, one can object that the other estimators can easily be extended such that
they become robust to at least some extent. For example, one can try to estimate the
first absolute moment of the errors in a robust way, thus ‘robustifying’ the estimator of
Prucha and Kelejian (1984). The problem with this approach is that one wants a consistent
estimator for v for the whole class of Student ¢ distributions, as opposed to an estimator
that is constistent for only one specific Student ¢ distribution. If one constructs a robust
estimator for the first absolute moment by downweighting extreme observations, one will
end up estimating v too high, in general. Therefore, the estimator based upon the robustly
estimated first absolute moment has to be multiplied by a correction constant in order to
make it a consistent estimator for v. (This can be compared with the multiplication by
1.483 for the median absolute deviation in order to make it a consistent estimator for the
standard deviation of the Gaussian distribution.) The problem now becomes one of choosing
the appropriate multiplication constant. If one chooses this constant such that the estimator
is consistent for, say, v = b, the estimator will in general be inconsistent for all other values
of v.

A different objection can be raised against the use of tail-index estimators. In their usual
implementation, these are based on averages of observations in the extreme quantiles of
the sample. One can robustify these estimators to some extent by replacing the mean by,
e.g., the median. As the number of observations on which the tail-index estimators are
based is usually quite small, even such revised tail-index estimators have an intrinsically low
breakdown point. Therefore, they are not considered further in this chapter.
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with +'(v) the derivative of the digamma function. The following assumption
is made.
Assumption 3.1 {&;} is an i.i.d. process; e, has a cumulative distribution
function F(e;) with probability density function f(e:); the probability density
function [ is continuous and symmetric around zero; there exists an n > 0
such that f(e;) = O(eg(l—m)) for large values of e,; there exists a 0y such that
E@(y:)) =0 and |[E(W'(y:))] # 0, where the expectation is taken with respect
to f(e:).

The following theorem is easily proved along the lines of Hampel, Ronchetti,
Rousseeuw, and Stahel (1986, pp. 85, 101-102).

Theorem 3.1 Given Assumption 3.1 and v < oo, the IF of the MLT estima-
tor 0 equals

IF(y:0,F) = — (B (3)))” ¥(y).

The IF of  is thus a linear transformation of the score vector Y (ys). From
(3.4) and (3.5) it follows that the score functions for g and o are bounded.
The score function for v, however, is unbounded, as is demonstrated by (3.6).
The following result can be proved.

Theorem 3.2 Given Assumption 3.1 and v < oo, the [F of the MLT estima-
tor for u is bounded, while the IF’s of the MLT estimators for o and v are
unbounded.

Proof. The unboundedness of the IF’s of & and o follows directly from the
unboundedness of 1,(y) and the fact that the (2,3)-element of (F(¢'(y)))™"
is nonzero, in general. Moreover, from the symmetry of f(e;) it follows that
Eu(y:)) =0 and E(¢,,(y:)) = 0, implying that the IF of [ only depends
on y through the score function for p. As the score function for p is bounded
for finite v, the theorem is proved. a

Figure 3.1 displays some IF’s evaluated at the standard Student ¢ distri-
bution (¢ =0, o = 1) with 1, 3, and 5 degrees of freedom (v). The IF of i
has a redescending shape: if |y| becomes large, the IF approaches zero. This
means that large outliers have a small influence on the MLT estimator for pu.
The IF’s of & and © are negative and decreasing for sufficiently large values of
y. This means, for example, that the estimate of v is negatively biased if there
is a single large outlier in the sample. The negative bias is more severe for
higher values of v. For v = 1, the IF of ¥ is almost flat. This is due to the fact
that the Cauchy distribution (v = 1) is already very fat-tailed. Observations
as large as y = 12 are not unreasonable it a Cauchy distribution is generating
the data. Therefore, the IF has a relatively flat shape for this low value of v.
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The effect of outliers on the scale estimator reveals a similar pattern. Finally,
it is interesting to see that for small values of |y| the estimators for both the
scale and degrees of freedom parameter demonstrate a negative bias. This is
due to the effect of centrally located observations (so called inliers, as opposed
to outliers).
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Figure 3.1.— Influence Functions and Change-of-Variance Function of the MLT
Estimators for p, o, and v

The unboundedness of the IF of the MLT estimator crucially depends on
the fact that v is estimated rather than fixed. If v is considered as a tuning
constant and fixed at a user specified value, the IF’s of the MLT estimators
for p and o are bounded. Therefore, it is important to specify the parameters
of interest.
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If v is a parameter of interest, the nonrobustness of 7 is rather discomforting.?
Solving the nonrobustness of the MLT estimator for v or for any of the other
estimators mentioned in Section 3.1, is, however, nontrivial. One possibility is
to bound the score function for v as in Theorem 1 of Hampel et al. (1986, p.
117). This requires that one specifies a central model for which the estimator
must be consistent. As a result, one can only devise an outlier robust estimator
for v that is consistent for one specific Student ¢ distribution, but inconsistent
for any other Student ¢ distribution (compare Footnote 4). If v really is a
parameter of interest, it seems undesirable to have an estimator that is only
consistent for one specific, user specified value of v.

In contrast, if only g and o are the parameters of interest, there are fewer
difficulties. One can then fix ¥ and perform the remaining analysis conditional
on v. This corresponds to the strategy that is often followed in the robustness
literature. Alternatively, one can estimate v along with p and ¢ and ignore
the potential bias in the estimate of v due to the occurrence of outliers. This
second strategy is closely linked to the adaptive estimation literature (see,
e.g., Hogg (1974)). An advantage of this strategy is that it allows a weighting
of the observations conditional on the sample. If the sample is, for instance,
approximately Gaussian, the estimate of v will be very large and the estimator
for p will be close to the efficient estimator: the arithmetic mean. If, in
contrast, there are some severe outliers in the sample, the estimate of v will
be lower and the extreme observations will be weighted less heavily.

If only p is the parameter of interest, it is not only interesting to know
whether p can be estimated robustly, but also whether robust inference proce-
dures can be constructed for this parameter. In order to answer this question,
the sensitivity of the variance of i to outliers must be assessed. This can
be done by means of the change-of-variance function (CVF), introduced by
Rousseeuw (1981). The CVF is a similar concept as the IF. Whereas the IF
measures the shift in an estimator due to an infinitesimal contamination, the
CVF measures the corresponding shift in the variance of the estimator. If both
the IF and the CVF of an estimator are bounded, robust inference procedures
can be based on the estimator. It has already been shown that the only source
of nonrobustness for the MLT estimator stems from the estimation of v. If v
is fixed by the user, the MLT estimators for ¢ and o have a bounded IF. It
is rather straightforward to show that for fixed v these estimators also have
a bounded CVF. Moreover, even if v is estimated, Theorem 3.2 states that [
still has a bounded TF. The only interesting question that is left, therefore, is
whether the estimation of v affects the variance of the estimator f.

In order to define the CVF of the MLT estimator, an expression for the
asymptotic variance V' of the estimator is needed. From Equation (4.2.2) of

>The nonrobustness of # is not alarming if the parameter is only used to check whether
the sample contains outliers or exhibits leptokurtosis. In that case, the estimate of v 1s only
used as a diagnostic measure and has no intrinsic meaning. If, however, one is interested in
v as the degrees of freedom parameter of the Student ¢ distribution, the nonrobustness of
the estimator for v is worrying.
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Hampel et al. (1986), one obtains
V(8. F) = B(IF(yed, F)IF(ye 0. )", (3.7)

where the expectation is again taken with respect to f(e;). Following Equation
(2.5.11) of Hampel et al. (1986, p. 128), the CVF of the MLT estimator is
defined as )
av (4, F)

an ’

n=0

CVF(y;:0,F) = (3.8)
where F is the contaminated cumulative distribution function F"(e;) = (1 —
) F(e¢) + nlie,>y4uy(€e), with 14(-) the indicator function of the set A. The
following theorem establishes the unboundedness of the CVF of i if v is esti-
mated by means of the MLT estimator.

Theorem 3.3 Let the conditions of Assumption 3.1 be satisfied and v < 0.
If 0 is estimated with the MLT estimator é, then the CVF of ji s unbounded.

Proof. The asymptotic variance of fi is the (1,1)-element from the ma-
trix V (0, F'). Therefore, it only has to be shown that the (1,1)-element from
CVF(y;0,F) is an unbounded function of y. Define the matrices By and Bs
as

mny = [ B ) (b)) T <),
By(F") = / g dF (e,

with ¢ and ¢’ defined as ¢ and v, respectively, only with @ replaced by the
functional é(F”), where é(F”) is the MLT estimator evaluated at the distribu-
tion F7. Note that é(FO) = (u,0,v)". The asymptotic variance of the MLT
estimator is now equal to

V0, F7) = (By(F")) ™ By (F") (By(17)) ™"
The (1,1)-element of the CVF of f is equal to the (1,1)-element of the matrix

dB,(F7) L dBy(F)

o L - g B
+(BQ(F)>—1%UF”) _O(Bz(F))_lv (39)

with Vo = V(é,FO). Due to the symmetry of f(e;), it is easily checked that
both Vi and By(F') are block-diagonal, with the blocks being the (1, 1)-element
and the lower-right (2 x 2) block. Therefore, it only has to be shown that either
the (1, 1)-element of dBy(F")/dn|,=0 or that of dBy(F")/dn|,=o is unbounded.

These elements are given by

($u())* — ef Bi(F)er + B2 (ye) Yun(y) T (y: o )+
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B¢ (ye) o (y)) LT (y3 6, F) + E20u(ye) b (ye) ) LF (y; 0. F),  (3.10)
and

@Z’w(y) - elTB2(F)€1 + E(?buuu(yt))]F(y; ft, F)"’
E(¢uua(yt))]F(y§&7F) + E(@Z’uuu(yt))]F(y;f/vF)v (3'11)

respectively, with e/ = (1,0,0) and three indices denoting third order partial
derivatives, e.g., ¥, (y:) = 0, (y:)/Op. Using (3.10) and (3.11), it is evi-
dent that without further assumptions the score function for v is, in general,
present in (3.9) with a nonzero loading factor. This causes the CVF of /i to
be unbounded. O

Theorem 3.3 only discusses the unboundedness of the CVF in the general
case. An interesting question concerns the behavior of the CVF if the true
distribution actually belongs to the Student ¢ class. The following corollary
gives the result.

Corollary 3.1 Given the conditions of Theorem 3.3 and given that the ¢;’s
follow a Student t distribution with v degrees of freedom, then the CVF of i s
bounded.

Proof. Without loss of generality, set ¢ = 1 and g = 0. It is tedious, but
straightforward to show that

B (00)) = B0 (0)) = —QEZ i

and
B 0)) = ) = 7

The result now follows directly from (3.9), (3.10), and (3.11). O

Figure 3.1 shows the CVF of [i evaluated at several Student ¢ distributions.
As Corollary 3.1 predicts, this CVF is bounded. Centrally located values of y,
i.e., inliers, cause a downward bias in the standard error of [, while outliers
result in a (bounded) upward bias.

Both Theorem 3.2 and 3.3 lead to the conclusion that estimating v leads
to nonrobust statistical procedures. Both the IF and the CVF are, however,
defined in an asymptotic context. It might well be the case that the unbound-
edness of the [F and the CVF is less important in finite samples. In the next
section, this is investigated by means of a Monte Carlo simulation experiment.
Here, a much simpler strategy is used. Let {y1,..., 925} be a set of i.i.d. draw-
ings from a Student ¢ distribution with location zero, scale one, and degrees of

freedom parameter v. Construct the symmetrized sample {g1,..., 950}, with
Uor = —yr and yor_q = yi for k= 1,...,25. Let y be some real number and
enlarge the sample with ¢5; = y. For the sample {5;}?L, the MLT estimates
of p, o, and v can be computed, together with an estimate of the asymptotic
variance of fi. This can be done for several values of v. Figure 3.2 displays the
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difference between the estimated and true values of the parameters for several
values of y.

The curves for 1 and & reveal a qualitatively similar picture as the IF’s in
Figure 3.1. Large outliers have a small effect on fi, while causing a downward
bias in &. Note that Figure 3.2 gives the finite sample approximation to the
IF of 1/v instead of 7 in order to facilitate the presentation. For v = 5, for
example, the bias in 1/0 for y = 0 is approximately —0.1, implying that the
estimate of v is approximately 10. The curve for 1/ shows the same pattern
as the IF in Figure 3.1. Large outliers cause an upward bias in 1/ and,
thus, a downward bias in . Finally, also the shape of the curve showing the
discrepancy between the estimated and the asymptotic standard error of [
corresponds to the shape of the CVF of ji. Again it is seen that for v = 1 and
v = 3 moderate outliers have a larger (absolute) effect on the standard error
than extreme outliers.

3.3 A Numerical ITllustration

This section presents the results of a small simulation experiment conducted
in order to obtain insight into the finite sample behavior of the MLT estimator
and several alternative estimators in a variety of circumstances. The model is
always (3.1) with g = 0 and o = 1. The estimators that are used are discussed
in Subsection 3.3.1, while the different distributions for ¢; can be found in
Subsection 3.3.2. Subsection 3.3.3 discusses the results. This discussion centers
around the behavior of the estimators for p, as p has a similar interpretation for
all error distribution except the y? distribution. In contrast, the estimators for
o have different probability limits for different error distributions. Therefore,
these estimators cannot be compared directly. This should be kept in mind
when interpreting the results in Subsection 3.3.3.

3.3.1 Estimators

I consider the following seven estimators.

The first estimator uses the arithmetic mean and the ordinary standard
deviation to estimate p and o, respectively. The standard error of the mean is
estimated by the standard deviation divided by the square root of the sample
size.

The second estimator uses the median and the median absolute deviation
to estimate p and o, respectively. The median absolute deviation is multiplied
by 1.483 in order to make it a consistent estimator for the standard deviation
of a Gaussian distribution. The asymptotic standard error of the median is
estimated by (Zf(ﬂ))_l (compare Hampel et al. (1986, p. 109), with & denoting
the median of y; and f() denoting a sample based estimate of the density func-
tion of the y;’s. The kernel estimator used to construct this density estimate
is described when discussing the seventh estimator.
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Figure 3.2.— Finite Sample Influence Curves for [, 6, 1/, and the standard
error of fi
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The third estimator uses the MLT estimators for 4 and o with a fixed
degrees of freedom parameter v = 5. This estimator is computed by means
of an iteration scheme. The starting values used for p and o are the median
and the median absolute deviation, respectively. Also the fourth through the
seventh estimator below are computed by means of iteration schemes. For all
estimator, the starting values mentioned above are used.

The fourth estimator is the same as the third estimator, only with v = 1
instead of v = 5.

The fifth estimator is the MLT estimator with estimated degrees of freedom
parameter using (3.6). The MLT estimator for v is restricted to the interval
[0.5,694.678] in order to avoid nonconvergent behavior of the estimator.®

The sixth estimator uses the MLT score functions for ¢ and o, but employs
a different method for fixing the degrees of freedom parameter. The idea for
determining v is inspired by a method for determining the optimal amount of
trimming for the trimmed mean (see Andrews et al. (1972), Hogg (1974)). The
estimator is, therefore, called an adaptive estimator. For a given sample and
a given value of v, one can obtain an estimate of p and o and of the standard
error of fi. The value of v is then chosen such that the estimated standard
error of i is minimized.

The seventh estimator is also adaptive, but in a more general sense, be-
cause it treats the whole error distribution f(e;) as an (infinite-dimensional)
nuisance parameter (see Manski (1984)). It can, therefore, also be called a
semiparametric estimator. The ideas for this estimator are taken from Manski
(1984), although the actual implementation differs in certain details, e.g., the
choice of the bandwidth parameter and the kernel estimator. Given a prelim-
inary estimate of y, an estimate of the density function is constructed. The
estimated density is then used to obtain a (nonparametric) maximum likeli-
hood estimate of p. The empirical mean of the squared estimated score is used
to estimate the asymptotic standard error of this estimator. I use the median
as the preliminary estimator.

The estimates of the density and the score function are constructed in the
following way. Let {y;}L, denote the observed sample and let ji denote the
preliminary estimate of p. Construct u; = y; — i and let @.r denote the
corresponding ascending order statistics. In order to protect the procedure
against outliers, I remove the upper and lower 0.05-quantiles of the sample.

5The upper bound of 694.678 is due to the algorithm that was used for computing the
estimator. The half-line 0.5 < v < oo was mapped in a one-to-one way to the interval
0.5 < g(v) <2, with g(v) = vfor 0.5 <v<1landg(v)=2—v"!for v > 1. Next, g(v)
was estimated using a golden/\search algorithm with endpoints 0.5 and 2, while the estimate
of v was set equal to ¢g=1(g(v)), with g~! the inverse mapping of g. Due to the fact that
the golden search algorithm uses a positive tolerance level for checking for convergence, the
largest estimated value of g(v) was approximately 1.998560484. This corresponds to the
maximal value for v of 694.678.
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Let T =T —2- 10.05T | and @y = tG(eqo.057)yer for t =1,... ,T, then

flu) =171 R o((u — ) /h), (3.12)

t=1

with A a bandwidth parameter, ¢(u) = (27)~/2exp(—u?/2) the standard nor-
mal density function, and v an arbitrary real value (see Hendry (1995, p. 695)
and Silverman (1986)).” The bandwidth parameter is set equal to 1.067 02
times the median absolute deviation, which is again multiplied by 1.483. The
score function is estimated by f’(u)/f(u) for f(u) > 1072 and zero otherwise,
with )
T
Py = 7S W (- )b, (313
t=1
and ¢'(u) = —ug(u).
In order to obtain the (nonparametric) maximum likelihood estimate based
on f(u), the minimum of the function

(Z f/(yt - ﬂ))

with respect to p is determined using a golden search algorithm with endpoints
¢t and pg*. In order to avoid nonconvergent behavior of the estimator in the
simulations, I set u' = i — & and y* = ji + &, with & the median absolute
deviation of the y,’s, multiplied by 1.483.

3.3.2 Error Distributions

The performance of the above seven estimators is compared for several data
generating processes. As mentioned earlier, the model is always (3.1), so only
the error density f(eg;) is varied. The following seven choices for the error
distribution are considered.

First, f is set equal to the standard Gaussian density. This density serves
as a benchmark. For the Gaussian density, the mean is optimal. The other
estimators, therefore, have a larger variance in this setting. It is interesting to
know whether the increase in variance is acceptable compared with the reduc-
tion in sensitivity of the robust estimators to alternative error distributions.

Second, f is set equal to the Student ¢ distribution with three degrees of
freedom. This distribution still has finite second moments, so the mean should
still be well behaved. The third order moment, however, does not exist, which
implies an unstable behavior of the standard deviation as an estimator for the
scale.

"Note that f(u) in fact estimates the density of u; + uy, with uy; a Gaussian random
variable with mean zero and variance A%, and #; independent of ;.
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Third, f is set equal to the (symmetrically) truncated Cauchy distribution.
The truncation is performed in such a way that 95% of the original probability
mass of the Cauchy is retained. In simulations in the time series context,
this distribution is very useful for demonstrating the superiority of robust
procedures in situations where all moments of the error distribution are still
finite (see the Chapters 6 and 7).

Fourth, f is set equal to the standard Cauchy distribution. The first and
higher order moments of this distribution do not exist.

Fifth, f is set equal to the slash distribution (see Andrews et al. (1972)).
Drawings (e¢) from this distributions are constructed by letting ; = u;/vy,
with u; a standard Gaussian random variable and v; a uniform [0, 1] random
variable, independent of w;. The first and higher order moments of this distri-
bution do not exist.

The sixth distribution is added in order to illustrate the effect of asymme-
try. In this case f is set equal to the recentered y? distribution with two degrees
of freedom. The distribution was centered as to have mean zero. Note that the
robust estimators now have a different probability limit than the mean. This
should not be taken as an argument against robust estimators. Robust estima-
tors just estimate a different quantity if the error distribution is asymmetric
(see, e.g., Hogg (1974, Section 7)). The real question is whether one is more
interested in the mean or in the probability limit (or population version) of the
robust estimator, e.g., the median. Using numerical integration, one can show
that the probability limit of the median for this distribution is approximately
—0.614, while the probability limits of the MLT estimators with v = 5 and
v =1 equal —0.506 and —0.773, respectively.

The seventh distribution, a mixture of normals, is added to illustrate the
effect of outliers on the estimators for v. With probability 0.9, a drawing is
made from a normal with mean zero and variance 1/9, and with probability
0.1, a drawing is made from a normal with mean zero and variance 9. The
variance of this mixture distribution is one. It can be expected that the robust
estimators estimate the parameters from the normal with mean zero and vari-
ance 1/9 instead of the parameters of the mixture of normals. This, however,
does not hold for the degrees of freedom parameter. As the largest component
(approximately 90% of the observations) of the mixture is a normal distribu-
tion with mean zero and variance 1/9, one expects a robust estimator for v to
produce a very high estimate. It follows from Section 3.2, however, that the
presence of the second component of the mixture causes a downward bias in
the estimators of v that are discussed in this chapter.

3.3.3 Results

As (3.1) is an extremely simple model, I only consider small samples of size
T = 25. The means and standard deviations of the Monte-Carlo estimates over
400 replications are presented in Table 3.1. The median absolute deviations
(multiplied by 1.483) and medians are presented in Table 3.2.
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TABLE 3.1
Monte-Carlo Means and Standard Deviations for Several
Estimators for the Location/Scale Model

[ 0y 5, Ospu o 0o v oy

standard Gaussian
mean -0.007  0.205 0.198 0.028 0.992 0.141
med -0.008 0.248 0.236 0.105 0.966 0.236
mlth -0.009 0.213 0.204  0.036 0.834 0.127
mltl -0.009 0.259 0.240 0.095 0.576 0.117
mlt -0.009 0.209 0.189 0.030 0.919 0.167 499.157 308.508
adapt -0.007  0.241 0.176 0.039 0.771 0.265 344.191 345.286
npml -0.007  0.249 0.211 0.061

Student ¢(3)
mean -0.002 0.340 0.316 0.139 1.580 0.697
med 0.002 0.264 0.321 0.162 1.117 0.293
mlth -0.002 0.251 0.244  0.052 1.097 0.233
mltl 0.000 0.260 0.255 0.095 0.682 0.154
mlt -0.001 0.258 0.232 0.057 1.015 0.286 168.535 292.740
adapt 0.002 0.262 0.210 0.059 0.816 0.297  88.152 227.472
npml 0.002 0.276  0.252 0.074

truncated Cauchy
mean 0.002 0.523 0.517  0.143 2.583 0.713
med 0.003 0.305 0.513 0.322 1.383 0.430
mlth -0.006 0.336 0.341 0.096 1.680 0.462
mltl -0.006 0.287 0.280 0.106 0.884 0.242
mlt -0.004  0.306 0.285 0.093 1.167 0.426 31.018 137.405
adapt -0.005 0.293 0.252 0.086 0.944 0.340 9.827  75.582
npml 0.000 0.333 0.335 0.107

standard Cauchy
mean 0.232 29.121 4.482 28.805 22.408 144.025
med -0.005 0.317 0.601 0.390 1.489 0.469
mlth -0.008 0.383 0.384 0.121 2.231 0.846
mltl -0.008 0.280 0.292 0.105 0.974 0.279
mlt -0.010 0.289 0.291 0.104 1.059 0.393 11.257  81.527
adapt -0.009 0.289 0.267  0.090 1.043 0.375 3.418 37.948
npml -0.005 0.328 0.388 0.129

slash

mean -0.071 23.398 5.115 22.839 25.577 114.196
med 0.021 0.525 1.264  0.706 2.182 0.610
mlth 0.046 0.552 0.541 0.163 3.069 1.148
mltl 0.015 0.474 0.453 0.157 1.420 0.370
mlt 0.011 0.477 0.442 0.135 1.585 0.503 16.930 101.751
adapt 0.015 0.481 0.406 0.123 1.581 0.532 6.772 59.372
npml 0.029 0.525 0.570 0.176

ft, 8,4, 0, and ¥ are the Monte-Carlo means of the estimators for y, for the standard error
of the estimator for u, for o, and for v, respectively. The corresponding Monte-Carlo
standard errors are 6, 0,,, 05, and &, for ji, §,, &, and », respectively. The estimators
are described in Subsection 3.3.1, while the error distributions are discussed in Subsection

3.3.2.
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TABLE 3.1
(Continued)
i 6, 5, Gan G o, 7 7,
X*(2) -2

mean -0.005 0.400 0.38> 0.107 1.924 0.537
med -0.545 0.397 0.481 0.278 1.358 0.404
mlth -0.370 0.360 0.296 0.072 1.336 0.300
mltl -0.711  0.380 0.312 0.137 0.788 0.211
mlt -0.480 0476 0.272 0.080 1.130 0.408 143.209 277.654
adapt -0.595  0.451 0.250 0.079 0.970 0.381 80.893 219.260
npml -0.466 0423 0.346 0.113

0.9 N(0,1/9) + 0.1 N(0,9)
mean -0.005 0.206 0.184 0.093 0.922 0.467
med -0.000 0.088 0.034 0.016 0.366 0.090
mlth -0.000 0.081 0.079 0.020 0.409 0.143
mltl -0.002 0.085 0.085 0.030 0.227 0.051
mlt -0.001 0.079 0.076 0.020 0.278 0.068 79.262 217.611
adapt -0.001 0.084 0.070 0.019 0.269 0.087 57.433 188.017
npml -0.001 0.089 0.091 0.028

For the Gaussian error distribution, the mean is the most efficient esti-
mator for p, at least if we consider the Monte-Carlo standard deviation of
the estimator (see the &, column). The mean is closely followed in terms of
efficiency (6,) by the MLT estimator with estimated v (mlt) and the MLT
estimator with v fixed at 5 (mlt5). The remaining estimators perform much
worse in terms of ,. The standard errors of all estimators for p (3,) seem to
underestimate the true variability of the estimators (&) over the simulations.
This holds in particular for the adaptive estimator. The MLT estimator of v
has a very high mean (see v column). If we consider the median of the MLT
estimator for v, it is at its upper boundery. The corresponding median ab-
solute deviation reveals that for at least half of the simulations, the estimate
of v was at this boundary value. The adaptive estimate of v is much lower
(see especially the value in Table 3.2). The scale estimates (&) vary consider-
ably over the different estimators. This is due to the fact that except for the
mean, the median, and the MLT estimator with estimated v, the estimators
are estimating different quantities (compare Subsection 3.3.2). The adaptive
estimator for o has the highest variance (5,).

For the Student ¢ distribution with three degrees of freedom, the mean
performs much worse in terms of &,. Now the MLT estimators perform best
on the basis of Table 3.1, while on the basis of Table 3.2 the MLT estimators
with fixed v and the median perform best. The mean estimate of v () is again
fairly high. The median estimate of v, however, is much closer to the true
value 3 for the MLT estimator. The adaptive estimator again underestimates
v. The discrepancy between the Monte-Carlo mean and median estimate of
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TABLE 3.2
Monte-Carlo Medians and Median Absolute Deviations for

Several Estimators for the Location/Scale Model

[ Ty 5, Osp o 0o v oy
standard Gaussian
mean -0.001 0.200 0.198 0.028 0.988 0.141
med -0.006 0.244 0.222 0.100 0.959 0.236
mlth -0.001 0.206 0.203 0.037 0.831 0.131
mltl -0.007 0.256 0.228 0.088 0.568 0.118
mlt -0.002 0.203 0.189 0.029 0.930 0.162 694.678  0.000
adapt -0.001 0.226 0.179 0.039 0.816 0.333  49.035 71.513
npml -0.003  0.247 0.205 0.056
Student ¢(3)
mean -0.006 0.320 0.288 0.076 1.441 0.378
med 0.010 0.265 0.292 0.141 1.098 0.278
mlth -0.000 0.251 0.241 0.0560 1.070 0.225
mltl 0.007 0.265 0.237 0.088 0.671 0.146
mlt 0.001 0.268 0.230 0.055 0.991 0.282 3.811 3.203
adapt 0.003 0.266 0.209 0.0569 0.758 0.325 1.754 1.414
npml 0.003 0.264 0.245 0.072
truncated Cauchy
mean -0.006 0.509 0.515 0.150 2.575 0.748
med -0.004 0.295 0.425 0.229 1.308 0.380
mlth -0.001 0.312 0.326 0.086 1.624 0.427
mltl -0.012 0.267 0.265 0.096 0.847 0.220
mlt -0.013 0.279 0.273 0.083 1.091 0.361 1.763 0.613
adapt -0.009 0.283 0.243 0.082 0.889 0.306 0.855 0.080
npml -0.006 0.326 0.326 0.103
standard Cauchy
mean -0.069 1.327 1.095 0.814 5.474 4.070
med -0.003 0.300 0.513 0.300 1.424 0.430
mlth -0.024 0.343 0.365 0.104 2.058 0.650
mltl -0.001  0.270 0.279 0.097 0.950 0.261
mlt -0.011 0.285 0.280 0.096 1.005 0.327 1.075 0.383
adapt -0.008 0.278 0.259 0.087 0.972 0.338 0.978 0.263
npml -0.004 0.300 0.377 0.127
slash
mean 0.020 1.881 1.456 1.161 7.279 5.803
med 0.030 0.512 1.120 0.589 2.105 0.598
mlth 0.059 0.541 0.514 0.143 2.828 0.967
mltl 0.023 0.500 0.433 0.144 1.382 0.359
mlt 0.012 0.497 0.428 0.128 1.520 0.427 1.173 0.470
adapt 0.011 0.490 0.399 0.113 1.526 0.535 1.225 0.629
npml 0.020 0.501 0.546 0.172

ft, 8,4, 0, and U are the Monte-Carlo medians of the estimators for y, for the stan-
dard error of the estimator for p, for ¢, and for v, respectively. The corresponding
Monte-Carlo median absolute deviations, multiplied by 1.483, are 6, 0., ¢, and
o, for fi, 5,, ¢, and ¥, respectively. The estimators are described in Subsection
3.3.1, while the error distributions are discussed in Subsection 3.3.2.
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TABLE 3.2
(Continued)
i 6, 5. ou G o, 7 o,
X*(2) —2
mean -0.050 0.386 0.369 0.097 1.844 0.484
med -0.584 0.405 0415 0.223 1.303 0.374
mlth -0.401 0.363 0.289 0.069 1.300 0.289
mltl -0.744  0.399 0.290 0.120 0.768 0.202
mlt -0.496 0487 0.267 0.075 1.086 0.419 2.576 1.791
adapt -0.628 0478 0.247 0.075 0.909 0.377 1.949 1.703
npml -0.506 0422 0.334 0.112
0.9 N(0,1/9) + 0.1 N(0,9)
mean -0.010 0.186 0.172 0.102 0.858 0.512
med -0.003 0.087 0.032 0.015 0.365 0.093
mlth -0.002 0.079 0.077 0.016 0.379 0.107
mltl -0.003 0.087 0.081 0.028 0.224 0.048
mlt 0.000 0.080 0.075 0.019 0.275 0.067 1.669 0.752
adapt 0.002 0.084 0.069 0.019 0.264 0.095 2.177 1.899
npml -0.001 0.085 0.088 0.027

v is due to large outlying values of v to the right. These are caused by the
fact that for some samples of size 25 it is hardly possible to distinguish the
Gaussian (v = oo) from the Student ¢ distribution. Further note that the scale
estimator for the mean (&), i.e., the ordinary sample standard deviation, has a
high variability (6,). This is caused by the nonexistence of the fourth moment
of the distribution.

I now turn to the truncated Cauchy. For this distribution, the MLT esti-
mator with ¥ = 1 performs best in terms of 6,. This can be expected, as this
estimator resembles the maximum likelihood estimator for this distribution.
Only the standard error (5,) of the adaptive estimator seriously underesti-
mates the true variability of the estimator (5,). The median estimates of
v (V) are now very low, explaining the relatively good performance of these
estimators in terms of &,.

For the standard Cauchy distribution, the mean is by far the worst estima-
tor (see the ji and the 6, columns). The MLT estimator with v = 1, which is
now exactly equal to the maximum likelihood estimator, performs best. The
median estimates of v are in the neighborhood of one for both the MLT and
the adaptive estimator. Again the median estimate of v obtained with the
adaptive estimator is somewhat below that obtained with the MLT estimator.
The second and third best estimators for p are the adaptive estimator and the
MLT estimator with estimated v, respectively. Also note that the standard
error of the adaptive estimator (§,) again seriously underestimates the true
variability of the estimator (4,,).

The results for the slash distribution are similar to those for the Cauchy.
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The variability of all estimators (6,) appears to have increased with respect
to the Cauchy case. Again the median estimates of v are fairly close to one.

For the recentered y? distribution the different probability limits of the
various estimators for asymmetric error distributions are apparent. It is inter-
esting to note that the two MLT estimators with fixed v have better efficiency
properties (6,) than the mean, at least for Table 3.1. Moreover, based on Table
3.1, this distribution is the first one for which the nonparametric maximum
likelihood estimator (npml) has a lower variability (&,) than the estimators
that only estimate v instead of the whole error distribution. For Table 3.2,
this also appeared for the Student ¢ distribution with three degrees of freedom.
The median estimates of v (7) are again quite low, with the adaptive estimate
of v below the MLT estimate.

Finally, for the mixture of normals, the mean performs worst in terms of
&,. This is due to the fact that the mean takes all observations into account,
including the ones from the mixture component with variance 9. The MLT
estimators with v = 5 and v estimated perform best in terms of 5,. The
standard error (5,) of the median seriously underestimates the true variability
of the estimator (&,) for this distribution. As expected from Section 3.2, the
estimate of v (7) is biased towards zero. Note that the median estimate of v
for the adaptive estimator is now for the first time above that for the MLT
estimator with estimated v.

Summarizing, the following conclusions can be drawn from the simulation
experiment.

1. In the considered experiment, the mean is only the best estimator in
terms of &, if the errors are Gaussian. Even in this situation, the MLT
estimator for g with estimated v performs approximately the same in
terms of &,,.

2. The standard error of the adaptive estimator (§,) underestimates the true
variability of the estimator (6,) for all error distributions considered.

3. The nonparametric maximum likelihood estimator performs worse than
or approximately the same as the median. The standard errors (§,) of
both estimators in several cases grossly under- or overestimate the true
variability (6,) of the estimator for p. Therefore, one can better use
the median if one is only interested in a (robust) point estimate of g,
because this estimator is much easier to compute. If one also wishes to
perform inference on p, however, it is questionable whether any of these
two estimators can be advised for practical use.

4. The estimators that only treat v as a nuisance parameter (adapt and mlt)
perform better in terms of &, for all symmetric distributions considered
than the estimator that treats the whole error distribution as an (infinite-
dimensional) nuisance parameter (npml). The only exception to this
statement can be found in Table 3.2 for the Student ¢ distribution with
three degrees of freedom.
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5. The nonrobustness of the MLT estimator for v is evident if there are
outliers in the data, as in the case of the mixture of normals. The
nonrobustness of estimating v along with g and o, however, seems to be
either advantageous or negligible for estimation of and inference on p.

6. One should be careful in defining the parameters of interest, because
different estimators can have different probability limits for different er-
ror distributions. For o and v, this appears from all the experiments,
while for u it is illustrated by the experiment with the recentered y?
distribution.

3.4 Concluding Remarks

In this chapter I considered the simple location/scale model. For this model,
[ have demonstrated that the influence functions (IF) of the MLT estimators
for the degrees of freedom parameter (v) and the scale parameter (o) are
unbounded. The IF of the MLT estimator for the location parameter (x) is
bounded, but its change-of-variance (CVF) function is unbounded if the central
or uncontaminated distribution does not belong to the Student ¢ class. The
easiest solution to the unboundedness of the IF’s and the CVF is to fix the
degrees of freedom parameter v at a user specified value. This value can be
chosen such that the estimator is reasonably efficient at a central distribution,
e.g., the Gaussian distribution.

The unboundedness of the [F’s and the CVF is, however, only a qualitative
result. For example, the rate at which the IF diverges is very slow. Therefore,
the practical implications of the unboundedness of the [F’s and the CVF seems
to be limited. This was illustrated in Section 3.3 by means of simulations.
The MLT estimator with estimated degrees of freedom parameter seemed to
perform as well as or better than the MLT estimators with fixed v. Only the
interpretation of the estimate of v as the degrees of freedom parameter from
an underlying Student ¢ distribution seems to be incorrect if there are outliers
in the data. Inference on p, however, remains valid for most situations of
practical interest.



