
Chapter 5

High Breakdown Unit Root

Tests

In this chapter I suggest another alternative to the OLS based unit root test of

Dickey and Fuller (1979). The test departs from the one suggested in Chapter

4 in that the present test can cope with a larger number of outliers. The

behavior of this alternative test is studied using simulated data as well as the

fourteen economic time series considered by Nelson and Plosser (1982) and

extended by Schotman and van Dijk (1991a). The chapter largely draws from

the material presented in Lucas (1995a).

The setup is as follows. Section 5.1 introduces the problem and motivates

the choice of high breakdown point (HBP) estimators for testing the unit root

hypothesis. Section 5.2 discusses the outlier mechanism and the MM estimator

that is used. A preliminary asymptotic analysis of unit root tests based on M

estimators can be found in Section 5.3. A full discussion of the appropriate

asymptotics can be found in Chapter 6. Section 5.4 compares the performance

of the HBP unit root test with that of the standard Dickey-Fuller test by means

of simulations. Section 5.5 presents the results of the robust and nonrobust

unit root tests for an empirical data set, namely the extended Nelson-Plosser

series. Section 5.6 concludes this chapter.

5.1 Introduction

In Chapter 4 I have discussed the outlier sensitivity of the standard Dickey-

Fuller t-test (DF-t) for a unit root. The solution proposed in that chapter

was to replace the OLS estimator in the Dickey-Fuller procedure by an M

estimator, in particular, by a pseudo maximum likelihood estimator based on

the Student t distribution. This procedure went some way in making the DF-t

less sensitive to anomalous observations. It is, however, well known in the

robustness literature that M estimators can only cope with a limited number

of outliers. In the i.i.d. regression setting, one extreme outlier is enough to

corrupt the results obtained with an M estimator (see Hampel et al. (1986,

Chapter 6)). In order to remedy this problem, the class of generalized M
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(GM) estimators was introduced. GM estimators have a breakdown point of

at most (1+p)�1, where p is the number of regressors that is used (see Maronna

(1976) and Maronna and Yohai (1981, 1991)). The percentage of outliers GM

estimators can cope with (approximately 100=(1 + p)), therefore, decreases

with the number of included regressors.

The use of GM estimators for testing the unit root hypothesis has two major

drawbacks. First, GM estimators introduce weights for the regressors in the

model. In order to obtain these weights, the regressors are standardized by

some type of scaling matrix that mostly has the interpretation of a covariance

matrix. In a typical unit root regression model, at least one of the regressors

is integrated of order one. Consequently, one cannot use the standard GM

procedure, as integrated regressors cannot easily be standardized. Moreover, it

was shown in Chapter 4 that ordinary M estimators sometimes su�ce for giving

protection against outliers, at least in the sense that they have a bounded

in
uence function for autoregressive (AR) time series models under additive

outlier contamination. This suggests that additional weight functions for the

regressors are not always needed in a time series context in order to obtain

robustness.

The second drawback of using GM estimators for testing the unit root

hypothesis, is that the maximum percentage of outliers of 100(1+p)�1 for GM

estimators was derived in the context of i.i.d. regression. In the time series

setting, additional complications arise. Consider a standard AR(p) process

yt = �1yt�1 + . . . + �pyt�p + "t;

with "t Gaussian white noise and p known. Furthermore, assume that one of

the points ys is replaced by the outlier ys + � for some s and some large �.

Ignoring endpoint e�ects, the outlying observation will enter the model p + 1

times: �rst as the left-hand side variable and afterwards p times as a right-

hand side variable. One outlying value of yt can thus cause p + 1 outlying

(p + 1)-tuples (yt; yt�1; . . . ; yt�p), which are precisely the (p + 1)-tuples that

are used to calculate the estimates of the AR parameters. So if there is a

single additive outlier (see Section 4.2) in the data, there are already (p + 1)

outliers in a regression sense. This was illustrated for the case p = 1 in

Figure 4.1. Regarding the occurrence of several additive outliers as a realistic

possibility, the upper bound of 100(1+p)�1 per cent outliers for GM estimators

is thus quickly reached (compare the arguments in Martin and Yohai (1991)

and Rousseeuw and Leroy (1987, Section 7.2)).

In order to construct a unit root test that can deal with several additive

outliers simultaneously, I propose the use of an HBP estimator. HBP esti-

mators are designed to have a high breakdown point (see Section 2.2), ideally

of1 1=2. This means that they can still provide useful information about the

characteristics of the bulk of the data in the presence of a large number of

1It is worthwhile to note here that Davies (1993) conjectures that the maximum break-
down point for a�ne equivariant estimators in a regression context is 1=3 rather than 1=2.
However, Davies considers full neighborhoods of a central model by de�ning a metric for the
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anomalous observations. It should be kept in mind that statistical break-

down is mostly concerned with extreme outlier con�gurations. This might be

deemed unrealistic. Moreover, the breakdown point was initially introduced

for the i.i.d. regression setting. De�ning a breakdown point for dependent ob-

servations is much more di�cult (see Boente, Fraiman, and Yohai (1987) and

Papantoni-Kazakos (1984)).

Several HBP estimators for the regression setting have been proposed in

the literature: repeated medians (Siegel (1982)), least median of squares and

least trimmed squares (Rousseeuw (1984)), S estimators (Rousseeuw and Yohai

(1984)), MM estimators (Yohai (1987)), � estimators (Yohai and Zamar (1988)),

high breakdown GM estimators (Simpson, Ruppert, and Caroll (1992) and

Coakley and Hettmansperger (1993)), projection based estimators (see, e.g.,

Maronna and Yohai (1993) and Tyler (1994)), generalized S estimators (Croux,

Rousseeuw, and H�ossjer (1994)), and rank based estimators (H�ossjer (1994)).

All of these estimators can attain a breakdown point of approximately 1=2 in

large samples. Especially the earlier HBP estimators have a poor (relative)

asymptotic e�ciency if there are no outliers in the data. In this chapter I use

the MM estimator. This estimator can achieve a high e�ciency and a high

breakdown point at the same time. Another advantage of the MM estimator as

opposed to the GM estimator is that it needs no weights for the regressors. As

explained earlier, this is very important in the context of integrated regressors.

The number of applications of outlier robust techniques to time series prob-

lems is limited. Apart from the material in the previous chapter, there are

some examples of the use of low breakdown point estimators for time series

problems. Martin (1979, 1981), for example, suggests the use of GM and con-

ditional mean M estimators (see also Schick and Mitter (1994)), Bustos and

Yohai (1986) use outlier robust estimates of residual autocovariances to esti-

mate the parameters of ARMA models, and Allende and Heiler (1992) employ

recursive GM estimators for ARMA models. There are also some applications

of HBP estimators in a time series context. Lucas (1992, Chapter 4), for ex-

ample, and Rousseeuw and Leroy (1987, Chapter 7) discuss the least median

of squares estimator for ARMA and AR models, respectively, while Martin

and Yohai (1991) use a combination of S estimators and Kalman �lter equa-

tions to obtain HBP estimates for AR models. All of these articles deal with

stationary time series. For nonstationary processes, some references are Herce

(1993), Knight (1989, 1991), and Chapters 3 and 6.

To conclude this introduction, I brie
y comment on the relation between

the outlier robust unit root tests developed in Chapters 4 and 5 and the work

of Andrews (1993). Andrews discusses exactly median-unbiased estimation in

the AR(1) model. The term median might suggest a link to the robustness

literature and to the present approach of using robust estimators in time series

models. The present approach and that of Andrews are, however, quite dis-

space of probability measures. Moreover, Davies requires the estimators to be (uniquely)
de�ned in this full neighborhood. This approach di�ers from the �nite sample breakdown
point approach of Donoho and Huber (1983).
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tinct. Andrews proposes methods to correct for the downward small sample

bias of the (nonrobust) OLS estimator in the AR(1) model with positive AR

coe�cient. His methods work well even in certain innovative outlier situations

(see Section 4.2), as is demonstrated by his Table 4. In other settings, however,

Andrews' approach is quite sensitive to the occurrence of discordant observa-

tions, especially additive outliers. In principle, Andrews' methods can also be

used to correct for the �nite sample bias of the robust estimators used in the

present setup. His approach, therefore, complements rather than substitutes

for the present procedure of using robust estimators to test for unit roots.

5.2 Outliers and Robust Estimators

Modeling outliers in a time series context is more complicated than in the

ordinary regression case. This is due to the fact that for time series not only

the magnitude of the outliers matters, but also their place in time and their

correlation structure over time. As explained in Section 4.2, there are two out-

lier generating models for time series that are often employed in the literature,

namely the additive outlier (AO) model and the innovative outlier (IO) model

(see (4.12) and (4.13), respectively). For large AO's it was shown in Example

4.1 that the DF-t tends to �(T � 1)1=2, implying a rejection of the unit root

hypothesis for su�ciently large values of the sample size T . Below, I give a

similar derivation for a large, isolated IO.

Example 5.1 Let

yt = �yt�1 + "t + �t (5:1)

for t = 1; . . . ; T , where "t is white noise, �t is a contamination error, and

j�j � 1. Further assume that y0 = 0. I only consider one outlier that lies

approximately halfway the sample, say at t = s, thus avoiding the intricacies

of endpoint e�ects. The outlier enters the model by assuming that �t = 0 for

t 6= s, and �s = �, where � is some large number. The series yt now contains

an IO (see (4.13)). Solving the di�erence equation (5.1) subject to y0 = 0, one

obtains

yt =

t�1X
i=0

�i("t�i + �t�i): (5:2)

Let c(�) =
PT�1

t=s �
2(t�s), then

TX
t=1

y2t�1 = �2c(�) +O(�); (5:3)

and
TX
t=1

ytyt�1 = ��2c(�) +O(�): (5:4)
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So, if � tends to in�nity, then the OLS estimator �̂ tends to the true value �.

This corresponds with the right panels of Figure 4.1, where there is only one

vertical outlier in the (yt; yt�1)-plane and a large set of high-leverage points

that are close to the line with slope �. Notice that

Ts2 =

TX
t=1

(y2t � 2�̂ytyt�1 + �̂2y2t�1)

= (�2(T�s) + c(�)� 2�̂�c(�) + �̂2c(�))�2 +O(�): (5.5)

Combining (5.5) with (5.3), one obtains that the standard error of the OLS

estimator tends to

g(�) = T�1=2(1� �2 + �2(T�s)=c(�))1=2 (5:6)

if � tends to in�nity, implying that the DF-t tends to

DF-t =
�̂� 1

g(�) + o(1)

�!1�! �
�
T
(1� �)(1� �2(T�s))

1 + �

�1=2

: (5.7)

Thus, the DF-t might or might not reject, depending on the true value of �

and on the sample size. It is clear from (5.7), however, that if � is close to but

less than one, then large sample sizes (T ) are needed for the DF-t to reject the

unit root hypothesis. This indicates that the occurrence of IO's may weaken

the power properties of the OLS based DF-t. This claim is substantiated in

Chapters 6 and 7. 4

The main conclusion from Examples 4.1 and 5.1 is that if the OLS based

DF-t is used to test the unit root hypothesis, one extreme AO results in re-

jection of the hypothesis even if � = 1, while one extreme IO results in either

rejection or non-rejection, depending on the true value � and the sample size.

Franses and Haldrup (1994), using a somewhat more general and less extreme

form of contamination, generalize the result for AO's and provide some asymp-

totic results.

The examples indicate that there is a need for robustifying the DF-t to

outliers. Therefore, I replace the nonrobust OLS estimator in the Dickey-

Fuller procedure by the MM estimator of Yohai (1987). The MM estimator

can simultaneously attain a high breakdown point and a high e�ciency. The

estimator starts with a (low e�ciency) HBP estimator, like the LMS or an S

estimator (see Rousseeuw (1984) and Rousseeuw and Yohai (1984)). This low

e�ciency HBP estimator produces initial estimates of the parameters, which

can be used to obtain a high breakdown scale estimate. The HBP estimates of

the regression parameters and of the scale parameter can be used as starting

values for a k-step M estimation procedure. This M estimator inherits the
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breakdown behavior of the initial estimator, but can at the same time be

chosen such that it is highly e�cient at some central model, e.g., the Gaussian

distribution. In the remainder of this section I discuss some more details of

the S and MM estimators that are employed in this chapter.

Rousseeuw and Yohai (1984) introduced the class of S estimators. This

estimator can attain a breakdown point of 1=2, is regression equivariant, and, in

constrast to the LMS estimator of Rousseeuw (1984), enjoys T 1=2-consistency.

Rousseeuw and Yohai showed that S estimators satisfy the same type of �rst

order conditions as ordinary M estimators. In order to calculate an S estimator,

one proceeds as follows. Assume for the remainder of this section that the

model is yt = �yt�1 + "t. The S and MM estimator are, of course, also de�ned

for more general regression models. One starts by choosing a bounded function

�1 (compare Section 2.3). For a given value of �, de�ne the scale estimate

�S(�) > 0 as the solution of

T�1
TX
t=1

�1((yt � �yt�1)=�S) = 0:5 supf�1(x)jx 2 IRg: (5:8)

The S estimator of � is the minimand of �S(�). The OLS estimator is obtained

by setting �1(x) = x2 and replacing the right-hand side of (5.8) by (T � 1)=T .

Because �1 has to be bounded, there can be many local optima. A global

search algorithm has to be employed to �nd the global minimum. I used

the following procedure. First, I computed the LMS estimator by means of

the random subsampling technique described in Rousseeuw and Leroy (1987).

In the simulations, I used 1,000 random subsamples, while the number of

subsamples for the empirical data sets in Section 5.5 was 10,000. Starting from

the LMS estimates, I used a Newton-Raphson algorithm to locally improve the

objective function �S(�) of the S estimator subject to the constraint (5.8). As

the objective function is only implicitly de�ned by the constraint (5.8), I used

the implicit function theorem to obtain the necessary derivatives of �S(�) with

respect to �. A step optimizer was included in the algorithm in order to ensure

that the objective function was decreased during each iteration.2 Especially

the initial global random search is rather computer intensive. This seems to

be a generic problem for HBP estimators, although recently some less time

consuming algorithms have been put forward (Atkinson (1994) and Woodru�

and Rocke (1994)).

A disadvantage of the S estimator is that its high breakdown point is coun-

terbalanced by a low e�ciency at the Gaussian model (see Rousseeuw and

Yohai (1984)). Therefore, Yohai (1987) proposed to use the S estimates as

starting values for an ordinary M estimator. This procedure works as follows.

Starting from the HBP estimate of the AR parameter �, one �rst calculates a

HBP scale estimate, �MM . If the S estimator is used as the initial estimator,

the �nal objective function of the S estimator can be used as the scale estimate.

2In fact, small increases in the objective function were allowed if the algorithm got stuck
near a local optimum.
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The HBP scale estimate is kept �xed during the remaining calculations. Next,

an M estimator is computed based on the objective function

min
�

TX
t=1

�2((yt � �yt�1)=�MM); (5:9)

where �2 is again a bounded function. This produces the MM estimate �MM .

So far, I have said nothing about the functions �1 and �2, except that they

have to be bounded. Naturally, there are some additional conditions that have

to be met in order for the MM estimator to be consistent and asymptotically

normal. These conditions can be found in Yohai (1987). The speci�cations for

�1 and �2 that are used in this chapter are

�i(x) =

(
(3c4ix

2 � 3c2ix
4 + x6)=6 for jxj � ci;

c6i =6 for jxj > ci;
(5:10)

with i = 1; 2, c1 = 1:547, and c2 = 4:685 (Rousseeuw and Yohai (1984),

Yohai (1987)). The derivative of �i(x) produces the bisquare  function of

Beaton and Tukey (1974). The constant c1 ensures that the S estimator has a

breakdown point of approximately 1=2. The value of c2 serves to improve the

e�ciency of the S estimator at the central Gaussian model. Using c2 = 4:685,

the MM estimator has an asymptotic e�ciency of 95% with respect to the

maximum likelihood estimator for Gaussian i.i.d. innovations.

A �nal point to note is that the MM estimator has not got a bounded

in
uence function (IF). This might seem a bit worrying. The following can,

however, be proved. Let � denote a small, but positive fraction of contami-

nation. Moreover, let B(�) denote the bias of the MM estimator under this

fraction of contamination. Then for every small, but positive �, B(�)=� is

�nite, meaning that the bias standardized by the fraction of contamination

is bounded for strictly positive amounts of contamination (Yohai (1987, p.

650)).3 Perhaps the unboundedness of the IF for the MM estimator is related

to that of the LMS estimator. The LMS estimator can be shown to have an

unbounded IF for inliers, i.e., observations that lie near the center of the data

(see Hettmansperger and Sheather (1992) and Davies (1993)).

5.3 Asymptotic Distribution Theory for I.I.D.

Innovations

In this section I discuss the asymptotic distribution of the DF-t for M esti-

mators in the context of the AR(1) with i.i.d. innovations. A more elaborate

exposition of the asymptotic theory for unit root tests based on M estimators

can be found in the next chapter.

3In fact, the bias curve of the MM estimator (see Subsection 2.2.4 for a de�nition) is
�nite for values of � below the breakdown point, but it passes vertically through the origin.
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The asymptotics of the OLS estimator for the autoregressive parameter of

an AR(1) under the assumption of a unit root have been extensively studied

in the literature (see the references in Diebold and Nerlove (1990)). Here, this

literature is extended to the DF-t based on an M estimator. We can state

the following objective for the outlier robust unit root test. At the central

model, that is in a situation without outliers, the robust and OLS based DF-t

must be comparable in terms of size and power. In general, the power of the

robust test will be somewhat below that of the classical test at the central

model. This is a result of the tradeo� between e�ciency and robustness for

robust estimators (see Hampel et al. (1986, Section 2.1.c)). The lack of power

of the robust test at the central model must be compensated for by a gain in

insensitivity of size and power to departures from the central model. Whereas

the size and power of the OLS based DF-t can be spoilt completely by one

extreme additive outlier, its robust counterpart is less sensitive to anomalous

observations.

In this section the asymptotic behavior of the robust DF-t is studied at

the central model. The e�ects of contamination by outliers is studied in the

next section by means of several simulation experiments. Consider the simple

AR(1) case, yt = �yt�1+ "t. Assume that the variance of the innovations �
2 is

known. If �2 is unknown, it can be estimated along with the other unknown

parameters. As long as one uses a consistent estimator, the results of this

section are not changed (compare Phillips (1987), Knight (1989, Section 4.3)).

Following Section 2.3, the M estimator �̂M is a solution of

TX
t=1

 ((yt � �̂Myt�1)=�)yt�1 = 0; (5:11)

where  is a function satisfying the conditions below. The unit root cor-

responds to the case � = 1. In order to calculate the DF-t, one needs an

estimate of the variance of �̂M . Following Hampel et al. (1986, Section 2.3), I

use

s2� = �2

 
TX
t=1

 2((yt � �̂Myt�1)=�)y
2
t�1

!
=

 
TX
t=1

 0((yt � �̂Myt�1)=�)y
2
t�1

!2

;

(5:12)

where  0(x) = d (x)=dx (compare (4.19)). The DF-t is now given by

t� = (�̂M � 1)=s�: (5:13)

I make use of the following assumptions.

Assumption 5.1 The errors "t are i.i.d. with mean zero and positive �nite

variance �2; �yt is stationary.

Assumption 5.2  (�) is bounded;  0(�) is bounded and Lipschitz continuous;

E( ("t=�)) = 0; �2 = E( ("t=�)
2) and 0 < �2 < 1; � = E( 0("t=�)) and

0 < � <1.



5.3. ASYMPTOTIC DISTRIBUTION THEORY 109

All expectations are taken with respect to the central model. Assumption

5.1 can be relaxed by allowing more general innovation sequences like mixing

processes (see Chapter 6) at the cost of additional complexity. The results

obtained here partly overlap those of Knight (1989). The in�nite variance as-

sumption that is used in his paper, however, simpli�es the �nal result. More-

over, it is illustrative to provide the asymptotic distribution of the DF-t for

i.i.d. innovations explicitly before turning to the more general results of the

next chapter.

The asymptotic distrubution of t� is expressed as a functional of Brown-

ian motions. I de�ne the partial sum processes BT (s) = T�1=2
PbsT c

t=1 "t and

ST (s) = T�1=2
PbsT c

t=1  ("t=�), for all s 2 [0; 1], where bxc is the integer part
of x. The following lemma follows directly from Corollary 2.2 of Phillips and

Durlauf (1986).

Lemma 5.1 If Assumption 5.1 holds, then

(BT (�); ST (�))) (�B(�); � S(�));

with B and S denoting two (correlated) standard Brownian motions with

E(B(s)S(s)) = s � r for 0 � s � 1, and r the correlation between "t and

 ("t=�).

The next theorem states the main asymptotic result for the i.i.d. case. Its

proof can be derived from the proof of Theorem 6.1 in the next chapter.

Theorem 5.1 If Assumptions 5.1 and 5.2 are satis�ed and if (�̂M � 1) =

op(T
�1=2), then under the null hypothesis H0 : � = 1,

T�1
TX
t=1

 (�yt=�)yt�1 ) � �

Z
BdS (5.14)

T�2
TX
t=1

 2(�yt=�)y
2
t�1 ) �2 �

2

Z
B2 (5.15)

T�3=2
TX
t=1

 0(�yt=�)y
2
t�1 ) � �

2

Z
B2 (5.16)

t� )
Z
BdS

�Z
B2

��1=2
(5.17)

The condition (�̂M � 1) = op(T
�1=2) may seem strange at �rst sight. It en-

sures that the `right' solution of (5.11) is chosen. This is important if there are

multiple solutions to (5.11), as is the case for S and MM estimators. Because

the � functions that de�ne these estimators have to be bounded (see, e.g.,

(5.10)), their derivatives,  (x), vanish for large values of x. Therefore, (5.11)

can be satis�ed for values �̂M that are completely di�erent from the true value
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1. By imposing the additional condition in the theorem, these complications

are excluded.

The �nal result in (5.17) is similar to the expression found in Phillips (1987),

except that the numerators of the two expressions di�er. This can be seen by

choosing  (x) = x. In that case, �2 = 1 and S = B in Lemma 5.1, yielding

t� )
R
BdB(

R
B2)�1=2. This last expression equals part (e) from Theorem 3.1

of Phillips (1987) for the i.i.d. case.

The relation between the DF-t based on an M estimator (tM) and on OLS

(tOLS) can be made more explicit. If r is de�ned as the correlation between

"t and  ("t=�), r = E("t ("t=�))=(� �), then it is proved in the next chapter

that tM�rtOLS )
p
1� r2N(0; 1), where N(0; 1) is a standard normal random

variable. Estimators that, like the MM estimator, have a high e�ciency at the

Gaussian distribution, also have values of r close to unity. Therefore, the

di�erences between the critical values of tM and tOLS are expected to be small

for these estimators.

Theorem 5.1 is of little practical importance, because it only states a result

for the AR(1) case. It can, however, easily be shown that under the present

assumptions the augmented DF-t has the same limiting distribution. The

augmented DF-t is the t-test statistic for � = 1 in the AR(p) regression model

yt = �yt�1 + �1�yt�1 + . . . + �p�1�yt�p+1 + "t (5:18)

(compare Section 4.1 and Fuller (1976, p. 374)). This follows from the fact

that T�3=2
PT

t=1 yt�1�yt�k = op(1) for k = 1; . . . ; p� 1.

It is well known (see, e.g., Fuller (1976, p. 378) and the next chapter) that

including a constant or linear time trend into (5.18) changes the asymptotic

distribution of the OLS based DF-t. This also holds in the present context of

DF-t statistics based on M estimators. Theorem 5.1 can be generalized to deal

with such complications (see Theorem 6.1 in Chapter 6).

A last point to mention here is that Theorem 5.1 presents a result for

M estimators. The theorem is, however, equally valid for both S and MM

estimators. This may seem a bit contradictory, as the breakdown behavior

of ordinary M estimators is completely di�erent from that of the other two

estimators. This suggests that the derivations given above cannot cover all

three estimators at once. Rousseeuw and Yohai (1984) and Yohai (1987) show,

however, that both S and MM estimators satisfy the same type of �rst order

conditions as ordinary M estimators. Because only the �rst order condition

is relevant for the asymptotic distribution of the DF-t, the results hold for all

three classes of estimators.

5.4 Size and Power Robustness of the Unit

Root Tests

In this section, the model

zt = �zt�1 + �+ 
t+ "t (5:19)
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is considered. A constant and trend are included in (5.19), because they are

needed in the empirical illustration contained in the next section. It was shown

in the previous section for � = 1 that the DF-t converges in distribution to the

random variable given in (5.17). In this section I focus on the �nite sample

distributions of the (non)robust DF-t statistics. The critical values for these

test statistic are obtained by means of a simulation experiment. The behavior

of the tests is also studied in situations with AO's or IO's, both for � = 1 and

� 6= 1.

The simulation experiment was set up as follows. I set 
 = � = z0 = 0.

Next, T standard normal i.i.d. variables "t were generated.
4

For the series with IO's, a new series ~"t was constructed using random

numbers vt that were uniformly distributed over the interval [0; 1]. The variable

~"t was set equal to "t if vt � �, with � a prespeci�ed constant in the unit

interval. If vt < �, ~"t = "t+�t, where �t was a random variable with distribution

function G. Using this new innovations sequence ~"t, a time series yt was

constructed according to the model yt = �yt�1 + ~"t and y0 = 0.

For series with AO's, the original sequence "t was used to construct an

uncontaminated time series zt using (5.19). Next, a new time series yt was

constructed using uniform random numbers vt with yt = zt + �t if vt < �, and

yt = zt, otherwise.

I used several choices for the contaminating distribution G of �t. The

�rst one, G(�t) = 1f�t�0g(�t), generated no outliers. Here, 1A(�) denotes the
indicator function of the set A. The second distribution generated outliers

of equal size 5, G(�t) = 1fx�5g(�t). The third and fourth distribution were a

Gaussian with mean zero and variance 9, and a standard Cauchy distribution,

respectively. For each of these choices of G I used � = 0:05. Note that the

Cauchy distribution violates assumption 5.1. It is only included to illustrate

the e�ect of extreme outliers.

In order to estimate the critical values of the robust and nonrobust unit

root tests at the 5% signi�cance level, the possibly contaminated series yt was

used along with a constant and a trend in order to compute both the OLS and

the MM estimator. The values of the associated DF-t statistics were stored

over 10,000 replications and the �nal estimate of the critical value was the

0.05th-quantile of these 10,000 values, i.e., the 500th observation. In order

to study the e�ect of the sample size, the simulations were carried out for

T = 50; 100; 200. The results are presented in5 Table 5.1.

Before discussing the details of Table 5.1, something must be said about the

illustrative purpose of its entries (compare Section 4.5). When testing the unit

root hypothesis for some empirical time series, a researcher, in general, does

4I used the uniform random number generator drand48(), provided in the standard library
of the C programming language on a SUN Sparc Workstation (System IV). This generator
has a period of approximately 231 � 1.

5Estimated standard errors of the entries in Table 5.1 are in general below 0.05. The
exceptions are the entry for the MM estimator for T = 50 and �5 AO contamination, and
the entries for the OLS estimator for T = 100; 200 with C(0; 1) AO contamination. The
estimated standard errors for these three entries is approximately 0:10.
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TABLE 5.1

Upper 5% Points for the Robust and Nonrobust DF-t

for Contaminated and Uncontaminated Processes
Contaminating T = 50 T = 100 T = 200

distribution OLS MM OLS MM OLS MM

No outliers

�0 -3.50 -4.03 -3.46 -3.67 -3.42 -3.52
Additive outliers

�5 -5.44 -6.10 -5.72 -3.61 -5.85 -3.36
N(0; 9) -4.61 -4.43 -4.63 -3.79 -4.62 -3.70
C(0; 1) -6.66 -4.25 -9.04 -3.70 -12.77 -3.63

Innovative outliers

�5 -3.46 -3.11 -3.51 -3.47 -3.44 -3.08
N(0; 9) -3.45 -3.46 -3.54 -3.86 -3.44 -3.33
C(0; 1) -3.54 -3.91 -3.49 -3.45 -3.45 -3.16

The table contains the 0.05-quantiles of 10,000 simulated DF-t tests.
Standard errors are, in general, below 0.05. The contaminating distri-
butions are �x (a point mass at x), N(0; 9) (a normal distribution with
mean 0 and variance 9), and C(0; 1) (the standard Cauchy distribu-
tion).

not know which observations are outliers with respect to the chosen model.

Neither does (s)he know the kind of the contamination (s)he is dealing with

(IO's or AO's). Therefore, (s)he will use the critical values simulated for

an uncontaminated error process. For example, for a time series of length

100 (s)he can use �3:46 for the nonrobust test and �3:67 for the robust test,
suggesting a size of 5%. If, however, the considered time series contains several

outliers, the actual size of the test can be far di�erent from 5%. This is, of

course, undesirable. One would like to have a test with an approximately

constant size under a variety of contaminations. It is the aim of the table to

show that the MM estimator is more suited to meet this objective than the

OLS estimator.

The entries under the heading OLS in the �rst row of Table 5.1, i.e., for

uncontaminated processes, are similar to the entries in the table of Fuller (1976,

p. 373).6 The absolute critical values for the robust test are somewhat larger in

this case than those for the nonrobust test. The di�erence, however, decreases

for increasing values of the sample size T . This can be expected in view of the

high e�ciency of the MM estimator at the central (Gaussian) model. For the

uncontaminated process, I also performed simulations with T = 400, resulting

in two almost identical critical values of �3:41 and �3:42 for the OLS and

MM estimator, respectively.

The remaining entries in Table 5.1 demonstrate the size robustness or non-

robustness of the DF-t based on the MM and the OLS estimators. Except for

small samples, T = 50, the critical values of the robust unit root tests do not

6In contrast to the simulations presented in Section 4.3, no heteroskedasticity consistent
standard errors are used for the OLS based DF-t.
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uctuate much under di�erent forms of additive outlier contamination. This

stands in sharp contrast to the results based on the traditional OLS estima-

tor. Consider the case T = 100 with critical value �3:46. If one uses this

critical value, one believes that the signi�cance level is approximately 5%. If,

however, the time series is contaminated with 5% outliers, the actual size of

the test is 27% if N(0; 9) is used as a contaminating distribution, or even 57%

if �5 is used. Note that even in the extreme case of a contaminating Cauchy

distribution, the critical values of the robust DF-t at a 5% signi�cance level

are very similar to the ones for the uncontaminated process, while those for

the nonrobust estimator are very much a�ected. Also note that the critical

values of the OLS based DF-t decrease for increasing sample size T for �5 and

C(0; 1), whereas they increase for the MM estimator.

The results are reversed if one looks at IO situations. In these cases, the

size of the traditional OLS based DF-t seems more stable than that of its

robust counterpart. An important di�erence, however, is that the size of the

robust test at the �xed critical value given in the top row of Table 5.1 is often

decreased by the occurrence of the IO's, while that of the nonrobust test was

increased by AO's.

A �nal note on the entries in Table 5.1 concerns the results for the additive

outliers. When looking at the AO generating model, one sees that the true

model is given by yt = yt�1 + "t + �t� �t�1, which is an ARIMA(0,1,1) model.

Therefore, it would be more appropriate to use the Phillips-Perron (1988)

Z(t�) test instead of the ordinary DF-t, because the Z(t�) test corrects for the

MA behavior of the disturbance term. Using the same simulation framework

as above, it turned out that the results obtained with this latter test statistic

were comparable to those obtained with the DF-t.

I now turn to the power behavior of the robust and nonrobust DF-t. I focus

on the IO case. In order to obtain some insight, a small simulation study is

set up to calculate the size adjusted power of the robust and nonrobust DF-t.

Again �, 
, z0, and y0 are set equal to zero. For several values of � between

0:5 and 1:10 a (possibly contaminated) series yt of length 100 was constructed

using the same method as for the level simulations that were described earlier

in this section. Next, the OLS and MM estimates were calculated using the �rst

lag of yt, a constant, and a trend as regressors. This procedure was repeated

100 times.7 Using the critical values from Table 5.1, a record was kept of the

number of rejections of the null hypothesis of a unit root for both the robust

and nonrobust DF-t. The rejection percentages are plotted in Figure 5.1 for

the uncontaminated process and a process with innovative outliers using the

contaminating distribution N(0; 9).

The �rst thing to note in Figure 5.1 is the similarity in power behavior of

the robust and nonrobust test for uncontaminated processes. This is due to

7This relatively small number of replications was used, because the MM estimator is time
consuming to compute. The number of 100 simulations is, however, su�cient to illustrate the
qualitative di�erence between the power behavior of the DF-t based on the MM estimator
and the OLS estimator.
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Figure 5.1.| Simulated Size Adjusted Power Functions for Processes Contain-

ing Innovative Outliers or No Outliers

the high e�ciency of the MM estimator at the central model. Furthermore

the �gure clearly demonstrates that the size adjusted power of the robust

test is superior to that of the traditional test in the IO case. This �nding

is in itself of little practical importance, because in reality one will not be

working with a size adjusted critical value, but just with the top entries of

Table 5.1. This entails a poorer power behavior of the robust test for at

least some values of �, because Table 5.1 indicates that the distribution of the

robust test statistic has shifted to the left in the IO situation. The results

for IO's with contaminating distribution �5 are similar to the ones described

above. From the simulations in the next chapter, however, it appears that

if the innovations are fat-tailed, there is a fairly large region over which the

robust DF-t outperforms the nonrobust DF-t in terms of power.

Unreported additional simulations revealed that the size adjusted power

of the robust test is somewhat inferior to that of the nonrobust test for series

with AO's. Again, the same argument of practical relevance can be raised, now

favoring the use of the robust estimator over the nonrobust one. Finally, it is

worth mentioning that for � = 0:5, the size adjusted power of the traditional

test in the extreme case of C(0; 1) additive outliers is only 0:15, while that of

the robust test is as high as 0:95 (compare Section 6.4).

5.5 Application to the Extended Nelson-Plosser

Data

Nelson and Plosser (1982) looked at the behavior of fourteen economic time

series. Using the testing methodology of Dickey and Fuller, they showed that
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thirteen of these series were better described by an AR process with a unit root

than by a stationary AR process around a deterministic trend. By now, most

authors agree that their �ndings were rather premature. Several researchers

were able to obtain di�erent conclusions in a Bayesian (see for example the

Oct-Dec 1991 issue of the Journal of Applied Econometrics) or nonparamet-

ric framework (see, e.g., Bierens (1992)). In the classical parametric context,

Perron (1989) argued that most of the series considered by Nelson and Plosser

could be regarded as stationary 
uctuations around a linear trend if allowance

was made for several structural breaks in this trend function. A number of

authors have criticized Perron's �ndings. They indicated that if one appropri-

ately accounts for the fact that the date of the structural break is �xed on the

basis of the data, the evidence against the unit root hypothesis is much weaker

(see the July 1992 issue of the Journal of Business and Economic Statistics).

It is interesting to note that there exists a link between outliers and struc-

tural breaks. This is clearly exhibited in Section 2 of Perron and Vogelsang

(1992). Both additive and innovative outliers can cause structural breaks un-

der the unit root hypothesis. Perron (1989) suggested to remedy this problem

by introducing the appropriate dummy variables. As will be clear from the

previous sections, one could also try to use robust estimators to eliminate the

e�ect of outlying observations (or innovations). In this way one can circumvent

the problem of choosing the speci�c points in time for the dummy to equal one.

This should overcome the size problem of the test of Perron signaled by Chris-

tiano (1992). A noticeable di�erence between the robust estimation approach

and the approach of Perron, however, is that when using robust estimators

to deal with the outliers, the structural breaks can be present only under the

null hypothesis of a unit root. Under the alternative hypothesis the e�ect of

outliers is only temporary due to the stationary character of the series in that

case.8

Nelson and Plosser used yearly data up to 1970 for fourteen economic time

series. In this chapter I use the extended Nelson-Plosser data of Schotman and

van Dijk (1991a), which contain observations up to 1988. The �rst di�culty

arises in �xing the order of the AR polynomial for each series. I use the model

selection strategy as suggested by Perron (1989) and Perron and Vogelsang

(1992). First an AR(8) is estimated, with a trend and a constant included

in the regression. If the coe�cient of the longest lag di�ers signi�cantly from

zero at the 5% signi�cance level, the AR(8) model is used for testing the unit

root hypothesis. Otherwise the order of the AR polynomial is reduced by 1

and the selection strategy is applied to this lower order AR model. It is clear

that the modeling strategy described above may give rise to di�erent orders of

the AR polynomials, depending on whether the OLS or the MM estimator is

used. Therefore, I present the results for both models.

Let model I be the model chosen with the OLS estimator and model II the

8It is of course possible to extend the robust estimation approach with dummy type
regressors that capture level shifts and/or trend breaks. This is not done in the present
chapter.
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TABLE 5.2

Tests for Autoregressive Unit Roots in Model I

Series T p �̂OLS t�OLS outliers �̂M t�M outliers

Real GNP 80 2 0.82 -3.45 1 0.81 -4.70� 4
Nominal GNP 80 2 0.94 -2.02 1 0.96 -1.38 5
Real per
capita GNP 80 2 0.82 -3.52� 1 0.80 -4.77� 4

Industrial
production 129 6 0.85 -2.49 1 0.89 -1.71 9

Employment 99 2 0.85 -3.41 1 0.84 -3.27 8
Unemployment
rate 99 4 0.72 -3.92� 1 0.75 -3.80� 8

GNP de
ator 100 2 0.97 -1.59 2 0.99 -0.88 5
Consumer prices 129 2 0.99 -1.01 3 0.99 -1.33 10
Wages 89 7 0.91 -2.47 0 0.95 -1.00 12
Real wages 89 2 0.93 -1.68 0 0.94 -1.56 1
Money stock 100 2 0.94 -2.86 1 0.95 -2.13 3
Velocity 120 1 0.96 -1.60 0 0.94 -2.39 6
Interest rate 89 6 0.96 -1.11 2 0.90 -1.97 11
Common stock
prices 118 2 0.92 -2.41 1 0.92 -2.44 2

The table contains the OLS (�̂OLS) and the MM (�̂M ) estimates of the unit root
parameter in an autoregressive model of order p. The corresponding values of the
unit root tests are t�OLS and t�M , respectively.

� denotes signi�cance at the 5%
level using the �rst row of Table 5.1. T denotes the sample size. Outliers gives
the number of observations with standardized absolute residuals greater than 3.
The model selection for this table was based on the OLS estimator.

one chosen with the MM estimator. The results are shown in Tables 5.2 and

5.3. The length of the time series is given by T and the chosen order of the

AR polynomial by p. Furthermore, the number of points with scaled residuals

greater than 3 in absolute value is counted for both the OLS and the MM

estimator and presented under the label outliers. The scaling is done using

an estimate of the standard error of the regression. For the OLS estimator,

the usual residual standard deviation is used, while for the MM estimator the

HBP scale estimate �MM is used (see Section 5.2).

In Section 5.4 the bene�ts of using robust estimators for unit root testing

were demonstrated using simulated contaminated time series. In the present

section, using real economic data, it can once again be seen that results ob-

tained with robust estimators are less sensitive to outliers. Consider for exam-

ple the series of common stock prices, which illustrates the e�ect of outliers on

model selection. Using the model selection strategy described above and the

OLS estimator, one chooses a second order AR polynomial. If one uses the

MM estimator instead, one ends up with a �rst order AR model. The cause

of the di�erence between the two selected models can be visualized nicely by

looking at added variable plots (see Cook and Weisberg (1991)). Let yt denote

the stock prices at time t and let P be the projection matrix, projecting on
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TABLE 5.3

Tests for Autoregressive Unit Roots in Model II

Series T p �̂OLS t�OLS outliers �̂M t�M outliers

Real GNP 80 8 0.75 -3.22 1 0.68 -4.83� 6
Nominal GNP 80 6 0.95 -1.47 1 0.97 -1.37 9
Real per
capita GNP 80 8 0.73 -3.39 1 0.65 -4.38� 7

Industrial
production 129 4 0.81 -3.38 3 0.83 -3.17 9

Employment 99 4 0.84 -3.43 0 0.85 -4.13� 12
Unemployment
rate 99 4 0.72 -3.92� 1 0.75 -3.80� 8

GNP de
ator 100 6 0.96 -1.51 2 0.98 -1.45 5
Consumer prices 129 4 0.99 -1.20 3 0.99 -1.50 9
Wages 89 2 0.94 -2.36 0 0.94 -2.84 12
Real wages 89 1 0.96 -0.97 0 0.97 -0.90 1
Money stock 100 2 0.94 -2.86 1 0.95 -2.13 3
Velocity 120 1 0.96 -1.60 0 0.94 -2.39 6
Interest rate 89 8 0.96 -0.67 2 1.04 1.53 13
Common stock
prices 118 1 0.94 -1.82 1 0.93 -2.44 2

The table contains the OLS (�̂OLS) and the MM (�̂M ) estimates of the unit root
parameter in an autoregressive model of order p. The corresponding values of the
unit root tests are t�OLS and t�M , respectively.

� denotes signi�cance at the 5%
level using the �rst row of Table 5.1. T denotes the sample size. Outliers gives
the number of observations with standardized absolute residuals greater than 3.
The model selection for this table was based on the MM estimator.

the space spanned by the columns of X, where X is a T � 3 matrix with the

tth row of X equal to (1; t; yt�1). The added variable plot in Figure 5.2 plots

ê
(1)
t = (I � P )yt versus ê

(2)
t = (I � P )�yt�1. Three outliers can be observed

in this �gure. Performing an OLS regression using all points in Figure 5.2,

one obtains the solid line. This line has a signi�cant positive slope coe�cient.

This is largely due to the outlying observations for 1931 and 1932, which are

marked with a solid circle. Omitting these observations and recalculating the

OLS estimator, one obtains the dotted line, which is markedly 
atter than the

solid one and has an insigni�cant slope coe�cient. Even if one also discards

the leverage point 1933, indicated by the open circle in the �gure, the regres-

sion line is 
atter than the one based on the full sample. The MM estimator

automatically recognizes the three points as being outliers and accordingly

assigns less weight to them. Therefore the MM estimator is more suited for

model selection in an outlier context.

The results of the DF-t tests are quite remarkable. While there is some

doubt about the stationarity of real GNP and GNP per capita if one uses the

OLS estimator, the DF-t obtained with the MM estimator strongly rejects

the unit root hypothesis at the 5% signi�cance level, both in model I and II.

Similar �ndings hold for the employment series, although rejection of the unit
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Figure 5.2.| Added Variable Plot for Lagged Di�erenced Common Stock

Prices

root hypothesis is now only obtained in model II. Another result is the larger

value of the test statistic for industrial production in model II. Although the

unit root cannot be rejected at the 5% signi�cance level, this series is more

a borderline case than suggested by the results obtained with OLS. For the

remaining series, there is no di�erence in the conclusions that are obtained

with the OLS and the MM estimator.

Concerning the nature of the outliers in the series, most of them appear to

be of the innovative type. As explained in the introduction, an isolated additive

outlier is directly followed by a number of additional outliers. These `patches'

of outliers rarely occur in the fourteen Nelson-Plosser series. Therefore, one

can suspect that the outliers are more often of the innovative than of the

additive type. In order to visualize the outliers, one can use the added variable

plots discussed earlier. Consider the (log) real GNP series. Let P denote

the projection matrix on the space spanned by the columns of X, with the

tth row of X now equal to (1; t;�yt�1; . . . ;�yt�7), and yt denoting the real

GNP series. Figure 5.3 plots ê
(1)
t = (I � P )yt (vertical axis) versus ê

(2)
t =

(I � P )yt�1 (horizontal axis). The 6 outliers are depicted by the circles (both

open and solid). It is easily seen that these observations, even when using an

OLS projection, are outliers. If the real GNP series contains a unit root, the

points in the scatter diagram should lie around a line with slope one. The

OLS regression lines computed with and without the outlying observations

are presented by the solid and dotted line, respectively. One sees that the

outliers cause the slope of the regression line to be pulled towards one. More

important, however, is the increase caused by the outliers in the estimated

variance of the error term. This increased estimated error variance results

in an increase in the standard errors of the parameter estimates. Therefore,
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Figure 5.3.| Added Variable Plot for the Lagged Logarithm of Real GNP

it is not remarkable that downweighting or omitting these anomalous data

points, as is done by the MM estimator, leads to a stronger rejection of the

unit root hypothesis. It is also worth noting that with the OLS estimator only

the observation for 1932, the open circle in Figure 5.3, is detected as being an

outlier. This can be compared to the performance of the robust MM estimator,

which has the advantage that several outlying observations are detected in just

one estimation run.

A �nal point to note is that the MM estimator indicates a structural break

for the interest rate series after 1980. This conclusion is based the observation

that seven of the thirteen outliers occur during the last nine years of the

sample. All the standardized residuals of these outliers exceed 4.5 in absolute

value. In contrast, the OLS estimator only indicates the year 1980 as being

an outlier with an absolute standardized residual of about 3. It is indeed true

that the interest rate series shows an increase in the error variance after 1980

(see Figure 4.7). This suggests that the MM estimator is also more suited than

the OLS estimator for detecting speci�c model inadequacies.

5.6 Conclusions

In this chapter an outlier robust alternative was considered for the well known

Dickey-Fuller t-test (DF-t) for testing the unit root hypothesis. This alter-

native test was obtained by replacing the nonrobust ordinary least squares

estimator in the Dickey-Fuller procedure by the high breakdown point MM

estimator. A simulation study revealed that the size of this robust test was

much less in
uenced by the occurrence of additive outliers than that of its

nonrobust counterpart. The fact that the use of robust estimators may lead
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to di�erent outcomes, both for model selection procedures and for the unit

root test, was demonstrated using the macroeconomic time series considered

in Nelson and Plosser (1982) and extended by Schotman and van Dijk (1991a).

For one of these series, namely the interest rate, it appeared that the robust

estimator was also more suited for detecting model inadequacy.

The results are promising, although several problems remain to be tackled.

First, the robust estimation of ARMA models could be considered as an alter-

native to the AR models discussed in this chapter. High breakdown estimation

for ARMA models is, however, still a largely open area (see, e.g., Lucas (1992,

Chapter 4)). Another option is to consider alternative robust estimators, as

is done in Chapters 4 and 6, or to extend the present testing methodology to

the multivariate context of cointegration (see Chapters 7 and 8).

Second, the interpretation of the outliers is important. Are there reasons to

expect certain years not to �t into the pattern set out by the bulk of the data?

If there are, one can feel fairly comfortable when discarding these observations.

Otherwise, it might prove di�cult to accept the fact that these data points are

not fully taken into account when estimating the model. If there are several

outliers for which one cannot �nd an explanation, respecifying the model might

ultimately be deemed a more plausible solution than assigning less weight to

the discordant observations.

Finally, it is an interesting topic for further research to compare the per-

formance of the present method with that of the skilled econometrician. One

can argue that every skilled econometrician, possibly aided by some statistical

test procedure, can (almost) always spot in
uential observations and correct

for them by introducing dummies (compare Franses and Haldrup (1994)). As

Hampel et al. (1986, Section 1.4) note, this procedure is also a form of robust

estimation. Therefore a simulation experiment could be performed to �nd out

whether the procedure described in this paper performs signi�cantly better

than the traditional approach mentioned above. Mechanizing the subjective

judgement of the (skilled) econometrician is not an easy job, however, and until

this can be done in a satisfactory way, such an experiment must be postponed.


