
Chapter 4

Low Breakdown Robust Unit

Root Tests

Chapters 4, 5, and 6 form the second part of this thesis. They all deal with the
combination of robust estimation and unit root testing for univariate autore-
gressive time series. The aim of this chapter is to classify the e�ects of outlying
observations in the data on both classical and Bayesian unit root inference.1

Moreover, a relatively simple procedure is proposed to alleviate the outlier
problem in both the classical and Bayesian setting.

The chapter is set up as follows. First, the importance of unit roots in
economic time series is brie
y discussed in Section 4.1. In Section 4.2, some of
the relevant robustness concepts for time series models are introduced. These
include the concepts of additive outliers, innovative outliers, and the in
u-
ence function. In Section 4.3, the Student t based pseudo maximum likelihood
estimator is proposed for testing the unit root hypothesis. It is shown that
this estimator has a bounded in
uence function in the time series context,
which contrasts with the i.i.d. regression setting. In Section 4.4, some brief
comments can be found on the outlier nonrobustness of one of the common
Bayesian approaches to testing for unit roots. This section also presents a sim-
ple suggestion for alleviating the outlier problem for unit root inference in the
Bayesian setting. Section 4.5 applies the developed outlier robust procedures
to empirical data. Apart from the extended Nelson-Plosser data, which are
also used in Chapter 5, the Finland-U.S. real exchange rate and a series from
marketing are considered. Section 4.6 gathers the main conclusions from this
chapter. The appendix contains the proof of Proposition 4.1 in Section 4.3.

4.1 Introduction

In this introduction, some intuition is provided for the unit root model. This
is done in Subsection 4.1.1. In Subsection 4.1.2, some comments on the rel-

1Most of the material in this chapter (except Section 4.1) is taken from Hoek, Lucas, and
van Dijk (1995). For style compatibility reasons, I replaced the occurrences of `we' etc. in
the original text by `I' etc.
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evance of unit roots for economics and econometrics are presented. Finally,
in Subsection 4.1.3, some standard (nonrobust) univariate unit root testing
procedures are brie
y discussed.

4.1.1 A Simple Autoregressive Unit Root Model

A large number of economic time series reveals a trending behavior. Let fytg
T
t=1

be an observed time series and consider the model

�(L)(yt � �� �t) = "t; (4:1)

with f"tg
1
t=0 an i.i.d. process with zero mean, �(z) a pth order polynomial

in the complex variable z, �(z) = 1 � �1z � . . . � �pz
p, L the lag operator,

Lpyt = yt�p, and �; �; �1; . . . ; �p the set of unknown parameters. Model (4.1)
can describe the two types of trending behavior that are mostly studied in
econometrics. First, (4.1) can be seen as a deterministic trend model. In
that case, the roots of the polynomial �(z) must lie outside the unit circle,
such that the 
uctuations around the deterministic time trend, � + �t, are
stationary. Second, (4.1) can describe a stochastic trend or unit root model,
in which case it must hold that �(1) = 0. The simplest model in this class of
unit root models is the one where �(1) = 0 and the remaining roots of �(z) lie
strictly outside the unit circle. Note that in that case �(z) can be rewritten
as �(z) = ��(z)(1� z), with ��(z) a polynomial of degree p� 1 with all roots
outside the unit circle. For p = 1, the deterministic and stochastic trend model
reduce to (4.2) and (4.3), respectively:

yt = �yt�1 + (1� �)� + �� + (1� �)�t+ "t; (4.2)

�yt = � + "t; (4.3)

with � the �rst di�erence operator, �yt = (1� L)yt = yt � yt�1, and j�j < 1.
The di�erence between (4.2) and (4.3) most clearly emerges if one rewrites

(4.2) and (4.3) as

yt = �ty0 + (1� �t)�+ �t+
t�1X
i=0

�i"t�i; (4.20)

yt = y0 + �t+
t�1X
i=0

"t�i: (4.30)

Both models contain a deterministic linear trend with a slope coe�cient �.
The in
uence of the �rst observation (y0), however, di�ers markedly between
the two models. In (4.20) the in
uence of y0 on yt becomes negligible if t
increases. In contrast, in (4.30) the in
uence of y0 on all future values of the
time series remains constant. An analogous result holds for all other values
of the time series. The in
uence of yt0 on yt for t > t0 decreases with t for
the deterministic trend model (j�j < 1), whereas it remains constant for the
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unit root model (� = 1). Alternatively, one can consider the impact of the
disturbances "t on the time series yt. (4.2

0) and (4.30) demonstrate that shocks
have a temporary e�ect in the deterministic trend model and a permanent
e�ect in the unit root model. Therefore, the unit root model and the unit root
hypothesis are closely linked to the phenomenon of shocks having a permanent
rather than a transitory e�ect.

The second important di�erence between (4.20) and (4.30) emerges by con-
sidering the deviations from the deterministic trend line. For (4.20), one obtains
the deviations ut =

Pt
i=1 �

t�i"i. Note that ut = �ut�1 + "t, with u0 = 0 and
j�j < 1. Therefore, futg is an asymptotically stationary process.2 For (4.30),
in contrast, one obtains ~ut =

Pt
i=1 "i as the deviation from the deterministic

trend line. The ~ut process is a random walk and, therefore, clearly nonsta-
tionary as its variance increases linearly over time. This di�erent behavior of
ut and ~ut has important consequences for statistical inference procedures. If
(4.2) is the actual data generating mechanism, one can use standard statisti-
cal tools and standard asymptotic distribution theory to perform inference on
the parameters. If (4.3) generated the data, however, nonstandard asymptotic
distribution theory is needed. This will become apparent in the subsequent
chapters of this thesis.

The unit root hypothesis is concerned with the question whether (4.2) or
(4.3) provides a better statistical representation of the data. From (4.2) and
(4.3) it is evident that this hypothesis can be investigated by testing whether �
in (4.2) is signi�cantly di�erent from unity. One can question the importance
of this speci�c value of the parameter �. The above discussion illustrates, how-
ever, that there are important di�erences between the two competing models,
both from the point of statistical analysis and from the point of (economic)
interpretation. This motivates the subsequent investigations.

4.1.2 Relevance of Unit Roots for Economics and Econo-

metrics

I now turn to the economic and econometric relevance of unit roots. Following
the seminal article of Nelson and Plosser (1982), an interesting debate has been
going on in the econometric literature whether most macroeconomic time series
contain a deterministic or a stochastic trend. Especially the lasting e�ect of
shocks under the unit root hypothesis, the di�erence between modeling levels
versus di�erences, and the consequences of unit roots for forecasting seem to
be of major economic and econometric importance. Nelson and Plosser (1982)
found that from the fourteen economic time series they considered, thirteen
were best described by models of the form (4.3) rather than (4.2). They
concluded

. . . that macroeconomic models that focus on monetary disturbances

as a source of purely transitory 
uctuations may never be successful

2ut can be made stationary by rede�ning u0 = "0=(1� �2)1=2.
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in explaining a large fraction of output variation and that stochastic

variation due to real factors is an essential element of any model of

macroeconomic 
uctuations.

So, based upon a simple univariate analysis of the unit root hypothesis, the
authors drew conclusions that are of major importance for economic modeling.

The results of Nelson and Plosser (1982) have been thoroughly put to
the test over the last decade. It turns out that for several economic time
series the arguments in favor of the stochastic trend model are not as strong
as suggested by Nelson and Plosser (see, e.g., Perron (1989)). The arguments
against the unit root model and against the unit root testing problem in general
can be classi�ed into four catergories, namely: the unit root model is unrealistic
for most economic phenomena, the unit root tests have low power against
certain stationary alternatives, the unit root tests are sensitive to outliers and
structural changes, and the unit root model generates only one particular type
of nonstationarity. Below, I discuss each of these issues in more detail.

First, unit root models are sometimes called unrealistic from an economic
perspective. Nelson and Plosser (1982), for example, found that the stochastic
trend or unit root model provides a better statistical description of the interest
rate rt than the deterministic trend model. If one asserts that the interest
rate has a unit root and if one abstracts from the possibility of a (constant)
deterministic time trend in rt, then the dominating driving factor of rt is
a random walk process. This implies that, with probability one, the interest
rate will exceed any given threshold value (see, e.g., Feller (1968, Chapter 14)).
Therefore, if a statistical test procedure fails to reject the unit root hypothesis
for rt, one may still be reluctant to conclude that rt has a unit root, because
the implications of such a statement are economically implausible.

Against such a reasoning one can argue that there are economic time series
for which the unit root model is perfectly plausible. Perhaps the most well
known series are those of exchange rate returns. Based on simple arbitrage
arguments, one can show that such series will demonstrate a stochastic trend
behavior (de Vries (1994)). Moreover, it can be shown that the expected
waiting time for rt to cross the above mentioned threshold, is in�nite (see
Feller (1968)). Thus, the stochastic trend model need not generate unrealistic
predictions for rt if the model is not extrapolated too far into the future.
Finally, the unit root model can be viewed as a statistical device for modeling
the salient features of the data. Such a strategy can be very useful, even if
one does not believe that a unit root is actually present in the data generating
mechanism. For example, for processes with roots less than, but close to
unity, the statistical theory for unit processes can provide a better guide for
inference procedures in �nite samples than standard central limit theory based
on asymptotic normality arguments (see, e.g., Phillips (1988), Magnus and
Rothenberg (1988), and Stock (1994)).

A second point that is often raised against the use of unit root tests, is
that these tests have low power in �nite samples against certain stationary
alternatives. A simple illustration of this argument is presented by Cochrane
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(1991). Consider the model

(1� �L)yt = "t; t = 1; 2; . . . (4:4)

with f"tg
1
t=0 a Gaussian i.i.d. process, j�j < 1, and y0 = "0=(1� �2)1=2. (4.4)

obviously describes a stationary process, but for a �xed sample size this process
cannot be distinguished from a unit root process if � is su�ciently close to
one. Consequently, in �nite samples stationary processes can be found that
are arbitrarily close to unit root processes. Similarly,

(1� L)yt = (1� �L)"t; (4:5)

with j�j < 1, describes a unit root process. Assuming that "t = 0 for t � 0,
(4.5) can be rewritten as

yt = y0 + �"t + (1� �)
tX

i=1

"i: (4:6)

By setting � arbitrarily close to unity, a process generated by (4.5) cannot be
distinguished from a white noise process in a �xed, �nite sample.

Both of the above comments are valid and are of some concern to the
applied researcher. They illustrate that a statistical test cannot always be
conclusive in �nite samples and that both severe size distortions and a low
power are in a certain sense inherent to the unit root testing problem. Some
of the properties of models like (4.4) and (4.5) have already been investigated.
Phillips (1987b) considered models of the form (4.4) with � = 1� c=T , where
c is some constant and T denotes the sample size. Such processes describe
autoregressive models with roots that are close to unity. Phillips proved that
the statistical inference procedures based on unit root asymptotics are more
suitable for processes with roots close to the unit circle, even though these
processes may be (asymptotically) stationary. This illustrates the usefulness
of studying unit root models even if these models are not strictly applicable (see
also Campbell and Perron (1991)). The properties of unit root tests for models
like (4.5) are also well documented in the literature. The major conclusion that
emerges from this literature is that standard unit root tests like the Dickey-
Fuller t-test (see Dickey and Fuller (1979)) su�er from severe size distortions
if the moving average part ((1 � �L)"t) is not taken into account (see Herce
(1994), Schwert (1987), and Chapters 5 and 6). These size distortions are not
satisfactorily solved in �nite samples by employing correction techniques that
are guaranteed to work asymptotically, like the nonparametric corrections put
forward by Phillips (1987) and Phillips and Perron (1988).

A third point of critique to the application of standard unit root tests
like those of Dickey and Fuller (1979, 1981), Phillips (1987), and Phillips and
Perron (1988), is that they are sensitive to the occurrence of atypical events.
These events might have a di�erent e�ect on unit root inference, depending
on whether their impact has a temporary or permanent character. Perron
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(1989) showed that standard unit root tests break down if there is a structural
break in the data generating process, e.g., a level shift. The intuitive idea
is that the unit root hypothesis is closely associated with shocks having a
permanent e�ect. A structural break essentially corresponds to a shock with
a lasting e�ect on the time series (Perron and Vogelsang (1992)). If this shock
is not explicitly taken into account, standard unit root tests will mistake the
structural break for a unit root. Some entries to the literature on structural
breaks are Perron (1989), Stock (1994), and the special issue of the Journal of
Business and Economic Statistics (1992, volume 10).

Another type of atypical event is the additive outlier. This is an event with
a large, temporary e�ect on the series. In certain cases, this e�ect dominates
the remaining information contained in the series and, thus, biases unit root
inference towards rejection of the unit root hypothesis. Relevant references
are Franses and Haldrup (1994) and Chapters 4 through 6. More on additive
outliers can be found in Section 4.2. Additive outliers can be easily dealt with
using outlier robust estimation procedures.

The fourth and �nal critique to the application of unit root tests concerns
the fact that the unit root model generates only one particular form of non-
stationarity. A rejection of the unit root hypothesis does not necessarily mean
that the data are stationary. A simple counterexample is given by the model
yt = (�1+�21ft�bT=2cg)"t, where "t is standard Gaussian white noise, and 1A is
the indicator function for the set A. This model generates a variance change
in the series yt. It is easily shown that the standard t-test for b̂ = 1 in the
regression model yt = byt�1+ et will reject almost surely when the sample size
tends to in�nity.

The notions of a unit root and nonstationarity are almost used as syn-
onyms in the contemporary econometric literature. As the example above
demonstrates, however, one should carefully distinguish between the two con-
cepts. The presence of a unit root implies nonstationarity, but one cannot go
much further than that. On the one hand, a faillure to reject the unit root
hypothesis does not imply that the series contains a unit root, as is nicely
exempli�ed by the literature on structural breaks (see, e.g., Perron (1989)).
On the other hand, a rejection of the unit root hypothesis does not imply that
the series is stationary (see the example above with the variance shift).

For more details on unit roots and economic time series, the reader is re-
ferred to Diebold and Nerlove (1990), Campbell and Perron (1991), and Stock
(1994) for reviews on classical unit root analysis. For Bayesian contributions,
some references are Sims (1988), DeJong and Whiteman (1991a,b), Phillips
(1991b), Schotman and van Dijk (1991a,b, 1993), and Kleibergen and van
Dijk (1993).

4.1.3 Some Standard Unit Root Tests

In this subsection, two of the most well known univariate unit root testing pro-
cedures are discussed, namely those put forward by Dickey and Fuller (1979)
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(see also Fuller (1976)). Outlier robust variants of these testing procedures are
discussed in Chapters 4 through 6.

Before giving the details of the tests, I �rst introduce some additional
terminology that is often used in the unit root context. De�ne the dth order
di�erence operator �d as (1�L)d. Then a process fytg is said to be integrated
of order d, denoted as yt � I(d), if f�kytg is nonstationary for k = 0; . . . ; d�1,
and stationary for d = k. This means that dth order di�erencing su�ces to
make the series stationary, but that lower order di�erencing does not su�ce.
The two orders of integration that are mostly used in economics are zero and
one. A series is I(1) if it has a unit root that can be removed by di�erencing.
It is I(0) if the process is (asymptotically) stationary, while its partial sums
constitute an I(1) process.3 The highest order of integration encountered in
economics is two, which is sometimes used in the context of monetary variables
(see, e.g., Juselius (1995)).

In order to test whether a series is I(1) or I(0), Dickey and Fuller (1979)
proposed the following procedure (see also Fuller (1976)). They started with
an autoregressive representation of a time series yt, namely

��(L)yt = (1� ��1L� . . .� ��pL
p)yt = "t; (4:7)

where f"tg is a white noise process with �nite variance, L is the lag operator,
and ��(z) = 0 for z 2 C implies either jzj > 1 or z = 1. Using the decompo-
sition of Beveridge and Nelson (1981) of the polynomial ��(L), (4.7) can be
rewritten as

(�(L)� + ��(1)L)yt = "t; (4:8)

with �(L) = 1 � �1L � . . . � �p�1L
p�1, �i = �

Pp
j=i+1 �

�
j , and �0 = ���(1).

Obviously, z = 1 is a root of ��(z) if and only if ��(1) = 0. So the unit
root hypothesis can be tested by considering whether �0 = 0 in the regression
model implied by (4.8):

�yt = �0yt�1 + �1�yt�1 + . . . + �p�1�yt�p+1 + "t: (4:9)

If �0 = 0, (4.9) is an AR(p�1) model in �rst di�erences, while if �0 6= 0 (subject
to the restrictions mentioned below (4.7)), (4.9) describes a stationary AR(p)
process. Dickey and Fuller proposed to estimate the parameters in (4.9) with
OLS. The unit root hypothesis can then be tested either using the ordinary
t-test statistic for �0, hereafter denoted as the Dickey-Fuller t-test, or using the
statistic T �̂0, where �̂0 is the estimate of �0. Under the null hypothesis of a
unit root (�0 = 0), these test statistics have nonstandard limiting distributions.
For example, the t-test for �0 = 0 in (4.9) is not asymptotically normally
distributed under the null hypothesis. Instead, its limiting distribution can
be expressed in terms of a functional of certain stochastic processes, namely
Brownian motions. An explicit form of the distribution can be derived using
the results of Evans and Savin (1981, 1984) or Abadir (1992).

3This last condition is needed in order to exclude processes of the form yt = "t� "t�1 to
be called I(0) processes, where f"tg is an i.i.d. process.
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There are several extensions of the original Dickey-Fuller procedure. Said
and Dickey (1984) extended the test for dealing with general ARMA processes.
Phillips (1987) proposed simple modi�cations of the Dickey-Fuller tests that
have the same limiting distributions under a wide variety of data generating
processes. These modi�ed tests allow for quite heterogeneous and temporally
dependent error processes f"tg. Also models of the form

��(L)yt = �0 + �1t + . . . + �qt
q + "t (4:10)

have been investigated (see, e.g., Fuller (1976), Phillips and Perron (1988)). It
turns out that the incorporation of deterministic functions of time as additional
regressors has major consequences for the asymptotic distributions of the unit
root test statistics (see also Chapter 6).

Upon closing this introduction, it is useful to note that the test for �0 = 0
in (4.9) only considers one special type of unit root. It does not, for example,
test for complex unit roots of modulus one. Complex unit roots are encoun-
tered if one investigates the order of integration for time series that exhibit
seasonality. Straightforward extensions of the Dickey-Fuller methodology to
tests for seasonal unit roots can be found in Hylleberg et al. (1990).

4.2 Some Robustness Concepts

In order to analyze the e�ects of outliers on unit root inference and to propose
methods that are less sensitive in this respect, some additional concepts from
the literature on robust statistical inference are introduced. First, I discuss a
model that generates outliers in a time series context. A useful model is the
general replacement model, given in Martin and Yohai (1986):

yt = (1� zt)xt + ztwt: (4:11)

The Bernoulli random variable zt equals 1 with probability 
 and is 0 otherwise.
The core or outlier free process, fxtg, has cumulative distribution function
(c.d.f.) Fx(�), while the contaminating process, fwtg, has c.d.f. Fw(�). Both of
these processes can be non-i.i.d. For instance, they may belong to the class of
autoregressive moving average (ARMA) processes. Finally, the realization of
the yt process contains the actually observed values of the time series. Note
that yt = wt with probability 
 and yt = xt, otherwise. The parameter 

controls the amount of contamination. Usually 
 is small, typically 0:05 to
0:15. The c.d.f. of the yt process obviously depends on 
. This is denoted by
adding a superscript to it: F 


y (�).
Model (4.11) is easily recognized as a two-component mixture model, since

F 

y (�) = (1 � 
)Fx(�) + 
Fw(�). Therefore, the literature on modeling �nite

components mixtures could be used for constructing outlier robust inference
procedures. In the present parametric context, this requires the full speci�ca-
tion of the wt process. I refrain from this strategy and let the wt process be
(partially) unspeci�ed, see (4.12) and (4.13), below. This allows me to specify
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procedures that are robust to more general types of outliers than those implied
by the mixture of two stochastic processes.

Informally, the aim in this chapter is to develop procedures that are nearly
optimal for 
 = 0 and `satisfactory' for 
 equal to some small, positive number.
The advantage of this approach is that it is not necessary to specify a complete
model for the wt process. This automatically yields a more parsimonious
model parameterization. Also, the estimation of a �nite components mixture
model may be problematic if there are only few outliers. In that case there is
little information in the data to identify the values of the parameters of those
components of the mixture that correspond to the small group of outliers.

It is worth mentioning at this stage that in the subsequent analysis the
Student t distribution is used for dealing with the outlier problem. The Student
t distribution is an uncountable mixture of Gaussian distributions, with the
�2 distribution as the mixing distribution. The advantage of the Student t is
that it has attractive robustness properties while one does not have to specify
the number of components in the mixture distribution. This contrasts with
the �nite components mixture model.

By imposing a certain structure on the zt and wt processes, model (4.11) can
generate di�erent types of outliers. For example, if the zt process is i.i.d., (4.11)
generates isolated outliers. If the zt are intertemporally dependent, patches of
outliers can occur (compare the examples in Martin and Yohai (1986)). The
two types of outliers usually encountered in the literature are additive outliers
(AO's) and innovative outliers (IO's). The di�erence between these two types
is most easily illustrated using an AR process and the general replacement
model (4.11). Let f�tg be a process independent of fxtg and fztg. AO's can
now be modeled by specifying

AO:
�(L)xt = "t

wt = xt + �t
t = 1; . . . ; T (4:12)

and IO's by specifying

IO:
�(L)xt = "t

wt = xt + �t=�(L)
t = 1; . . . ; T; (4:13)

where �(L) is a polynomial of order p in the lag operator L, fztg and f"tg are
i.i.d. processes, and f�tg is an i.i.d. process that is independent of the other
processes.

Using (4.11) and the AO speci�cations of xt and wt, one obtains that
yt = xt + zt�t. Given that zt equals 0 most of the time, yt is mostly equal to
the uncontaminated AR process xt. Now and then, i.e., with probability 
, yt
is observed with a measurement error �t. For IO's, in contrast, one can write
�(L)yt = " + zt�t. The additional error term now appears in the innovations
that drive the time series.

The e�ects of both isolated AO's and IO's are visualized in Figure 4.1.
The two upper panels in the �gure show a realization of the yt process for
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�(L) = 1 � 0:9L, 
 = 0:01, wt � 10, T = 100, and f"tg
T
t=1 a set of i.i.d.

standard normal innovations. The lower two panels present scatter diagrams
of yt versus yt�1 for both time series. The same set of innovations was used to
generate both series. The outlier occurs at time t = 25.

Figure 4.1.| E�ects of Isolated Additive and Innovative Outliers

It is clearly seen that the AO only causes a single departure from the normal
pattern of the time series. The series jumps upward at the time the outlier
occurs and immediately jumps back the period afterwards. As can be seen in
the scatter diagram this causes two outliers in the (yt�1; yt)-plane.

The IO also causes the series to jump upward at the time of the outlier.
Afterwards, however, the series gradually adjusts to its normal pattern. In the
scatter diagram this results in one vertical outlier, followed by a set of points
with large yt and large yt�1 values that all lie in the neighborhood of the line
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with slope � = 0:9. These last observations provide a strong signal of the true
value �.

Note that if �(L) = 1� L, the AO pattern remains comparable to the one
shown in Figure 4.1, whereas the IO results in a level shift.

Outliers may seriously a�ect the `usual' estimation and testing procedures,
like those based on ordinary least-squares (OLS). If one is interested in de-
scribing the bulk of the data, then procedures have to be developed that are
less sensitive to the presence of aberrant observations. Several outlier robust
estimators have been proposed in the literature (see, e.g., Huber (1981) and
Hampel et al. (1986)). In order to evaluate the properties of such estimators,
di�erent concepts are available. Among these, the in
uence function (IF) plays
a prominent role. Heuristically, the IF measures the change in the value of an
estimator when a few outliers are added to the sample (see also Chapter 2).
Its �nite sample approximation for the OLS estimator is closely related to the
DFBETA diagnostic of Belsley, Kuh, and Welsch (1980), which measures the
standardized contribution of the tth observation to the estimator (see Hampel
et al. (1986, Section 2.1.e)).

Formally, the IF is an asymptotic concept. For the i.i.d. regression setting,
it was already discussed in Chapter 2. De�ning the IF in the more general
context of dependent observations is less trivial (see K�unsch (1984) and Martin
and Yohai (1986)). Here, I provide the de�nition of Martin and Yohai (1986).
I consider estimators �̂ that can be considered as functionals on the space of
c.d.f.'s, so �̂ = �̂(F 


y ). Consider the change in �̂(�) that is implied by increasing


 from 0 to some small positive number, so, (�̂(F 

y )��̂(F

0
y )). If 
 is very small,

this di�erence is negligible if �̂(�) is continuous. Therefore, the di�erence is
standardized by dividing it by 
. The IF is now de�ned as the limit of this
standardized di�erence as 
 approaches 0:

IF (�̂; fF 

y g) = lim


#0

�̂(F 

y )� �̂(F 0

y )



; (4:14)

if this limit exists.
Note that estimators with a bounded IF are desirable, because outliers only

have a bounded in
uence on such estimators. Martin and Yohai (1986) proved
that the OLS or conditional Gaussian maximum likelihood (ML) estimator for
AR models has an unbounded IF under AO contamination. This suggests that
the estimator is not robust.4 The nonrobustness of the OLS estimator can be
made explicit quite easily. This is done in the next section.

4.3 Classical Analysis

Following Nelson and Plosser (1982), the most popular classical unit root test
has been the Dickey-Fuller t-test (see Fuller (1976)). As explained in Sub-

4Some care has to be taken when concluding the nonrobustness of an estimator from the
unboundedness of its in
uence function (see Davies (1995)).
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section 4.1.3, the Dickey-Fuller t-test statistic (DF-t) is usually obtained by
estimating an AR model with OLS. It was argued in the previous section,
however, that the OLS estimator is nonrobust to AO's. A test statistic based
on this estimator might, therefore, also be nonrobust, as the following example
illustrates.
Example 4.1 Consider the AR(1), xt = �xt�1 + "t, with t = 1; . . . ; T . The
process "t is i.i.d. with �nite variance. Let zt = 0 for all t 6= s and zs = 1 for
some 1 < s < T . Finally, ws = xs + �. Now all variables in (4.11) are de�ned.
The OLS estimator of �, calculated with the observed series yt, equals

�̂ =

PT
t=2 ytyt�1PT
t=2 y

2
t�1

=
�(xs�1 + xs+1) +

PT
t=2 xtxt�1

�2 + 2�xs +
PT

t=2 x
2
t�1

= O(��1):

A large AO corresponds to a large value of �. Therefore, such an outlier
causes the OLS estimator to be biased towards zero. This is easily understood
by considering the bad leverage point in the lower-right corner of the scatter
diagram for the AO series in Figure 4.1. As the OLS estimator takes all
observations of the sample into account, this outlier causes a 
atter regression
line to be �tted and, thus, a smaller value of j�̂j to be estimated. It can also
be shown that the standard error of the OLS estimator is (T �1)�1=2(1+o(1)),
such that the DF-t tends towards �

p
(T � 1) for large values of �. Hence,

rejection of the unit root hypothesis seems likely in the case of a large AO. 4
`Overrejection' of the unit root hypothesis due to large AO's is reported by

Franses and Haldrup (1994) and in Chapters 5 and 6. The intuition behind this
phenomenon is straightforward: an AO is, by its de�nition, at odds with the
persistence of shocks implied by the unit root hypothesis. The consequences of
IO's are less clear. It is known that the point estimates of the AR parameters
obtained with the OLS estimator are not very sensitive to the occurrence of
IO's, but that the variance of the OLS estimator increases rapidly if the inno-
vations become nonnormal (see, e.g., Martin (1981) and the remarks in Bustos
and Yohai (1986)). Using similar calculations as in Example 4.1, it is shown
in Example 5.1 in Chapter 5 that large IO's can either cause overrejection or
underrejection of the unit root hypothesis, depending on the true value of the
autoregressive coe�cient.

As was noted previously, the OLS estimator has an unbounded IF. There-
fore, I consider an alternative estimator that has a bounded IF. One of the
simplest alternatives is the conditional pseudo maximum likelihood estimator
based upon the Student t distribution (MLT estimator), compare Chapter 3.
As an example, consider the AR(1) model yt = �yt�1+"t. The MLT estimator
of � is de�ned as the value �̂ that solves

TX
t=2

"̂t=�

1 + "̂2t=(�
2�)

yt�1 = 0; (4:15)

where "̂t = yt � �̂yt�1, � is a scale parameter, and � is the degrees of freedom
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parameter.5 It is easily seen that the MLT estimator for � falls within the
class of M estimators (see Subsection 2.3.1). It is known (see, e.g., Hampel
et al. (1986)) that for regression problems in the i.i.d. setting the IF of this
class of estimators can be decomposed into two parts. One part measures
the in
uence of large residuals, while the other measures the in
uence of the
design. Ordinary M estimators impose a bound on the former, but leave the
latter untouched. Therefore, the compound IF for these estimators is usually
unbounded in the i.i.d. setting. However, the following proposition shows that
ordinary M estimators like the MLT estimator can have a bounded IF in the
time series context.

Proposition 4.1 Consider model (4.11); let xt be an AR(p) process with i.i.d.

innovations; let wt be as in (4.12) and let zt be an i.i.d. Bernoulli process with

P (zt = 1) = 
; then the MLT estimator has a bounded IF.

A more precise statement of the proposition is given in the appendix. Here,
I present a heuristic derivation of a �nite sample analogue of the IF in order
to illustrate the boundedness of the IF for the MLT estimator. Consider the
uncontaminated AR(1) series, xt = �xt�1 + "t, which is observed from t =
0; . . . ; T . Let wt = xt + �t, with �t = 0 for all t 6= s and �s = �, with
1 < s < T . In order to simplify the exposition and to avoid unnecessary
complexities, assume that xs = xs�1 = "s = "s+1 = 0, � = 1, and that
�2=T is negligible. The key quantity to look at is the di�erence between the
MLT estimator based on the clean or outlier free sample (with � = 0) and
on the contaminated sample (� 6= 0). Denote these estimators by �̂ and ~�,
respectively. Note that the contamination parameter 
 of (4.14) equals T�1.
De�ne ~et(�) = yt � �yt�1 and et(�) = xt � �xt�1. It is obvious from (4.15)
that ~� solves

TX
t=1

~et(~�)

1 + ~et(~�)2=�
yt�1 = 0: (4:16)

Substituting et(�̂) for ~et(~�) and xt�1 for yt�1 in (4.16), one obtains a similar
equation for �̂. Taking a �rst order Taylor expansion of the right hand side of
(4.16) around �̂ and omitting higher order terms, one obtains

0 �
TX
t=1

~et(�̂)

1 + ~et(�̂)2=�
yt�1 �

"
T�1

TX
t=1

1� ~et(�̂)
2=�

(1 + ~et(�̂)2=�)2
y2t�1

#
T (~�� �̂): (4:17)

Next, notice that ~et(�̂) = et(�̂) for all t 6= s; s+ 1. Denote the factor between
square brackets in (4.17) by IT (�̂). Using the analogue of (4.16) for �̂ and the

5The parameter � is always estimated in the present chapter. The parameter �, in
contrast, can be either �xed or estimated. If � is estimated from the data, this is denoted
by using �̂ rather than �.
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values of xt and "t for t near s, (4.17) can be rewritten as

T (~�� �̂) � (IT (�̂))
�1

TX
t=1

~et(�̂)

1 + ~et(�̂)2=�
yt�1

= (IT (�̂))
�1

"
~es+1(�̂)

1 + ~es+1(�̂)2=�
ys +

TX
t=1

et(�̂)

1 + et(�̂)2=�
xt�1

#

= (IT (�̂))
�1 ��̂�2

1 + �̂2�2=�
: (4.18)

Note that this function is bounded in �. The OLS estimator is obtained by
letting � ! 1. It is easily seen that in that case (4.18) becomes unbounded
in �. A more formal statement of these results is given in the appendix.

It follows from the proposition that the IF of the MLT estimator is bounded
for a wide variety of uncontaminated c.d.f.'s F 0

y . This suggests that the MLT
estimator can still provide useful information about the true value of � if the
true c.d.f. is in some neighborhood of the assumed Student t distribution with
� degrees of freedom. A necessary condition for the boundedness of an M
estimator in a time series context is that the estimator is de�ned by a weakly
redescending  function.6 More speci�cally,  ("t) must be O("

�1
t ) for large

values of "t. In this sense, the MLT estimator forms a borderline case, because
for this estimator  ("t) = ("t=�)=(1 + "2t=��

2) = O("�1t ) for large "t. The
�nding that ordinary M estimators can have a bounded IF in the time series
context was, to my knowledge, not explicitly noted earlier in the literature. A
few examples of IF's of MLT estimators for � in the model yt = �yt�1 + "t,
with "t standard normal white noise, are given in Figure 4.2.

The bounded IF property also holds for the general AR(p). Incorporating
deterministic functions of time, like a linear time trend or a constant, causes
no special problems. As long as they are generated correctly, they will not be
outlying in the space of explanatory (or predetermined) variables. Therefore
the use of an ordinary M estimator is enough for dealing with outliers.

So far, the scale parameter � was assumed to be known. Usually, it has to
be estimated along with the autoregressive parameters �i, i = 1; . . . ; p. This
can be done using the �rst order conditions of the MLT estimator for both �
and �. Such an estimator for � has a bounded IF, because its corresponding  
function is bounded and only depends upon the true process through y1� �y0
(see Chapter 3). There may be some problems, however, with the number of
outliers such a simultaneous estimation procedure can cope with (see Maronna
and Yohai (1991)).

A harder problem has to be faced if one wants to estimate the degrees of
freedom parameter � simultaneously. Simply using the �rst order conditions
of the MLT estimator for �, �, and � results in an unbounded IF for both �̂
and �̂ for all �nite values of � (see Chapter 3). Developing a bounded in
uence

6The function  (�) is called weakly redescending if limx!�1  (x) = 0. It is called
strongly redescending if for some positive constant c it holds that  (x) = 0 for all jxj � c.
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Figure 4.2.| Some In
uence Functions of Several MLT estimators Evaluated
at a Gaussian AR(1) Process (� = 0:8)

estimator for � that is consistent for the family of Student t distributions is
di�cult. It was noted previously, however, that the MLT estimator belongs
to the class of M estimators. Most of these estimators make use of a tuning
constant, which is �xed at a value prespeci�ed by the user. The parameter �
can also be treated as such a tuning constant. In this case, the user does not
believe that the innovations are actually drawn from the prespeci�ed Student t
distribution, but (s)he only uses the �rst order conditions of the pseudo likeli-
hood under this distribution in order to obtain a certain degree of robustness.
The e�ciency loss caused by �xing � if the sample is actually driven by Student
t distributed innovations with a di�erent degrees of freedom parameter, can be
kept within bounds. Some tradeo� has to be made, however, between e�ciency
and robustness (compare Hampel et al. (1986, p. 44)). Similar arguments are
encountered in the literature on pseudo maximum likelihood estimators (see
Gouri�eroux et al. (1984)), a class of estimators that also comprises the MLT
estimator.

Another point is that for � = 1 the IF of both the OLS estimator and
the MLT estimator are identically equal to zero. This can be seen from the
formulas in the appendix. There the scalar C, which is closely related to the
second unconditional moment of yt, diverges towards in�nity if � approaches
unity. As a result, one might think that for integrated processes there is no
need to use the more complicated MLT estimator in order to obtain robustness.
Two things can be said about this. First, the MLT estimator for a �xed value
of the degrees of freedom parameter � is not more di�cult to compute than
the OLS estimator. It can be obtained by using an iterative weighted least-
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squares algorithm (Prucha and Kelejian (1984)). Second, under the alternative
hypothesis of stationarity, the MLT estimator is more robust than its OLS
counterpart according to proposition 4.1. Moreover, power can be gained by
using the MLT methodology if the innovations are leptokurtic, see Chapters 6
and 7.

Upon closer inspection of (4.12), the AO model can also be regarded as a
measurement error model, with xt the clean process and zt�t the measurement
error. Therefore, under this type of contamination, yt in fact follows an ARMA
instead of a pure AR process. Consequently, the nonrobustness of the OLS
based DF-t might be repaired by constructing a test that takes into account the
temporal dependence of the disturbances that drive the times series. These
tests can be found in Phillips (1987) and Phillips and Perron (1988). The
results in Chapter 5, however, show that the approach of Phillips and Perron
is not outlier robust in �nite samples, as opposed to the results based on robust
estimation procedures.

A practical problem with the use of di�erent estimators for testing the unit
root hypothesis is that each time new critical values have to be tabulated. This
also holds for the MLT estimator used in this chapter. I used a similar simula-
tion setup as in Fuller (1976). The asymptotic distribution of the DF-t based
on the MLT estimator can be found in Chapters 5 and 6. I generated xt from
model (4.11) as a random walk of length 50, 100, or 200 with i.i.d. standard
Gaussian innovations. First, I let wt � xt and estimated the regression models
yt = �yt�1+"t, yt = �+�yt�1+"t, and yt = �+�t+�yt�1+"t using the MLT
estimator. Several values for the degrees of freedom parameter � were used.
The DF-t for each of these models was calculated and this process repeated
1,000 times. The 50th order statistic of the simulated DF-t values was used
as an estimate of the 5% critical value. The standard error of �̂ for the model
without constant and trend was estimated by

�̂2

"
TX
t=2

y2t�1 
0("̂t=�̂)

#�2 " TX
t=2

y2t�1 ("̂t=�̂)
2

#
; (4:19)

with  0(x) = d (x)=dx, "̂t = yt � �̂yt�1, and �̂ the estimate of the scale of "t
(compare Hampel et al. (1986, p. 316)). Similar formulas were used for the
other two regression models. For �̂ the pseudo maximum likelihood estimator
under the Student t distribution was used. The same value of � was used for
computing �̂ and �̂. Note that (4.19) is in fact a kind of heteroskedasticity
consistent covariance estimator as in White (1980). This causes a discrepancy
between the critical values tabulated by Fuller and the ones supplied here for
� = 1. As noted by simulations in Chapter 6, the use of heteroskedasticity
consistent standard errors helps to make the standard DF-t more robust. For
completeness, I report the results for the standard DF-t with (� = !) and
without (� = 1) the heteroskedasticity correction for the standard errors.
The critical values for the Gaussian random walk are presented in Table 4.1
under the heading `clean.'
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TABLE 4.1
5% Critical Values for MLT Based Dickey-Fuller Tests

� n=50 n=100 n=200
clean outliers clean outliers clean outliers

none
1 -2.891 -2.918 -2.415 -2.596 -2.216 -2.321
2 -2.353 -2.554 -2.176 -2.441 -2.091 -2.345
3 -2.270 -2.447 -2.054 -2.485 -2.040 -2.477
4 -2.273 -2.414 -2.065 -2.469 -2.026 -2.571
5 -2.184 -2.441 -2.064 -2.486 -2.045 -2.615
7 -2.116 -2.458 -2.081 -2.494 -2.069 -2.685
10 -2.098 -2.471 -2.081 -2.497 -2.051 -2.752
! -2.047 -2.749 -2.086 -2.736 -2.009 -2.818
1 -1.885 -3.517 -2.034 -3.990 -2.001 -3.863

constant
1 -4.009 -4.370 -3.545 -3.764 -3.117 -3.233
2 -3.458 -3.642 -3.262 -3.447 -3.004 -3.305
3 -3.429 -3.393 -3.097 -3.358 -2.974 -3.395
4 -3.312 -3.404 -3.061 -3.315 -2.932 -3.398
5 -3.254 -3.449 -3.060 -3.304 -2.920 -3.425
7 -3.279 -3.461 -3.076 -3.226 -2.931 -3.442
10 -3.224 -3.532 -3.082 -3.189 -2.912 -3.446
! -3.297 -3.782 -3.046 -3.475 -2.915 -3.373
1 -2.920 -4.566 -2.856 -5.058 -2.806 -4.859

trend
1 -5.498 -6.713 -4.280 -4.242 -3.661 -3.840
2 -4.420 -5.119 -3.760 -3.868 -3.498 -3.939
3 -4.081 -4.636 -3.661 -3.864 -3.502 -3.940
4 -3.973 -4.695 -3.663 -3.850 -3.443 -3.935
5 -3.944 -4.676 -3.659 -3.868 -3.439 -3.982
7 -3.807 -4.898 -3.664 -3.786 -3.466 -3.975
10 -3.743 -5.033 -3.684 -3.777 -3.453 -3.958
! -3.836 -5.425 -3.742 -4.204 -3.450 -3.988
1 -3.438 -5.586 -3.527 -5.885 -3.349 -6.238

The 5% critical values under the heading `clean' are based on simulations
that use a random walk without standard Gaussian innovations. For the
entries under the heading `outliers', the simulations are based on a ran-
dom walk with 5% additive outiers. The outliers are generated by adding
drawings from a normal with zero mean and standard deviation 5 to a
randomly chosen subset of 5% of the original observations. The headings
`none', `constant' and `trend' refer to the deterministic components that are
incorporated in the regression model. The degrees of freedom parameter
� is used as a tuning constant in this table and is not estimated from the
data.
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In order to illustrate the robustness aspects of the tests, I performed similar
simulations with zt from (4.11) equal to an i.i.d. process and 
 equal to 0:05.
For the �t process (4.12), I considered a sequence of Gaussian i.i.d. random
variables with mean zero and standard deviation �ve. The results of these
simulations can be found in Table 4.1 under the heading `outliers.'

The simulation experiments lead to the following four conclusions.
First, the absolute di�erence between the `clean' critical value and the `out-

lier' critical value is increasing in �, the tuning constant of the MLT estimator.
This is to be expected, because � determines the degree of robustness of the
estimator.

As a second conclusion from the simulations, one �nds that the MLT based
tests demonstrate a slower convergence to the asymptotic distribution. This
can be seen by looking at the behavior of the `clean' critical values for varying
sample sizes for a speci�c choice of �. For example, for the case with a trend
the di�erence between the `clean' critical value for n = 50 and n = 200 is much
larger for � = 1 than for � = 10. The di�erent behavior for � = 1 and � =1

in Table 4.1 is considerable. Therefore, it seems necessary to use the �nite
sample critical values from Table 4.1 for MLT based unit root tests in small
samples. Also note that setting � = 1 in samples of this size does not always
yield the maximum protection against outliers. The convergence behavior and
robustness properties are further illustrated in Figure 4.3, which presents the
c.d.f.'s of the unit root tests for two values of �. Especially for the regression
model with trend the �gure reveals that the c.d.f. can change considerably if
the sample is enlarged. Moreover, if outliers are added to the sample, the c.d.f.
of the test based on the OLS estimator (� = 1) shifts more to the left than
the one based on the MLT estimator with � = 3.

Third, in addition to the results reported in Table 4.1, unreported simula-
tions were performed using random walks with Student t instead of Gaussian
innovations. The results of using fat-tailed innovations are that the critical
values for all of the tests shift somewhat to the right, thus decreasing the type
I error of the tests if the critical values of Table 4.1 are used.7 The robustness
and convergence properties of the tests remain similar.

As a fourth conclusion from the simulations, it turns out that using a
di�erent distribution for generating the AO's does not alter the results. I used
the Cauchy and the symmetric delta distribution. The latter generates the
values 5 and �5 with equal probability. The Cauchy AO's result in a very
large shift to the left of the 5% critical values of the OLS based DF-t, e.g.,
from �3:45 to �8:46 for � = !, T = 200, and a regression model with trend.
The critical values for the MLT based tests with � = 3 remain remarkably
stable in the same setting and only shift from, e.g., �3:50 to �3:95. Similar
conclusions can be drawn from the remaining experiments.

It is illustrative to consider an example of how Table 4.1 can be used in

7The change is considerable if Cauchy innovations are used. This is in accordance with the
�ndings of Knight (1991), who derives that for a certain class of in�nite variance innovations
the DF-t is asymptotically normally distributed, even if it is based on an M estimator.
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Figure 4.3.| C.D.F.'s of the DF-t Based on the OLS and MLT Estimator
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practice. Consider the case T = 100 and a regression model with trend. If the
standard DF-t is used at the 5% level, the appropriate critical value is �3:527.
For the DF-t with heteroskedasticity consistent standard errors (� = !), the
appropriate value is �3:742, while for the MLT based test with � = 3, it equals
�3:661. These values are to be used by the applied researcher. Now consider
the e�ect of additive outliers on each of these three tests. If one uses the outlier
generating scheme described below Table 4.1, the actual critical value for a 5%
level test with the ordinary DF-t for a sample with outliers is�5:885. However,
the researcher is unaware of this exact value, because (s)he, in general, is
ignorant about the exact model that generated the outliers. Therefore, (s)he
continues to use the critical value�3:527, which for the present data generating
process gives a 51% level test. Similar arguments for the other two tests lead
to the result that these tests have a size of 10% and 7.5%, respectively, for the
data generating process with 5% AO's. The size distortion of the MLT based
test is the smallest. Note, however, that using heteroskedasticity consistent
standard errors also helps to reduce the sensitivity of the size of the standard
DF-t to outliers. This �nding is also noted in Chapter 6.

4.4 A Bayesian Analysis

Recent years have seen a growing number of Bayesian studies on the possible
presence of a unit root in macroeconomic time series (see, e.g., Sims (1988),
DeJong and Whiteman (1991a,b), Phillips (1991b), Schotman and van Dijk
(1991a,b, 1993), and Kleibergen and van Dijk (1993)). The focus of these
studies is on the speci�cation of a prior distribution: posterior inference should,
to a certain extent, be insensitive to the choice of the prior. It is this kind of
robustness that is usually studied in the Bayesian literature. Robustness with
respect to `irregularities' in the data has received less attention. It is easily
shown, however, that also in a Bayesian framework AO's can seriously a�ect
unit root inference.
Example 4.2 Consider the same processes xt, wt and zt as in Example 4.1.
De�ne the parameter vector � = (�; �2). Assume a di�use prior �(�) / ��1

and a Gaussian likelihood. The marginal posterior of � is a Student t density
(see Judge et al. (1988, Section 7.4.4)):

p(�jy1; . . . ; yT ) = t

�
�; �̂OLS; �̂

2
OLS

hX
(yt�1)

2
i�1

; T � 1

�
;

where �̂OLS and �̂2OLS are the OLS estimates of � and �2, respectively. Fur-
thermore, t(�;�;�; �) denotes the density function of the Student t distribution
with location �, precision matrix ��1, and degrees of freedom parameter �.
Looking at the extreme case of an in�nitely large AO (� ! 1), one obtains
from the previous section that

p(�jy1; . . . ; yT ) = t(�; 0; (T � 1)�1; T � 1):
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Therefore, a su�ciently large additive outlier pushes the posterior away from
the unit root, even if the data is a random walk. 4

Assuming normality in the case of (additive) outliers in the data can be
regarded as a misspeci�cation of the likelihood. Therefore, robustness with
respect to outliers can be linked to the issue of insensitivity of posterior re-
sults to misspeci�cation of the likelihood function (see Berger (1985, Section
4.7)). To model outliers, fat-tailed distributions have been suggested in the
Bayesian literature as well. For example, Leamer (1978, Section 8.2), Smith
(1981), and West (1984) mention the use of the independent Student t to
`robustify' the posterior results. This robustness property of the Bayesian pos-
terior results that are based upon the Student t likelihood can be explained by
the close link between the posterior and the likelihood, in particular if `data
dominated' priors are employed. As argued in the previous section, maximum
likelihood results based on a Student t likelihood possess certain robustness
properties. Intuitively, these properties are passed on to the results obtained
from a Bayesian posterior analysis that uses a Student t likelihood. Analo-
gously, Example 4.2 shows that the nonrobustness of OLS estimators is `in-
herited' by Bayesian inference procedures that use a Gaussian likelihood. In
order to evaluate the robustness properties in a Bayesian framework with the
i.i.d. Student t distribution, the concept of the (posterior) score function has
been used by Smith (1981, Section 5) and West (1984). In this chapter, I only
analyze the e�ect of the Student t on unit root inference.

Geweke (1995) also presents a Bayesian analysis of the Student t linear
model. Concentrating on computational issues, in particular the implementa-
tion of Gibbs sampling techniques to compute posterior results, he shows that
the assumption of an i.i.d. Student t distribution is equivalent to the introduc-
tion of a certain type of heteroskedasticity. Hence, outlying observations (large
residuals) are weighted less heavily. The ability of the Student t to model het-
eroskedasticity of the GARCH type is also discussed by Kleibergen and van
Dijk (1993). All these arguments motivate the choice of an i.i.d. Student t
likelihood8 instead of a Gaussian one.

The likelihood function for the general linear model yt = x0t� + "t, where
f"tg is an Student t i.i.d. process, is proportional to

`(�; �2; �jy) /
TY
t=1

�((� + 1)=2)

�(�=2)(��2)1=2

�
1 +

(yt � x0t�)
2

��2

��(�+1)=2
; (4:20)

In the present context of unit root testing, xt contains a constant (and possibly
a time trend) as well as lagged endogenous variables. Note that in time series
models, one usually conditions on some �xed initial values y0; . . . ; y�p+1.

8Zellner (1976) analyzes the case of a multivariate Student t, where the innovations are
uncorrelated, but not independent. In a 
at prior Bayesian framework, an identi�cation
problem arises. As Zellner shows, speci�cation of a 
at prior for the degrees of freedom
parameter � leads to a 
at marginal posterior on that parameter. Also, the posterior for
the location parameters is identical to the posterior under a Gaussian likelihood.
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In order to examine the e�ect of the i.i.d. Student t likelihood on unit
root inference, I consider the following parameterization of the AR(1) model
with unknown mean: yt = � + �yt�1 + "t. The generalization to the AR(p)
model is straightforward. I assume a 
at prior for the parameters of the model,
including �,

�(�; �; �2; �) / ��1: (4:21)

An improper uniform prior for � essentially imposes normality, because the
prior odds in favor of normality are in�nite (see Geweke (1995)).9 Geweke,
therefore, proposes the use of an exponential prior for � with parameter �.
The sensitivity of the results with respect to the choice of � can, of course,
be examined by varying this parameter. The computations can be performed
using the Gibbs sampler if one exploits the equivalence of a heteroskedastic
Gaussian linear model with a homoskedastic Student t linear model. The
exponential priors considered by Geweke give more prior weight to low values
of �. As a result, the hypothesis of a Student t distribution is a priori more
likely than the hypothesis of normality.

In this chapter, a di�erent procedure is followed. The di�erence between
the likelihood speci�ed in (4.20) and the Gaussian likelihood is only substantial
for low values of �. If � tends to in�nity, the di�erence disappears. Therefore, a
uniform prior is speci�ed for � on the interval (0; ��], where �� is such that the
Student t distribution with this degrees of freedom parameter is `su�ciently'
close to the normal. One obtains

�(�) = 1=�� for 0 < � � ��; 0 elsewhere: (4:22)

A sensitivity analysis can be performed by considering di�erent values of ��.
Note that it was argued in Section 4.3 that simultaneously estimating �, �2,
and � results in an unbounded in
uence function for the estimators for �2 and
�. A priori imposing bounds on � does not solve this problem.

The posterior resulting from (4.20) through (4.22) is di�cult to handle an-
alytically. In order to perform a posterior analysis, importance sampling tech-
niques are applied using the SISAM program (see Hop and van Dijk (1992)).
A multivariate Student t density was used as the importance function. Given
the posterior densities, one may test for the presence of a unit root, � = 1.
Also the (approximate) normality assumption, � = �� versus � < ��, can be
tested. Some empirical results are presented in the next section.

4.5 Empirical Illustration

To illustrate the use of the i.i.d. Student t for classical and Bayesian unit root
testing procedures, several time series are analyzed. First, the Finland/US
real exchange rate is studied (see Perron and Vogelsang (1992) and Franses
and Haldrup (1994)). This series is obtained by de
ating the nominal ex-
change rate by a consumer price index. As Figure 4.4 clearly shows, this series

9Normality is equivalent to � =1.
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is characterized by the presence of outliers. The outliers appear to be addi-
tive: the series almost immediately returns to the `normal' pattern. Following
Franses and Haldrup, the model for this series is

yt = �+ �yt�1 + �1�yt�1 + "t; (4:23)

where � denotes the unit root parameter, de�ned as the sum of the original
AR coe�cients (compare (4.9)).

Next, a well known series from the marketing literature is considered,
namely the Lydia Pinkham annual advertising series (see Figure 4.5). The
�rst di�erence of this series contains several (additive) outliers, in particular
in the middle of the sample. These additive outliers in the �rst di�erences cor-
respond to innovative outliers in the level of the series. Helmer and Johansson
(1977) speci�ed an AR(2) model for the �rst di�erences of the series, implying
a unit root in the level. To test for this unit root, I consider the model

yt = �+ �yt�1 + �1�yt�1 + �2�yt�2 + "t: (4:24)

Finally, as in Schotman and van Dijk (1991b), the extended Nelson-Plosser
data are considered (see also Chapter 5). To study these data, an AR(3) model
with linear time trend is used:

yt = �+ �t+ �yt�1 + �1�yt�1 + �2�yt�2 + "t: (4:25)

The AR(3) model is the autoregressive model of the lowest order that can
generate a stochastic trend and a cycle, simultaneously.

All three models are �rst estimated using the MLT estimator. Table 4.2
presents the results for several values of �.

With the exception of the employment series, velocity, and S&P 500, the
estimates of � increase as � decreases. This indicates a negative correlation
between the maximum likelihood estimators for � and �. The most remarkable
result is obtained for the Finland/US real exchange rate. Assuming normality
gives an estimate of 0.49 for the unit root parameter, while under a Student
t distribution with one degree of freedom, this estimate equals 0.88. Note the
sharp decline in the estimated standard deviation of this estimate, a result that
is also obtained for the Lydia Pinkham advertising series. For the extended
Nelson-Plosser series this relation is less clear.

The entries in Table 4.2 can also be used to compute the DF-t statistic
((~� � 1)=~s�). For the Finland/US real exchange rate series, for example, this
statistic moves from �5:74 (� = 1) to �3:21 (� = !), and �nally, to �2:00
(� = 1). Using Table 4.1 with n = 100, the �rst t-statistic is signi�cant at the
5% level using both the `clean' and `outliers' critical values (respectively�2:856
and �5:058). The second statistic, using the heteroskedasticity consistent
standard errors, is signi�cant when using the `clean' critical value (�3:046), but
insigni�cant using the `outliers' critical value (�3:475). Finally, the third, more
robust statistic is insigni�cant under both processes, the critical values being
�3:545 and �3:764, respectively. This example shows that taking account of
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TABLE 4.2
MLT Estimates of � with � Degrees of Freedom

Series � = ! � = 10 � = 5 � = 3 � = 1 �̂

Finland/US
0:489
(0:159)

0:505
(0:244)

0:630
(0:216)

0:743
(0:163)

0:876
(0:062)

1.23

Advertising
0:856
(0:115)

0:941
(0:145)

1:018
(0:108)

1:066
(0:072)

1:120
(0:053)

1.81

Real GNP
0:813
(0:055)

0:813
(0:055)

0:815
(0:058)

0:821
(0:067)

0:893
(0:070)

3.62

Nominal GNP
0:944
(0:039)

0:960
(0:031)

0:965
(0:030)

0:969
(0:030)

0:972
(0:035)

2.42

Real GNP per capita
0:803
(0:056)

0:802
(0:055)

0:806
(0:059)

0:814
(0:071)

0:879
(0:046)

3.55

Industrial production
0:826
(0:055)

0:829
(0:052)

0:840
(0:052)

0:852
(0:054)

0:885
(0:068)

3.93

Employment
0:864
(0:049)

0:860
(0:049)

0:861
(0:046)

0:866
(0:042)

0:863
(0:039)

2.51

Unemployment
0:744
(0:066)

0:779
(0:064)

0:801
(0:063)

0:821
(0:065)

0:885
(0:048)

3.47

GNP de
ator
0:966
(0:025)

0:985
(0:016)

0:989
(0:015)

0:993
(0:015)

0:999
(0:012)

2.38

Consumer price index
0:994
(0:010)

0:994
(0:009)

0:994
(0:008)

0:995
(0:008)

1:001
(0:006)

1.73

Wages
0:939
(0:032)

0:941
(0:028)

0:943
(0:025)

0:947
(0:024)

0:959
(0:020)

1.74

Real wages
0:935
(0:040)

0:947
(0:041)

0:957
(0:041)

0:967
(0:041)

0:987
(0:043)

1�

Money
0:941
(0:024)

0:949
(0:022)

0:952
(0:022)

0:953
(0:022)

0:960
(0:039)

3.35

Velocity
0:968
(0:025)

0:963
(0:026)

0:959
(0:027)

0:955
(0:027)

0:947
(0:030)

2.73

Interest
0:953
(0:053)

0:977
(0:067)

0:992
(0:073)

0:998
(0:077)

0:996
(0:017)

1.42

S&P 500
0:932
(0:032)

0:936
(0:034)

0:935
(0:035)

0:930
(0:037)

0:897
(0:040)

7.01

The �rst �ve columns report MLT estimates of the unit root parameter � using a Student t
likelihood with � degrees of freedom. The heading � = ! denotes the Gaussian pseudo max-
imum likelihood estimator. Heteroskedasticity consistent standard errors are given between
parentheses. The �nal column gives the ML estimate of the degrees of freedom parameter �.
�: � was in fact estimated using a grid search method. For the real wage series, the estimate
of � was at its upper bound, which was equal to some large number.
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outliers in the series can lead to nonrejection of the, otherwise rejected, unit
root hypothesis. Finally, except for the real wage series, the MLT estimates of
� are all relatively small, providing some evidence against the assumption of
Gaussian i.i.d. innovations.

The results for the Finland/US real exchange rate series correspond to the
results of Franses and Haldrup (1994). By using dummy variables, their es-
timate of � increases from 0.49 to 0.81. The corresponding DF-t statistics
increase from -5.74 to -2.65. The inclusion of dummy variables, however, re-
quires pretesting for the presence and the location of outliers. The present
approach does not need such a �rst round and may, therefore, be easier to
implement.

The Bayesian posterior results,10 reported in Table 4.3, are comparable
to the classical results. A negative correlation between � and � is found for
the Finland/US real exchange rate series and, even stronger, for the Lydia
Pinkham advertising series. This is clearly demonstrated in the contour plots
in Figures 4.4 and 4.5. Also, for both series the posterior for � shifts to the
right when the restriction � =1 is dropped. The case against i.i.d. normality
is strongest for the exchange rate series: all posterior mass for � is concentrated
on the interval (0,4). For the advertising series, the posterior has a mode near
� = 2, but it is skewed to the right.

The results for the extended Nelson-Plosser series are less clear. For half
of the series the marginal posterior for � changes only slightly when the as-
sumption of normality is dropped. Take as an example the Real GNP series.
Some marginal posteriors for this series are plotted in Figure 4.6. The e�ect
of dropping the normality assumption on the posteriors for � and � is very
small. The posterior density of � has a mode around 4, but is skewed to
the right. Both the contour plot of the bivariate posterior and the entry in
the �nal column of Table 4.3 give no indication of a substantial correlation
between � and � for Real GNP. For the interest rate series, shown in Figure
4.7, the posterior for � clearly shifts to the right. Moreover, this posterior is
somewhat less concentrated than the `normal' posterior. The posterior for �
shifts to the left. The correlation between � and �, given in Table 4.3, is neg-
ative and the posterior for � is concentrated on the interval (0,5). Negligible
posterior weight is given to values of � exceeding 5, providing strong evidence
against the assumption of i.i.d. normal innovations. With the exception of the
velocity series, all Nelson-Plosser series reveal either a negligible or a negative
correlation between � and �.

The Nelson-Plosser series are also analyzed in Chapter 5 and in a paper
of Geweke (1995). In Chapter 5, using the MM estimator of Yohai (1987),
mixed results are obtained. The unit root hypothesis is rejected for 4 of the
14 series. An explanation of the di�erence between these results and the ones
obtained here is as follows. Some of the Nelson-Plosser series are characterized
by the presence of a structural break (see, e.g., Perron (1989) and Zivot and
Phillips (1991)). The MM estimator can cope with a large number of outliers.

10The empirical application uses an upper bound of �� = 20 for the prior on �.
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TABLE 4.3
Posterior Results for �� = 20

Series EN (�) Et(�) Et(�) R�;�

Finland/US
0:489
(0:090)

0:829
(0:085)

1:52
(0:45)

-0.39

Advertising
0:856
(0:089)

0:993
(0:116)

6:98
(5:65)

-0.53

Real GNP
0:814
(0:056)

0:813
(0:058)

7:97
(4:89)

-0.03

Nominal GNP
0:944
(0:032)

0:966
(0:031)

3:74
(2:50)

-0.11

Real GNP per capita
0:803
(0:058)

0:802
(0:066)

8:04
(5:06)

-0.03

Industrial production
0:826
(0:053)

0:838
(0:058)

7:22
(4:36)

-0.14

Employment
0:864
(0:048)

0:862
(0:048)

6:95
(5:00)

-0.04

Unemployment
0:749
(0:071)

0:798
(0:079)

6:90
(4:58)

-0.22

GNP de
ator
0:966
(0:021)

0:991
(0:017)

4:81
(4:35)

-0.15

Consumer price index
0:994
(0:011)

0:995
(0:008)

3:51
(3:18)

-0.10

Wages
0:939
(0:029)

0:946
(0:020)

12:7
(6:87)

-0.12

Real wages
0:935
(0:045)

0:945
(0:051)

12:1
(4:86)

-0.11

Money
0:941
(0:024)

0:951
(0:024)

7:03
(4:76)

-0.10

Velocity
0:968
(0:025)

0:960
(0:027)

7:10
(5:29)

0.14

Interest
0:953
(0:035)

1:040
(0:048)

1:80
(0:63)

-0.17

S&P 500
0:932
(0:036)

0:935
(0:040)

7:97
(4:89)

0.01

E(�) and E(�) are, respectively, the posterior expectation of the unit
root parameter and the degrees of freedom parameter. Posterior
standard errors are between parentheses. The posterior correlation
between � and � is given in the column labeled R�;� . Subindices `N'
and `t' denote results based on the Normal (� =1) and the Student
t (� � 20) likelihood, respectively.
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Figure 4.4.| Finland/US real exchange rate: posterior results, linear model
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Figure 4.5.| Lydia Pinkham advertising: posterior results, linear model
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Figure 4.6.| Real GNP: posterior results, linear model
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Figure 4.7.| Interest: posterior results, linear model



4.6. CONCLUDING REMARKS 97

In contrast, the MLT estimator is only robust to a few outlying observations.
Therefore, the MM estimator is probably more `robust' to structural changes
than the MLT estimator. Loosely speaking, the MM estimator discards the
observations before or after the structural break, depending on their number.

The Bayesian results of Geweke (1995) also di�er from the present results.
Considering the original Nelson-Plosser data (until 1970), Geweke �nds that
the degrees of freedom parameter, the unit root parameter, and the posterior
odds ratio in favor of di�erence stationarity are positively correlated. However,
Geweke uses a di�erent prior, a di�erent model speci�cation, and a smaller data
set (the original Nelson-Plosser data). It is argued in Hoek et al. (1995) that
the di�erence in outcomes can, to a large extent, be attributed to the di�erent
samples that are used, as opposed to to the di�erent model speci�cations that
are employed.

The results of this section, in particular for the Lydia Pinkham advertis-
ing and the Finland/US real exchange rate series, indicate that the degrees
of freedom parameter and the unit root parameter are negatively correlated.
This �nding supports the theoretical results of Sections 4.2 and 4.3 and is also
obtained by Kleibergen and van Dijk (1993) in their analysis of the US trea-
sury bill rate series. As a result of this negative correlation, maintaining the
assumption of normality (� =1) in the analysis of series containing outlying
observations may incorrectly provide evidence against the unit root hypothesis.
With respect to the Nelson-Plosser data series, the posterior odds ratios indi-
cate that six series are (trend)stationarity. These results are relatively robust
with respect to the speci�cation of the prior for � (see Hoek et al. (1995)).

4.6 Concluding Remarks

In this chapter the e�ect of outliers in the data on unit root inference was
examined. It was shown that additive outliers provide evidence against the
unit root hypothesis, even if the bulk of the data is described by a di�erence
stationary model.

The outlier sensitivity of the standard Dickey-Fuller statistic and of Bayesian
inference procedures under a Gaussian likelihood is caused by the nonrobust-
ness of the OLS estimator (which equals the posterior mean in a Bayesian
analysis with 
at priors). This estimator has an unbounded in
uence func-
tion. The in
uence function of the maximum likelihood estimator based on a
Student t likelihood with �nite degrees of freedom, was shown to be bounded.
Therefore, the Dickey-Fuller t-test based on this estimator is less sensitive to
aberrant observations than the Dickey-Fuller t-test based on OLS. Critical val-
ues for the test were computed by means of simulation. The (in)sensitivity of
the tests to outliers was illustrated using both simulated and empirical data.
As an additional result, it was shown that the use of heteroskedasticity con-
sistent standard errors in the computation of the OLS based Dickey-Fuller
t-test also provides some protection against the distortional e�ects of additive
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outliers.

In a Bayesian context, it was argued that replacing the Gaussian likelihood
by an i.i.d. Student t likelihood results in posteriors that are less sensitive
to outlying observations. A proper uniform prior for the degrees of freedom
parameter was proposed.

The analysis of several time series, in particular the Finland/US real ex-
change rate and the Lydia Pinkham advertising series, provided empirical sup-
port for the theoretical results. For these series, a negative correlation between
the degrees of freedom parameter and the unit root parameter was found. This
also holds for most of the Nelson-Plosser series.

Finally, the present robusti�cation of the Dickey-Fuller t-test is only a �rst
step towards the creation of an outlier resistant unit root test. The in
uence
function is only one out of several concepts by which the robustness of statisti-
cal procedures can be assessed. Moreover, the maximum likelihood estimator
based upon the Student t distribution has a bounded in
uence function, but
only just. As an alternative to the in
uence function one might consider the
fraction of outliers an estimator can cope with. This leads to the consideration
of high breakdown estimators, as is done in the next chapter. The present (low
breakdown) estimators have their own merits. They are easily calculated and
provide at least some protection against outliers.

4.A Proof of the Proposition

This appendix discusses the boundedness of the in
uence function (IF) of the MLT

estimator for autoregressive models under isolated additive outlier (AO) contami-

nation. As the results for the AR(p) are qualitatively similar to the results for the

AR(1), only the latter case is dealt with in detail. Let xt be a stationary AR(1)

process, xt = �xt�1 + "t. The "t process is i.i.d. with zero mean and variance one.

If the variance is unknown, one can use the techniques in, e.g., Hampel et al. (1986,

p. 105) to estimate it. Further, consider the AO model (4.12) with �t � � and fztg

an i.i.d. process. The MLT estimator can be de�ned as the functional �̂(F


y ) ! IR

that solves Z 1

�1

"1

1 + "21=�
y0dF



y (y) = 0; (4:26)

with "1 = y1 � �̂(F


y )y0, y = (y1; y0)

0, and F


y the cumulative distribution function

of y, given that P (zt = 1) = 
. The IF of the MLT estimator under the present form

of additive outlier contamination is given by (4.14). Given the regularity conditions

in Martin and Yohai (1986), the following proposition follows directly from their

Theorem 4.2.

Proposition 4.2 The IF of the estimator �̂, implicitly de�ned in (4.26), under the

isolated AO model with �t � �, equals

IF (�; �̂; fF 

y g) = �C�1

Z 1

�1

"1 � ��

� + ("1 � ��)2
(y0 + �)dF 0

y (y);
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with "1 = y1 � �y0 and

C =

Z 1

�1

"21 � �

("21 + �)2
y20dF

0
y (y):
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