
Chapter 6

Asymptotics for Unit Root

Tests Based on M Estimators

This chapter is largely based on Lucas (1995b). It considers unit root tests
based on M estimators. The asymptotic theory for these tests is developed.
It is shown how the asymptotic distributions of the tests depend on nuisance
parameters and how tests can be constructed that are invariant to these pa-
rameters. It is also shown that a particular linear combination of a unit root
test based on the OLS estimator and on an M estimator converges to a normal
random variate. The interpretation of this result is discussed. A simulation
experiment is provided, illustrating the level and power of di�erent unit root
tests for several sample sizes and data generating processes. The tests based
on M estimators turn out to be more powerful than the OLS based tests if the
innovations are fat-tailed.

The chapter is set up as follows. Section 6.1 brie
y describes how the
present chapter �ts into the existing literature. Section 6.2 presents the main
theoretical results. Section 6.3 comments on the choice of the M estimator for
the applied researcher. Section 6.4 presents the results of a simulation experi-
ment. Section 6.5 concludes the chapter. The proofs of the the statements in
Section 6.2 can be found in the appendix to this chapter.

6.1 Introduction

In the previous two chapters, I proposed outlier robust alternatives to the OLS-
based unit root testing procedure of Dickey and Fuller (1979). The Dickey-
Fuller t-test (DF-t) is well known and widely used. Extensions of the test
that allow for serially correlated innovations are given in Phillips (1987) and
Phillips and Perron (1988).

The idea that OLS based testing procedures are nonrobust, is not new. It
has since long been known in the literature that the OLS estimator is sensitive
to the occurrence of outliers in the data, both in the setting of independently
and identically distributed (i.i.d.) random variables (see Hampel et al. (1986))
and in the context of stationary time series (Martin and Yohai (1986)). In the
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setting of nonstationary time series, however, the OLS estimator can have some
desirable robustness properties. As is shown in Phillips (1987) and Phillips
and Perron (1988), the innovations driving a random walk may demonstrate
a considerable amount of heterogeneity and temporal dependence without se-
riously changing the asymptotic properties of the OLS estimator. Tests can
be designed that have the same asymptotic distribution under the hypothesis
of a unit root for a wide variety of data generating processes. Several well
known outlier types (see, e.g., Martin and Yohai (1986)) are also covered by
the assumptions in Phillips (1987). Moreover, the in
uence curve of the OLS
estimator in the random walk context is identically equal to zero (see Chap-
ter 4). These �ndings would suggest that in the context of testing the unit
root hypothesis there is no pressing need to replace OLS by an outlier robust
estimation technique. As the previous chapters have demonstrated, however,
certain types of outliers (especially additive outliers) can signi�cantly distort
the �nite sample behavior of the DF-t and its extensions, whereas outlier ro-
bust variants of these tests are less a�ected. Moreover, the use of outlier robust
estimators can positively a�ect the power properties of the tests, see Cox and
Llatas (1991), Hampel et al. (1986), and Herce (1993). These points lead to
the consideration of the behavior of unit root tests based on outlier robust
estimators.

The main idea of this chapter is to develop an asymptotic theory for unit
root tests based on M estimators. Furthermore, the e�ectiveness of these
tests in �nite samples is evaluated by means of a simulation experiment. M
estimators are known to possess a certain degree of insensitivity to outliers.
Their behavior for integrated processes with in�nite variance innovations has
been studied by Knight (1989, 1991). Herce (1993) discussed the asymptotic
properties of unit root tests based on the least absolute deviations (LAD)
estimator when the innovations have �nite variance. The present chapter �ts
between these articles. It considers processes with �nite variance innovations
and estimators that are de�ned by smoother objective functions than the LAD
estimator. The behavior of M estimators in nearly nonstationary models is
treated in Cox and Llatas (1991). Their results can be used to study the
asymptotic power properties of the present tests (compare Chapter 7).

The notation used in this chapter for expressing the limiting distributions
of unit root test statistics was explained in Subsection 1.4.4.

6.2 An Asymptotic Analysis

Consider the process fytg, generated by the stochastic di�erence equation

yt = yt�1 + "t: (6:1)

For notational convenience, the initial value y0 is assumed to be zero. The
results of this section continue to hold if y0 has a given distribution. A re-
alization of the process generated by (6.1) is observed for t = 0; . . . ; T . The
innovations "t are assumed to satisfy the following assumption.
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Assumption 6.1 The process f"tg is strictly stationary and strongly mixing

with mixing coe�cients �m that satisfy �m = O(m��) for all � > p�=(p � �)
for some p > � > 4; E("t) = 0 and Ej"tj

p <1; ��2
" = limT!1E(y

2
T )=T > 0.

Because of the stationarity requirement, Assumption 6.1 is more restrictive
than the assumption in Phillips (1987). However, a considerable amount of
heterogeneity and temporal dependence is still tolerated. Quite a few of the
processes encountered in the theoretical econometric literature are covered by
Assumption 6.1, for example, the class of Gaussian stationary autoregressive
moving average processes. The mixing part of Assumption 6.1 restricts the
dependence of "t+k on "t and states that the mixing coe�cients should be of
size p�=(p��), White (1984). The moment condition p > � > 4 can be relaxed
to p > � > 2 if the variance and autocorrelations of "t are known. If they are
unknown, the stronger moment condition is needed in order to ensure the
consistency of the estimators for the variance terms. The assumption of strict
stationarity combined with the existence of the moments up to order p > 2
implies the weak stationarity of the "t process. Finally, the last assumption
serves to exclude some degenerate cases.

Using the observed values y0; . . . ; yT , a regression model is �tted. It is well
known that including deterministic regressors, like polynomial time trends,
can a�ect the limiting distribution of the estimators. Therefore, the following
vectors of explanatory variables are de�ned. Let xrt = (1; t; . . . ; tr�1; yt�1)

> and
�r = (
0; . . . ; 
r�1; �)

> for r > 0. If r = 0, then xrt = yt�1 and �
r = �. These

de�nitions are similar to the ones used in Park and Phillips (1988), where only
the values r = 0; 1; 2 are considered. The regression model is given by

yt = xr>t �r + "t: (6:2)

The parameter vector �r of (6.2) is estimated using an M estimator. Let
"̂t = yt � xr>t �̂r , then an M estimator is de�ned as the vector �̂r that solves
the �rst order condition

TX
t=1

 ("̂t)x
r
t = 0; (6:3)

with  (�) a real valued function that satis�es the following assumption (com-
pare Hampel et al. (1986), Huber (1981)).

Assumption 6.2  (�) is a di�erentiable function with derivative  0(�);  0(�)
is �rst order Lipschitz; the function  (")=" is bounded; E( ("t)) = 0; 0 <

� = E( 0("t)) <1; ��2
 = limT!1 T�1Ef(

PT

t=1  ("t))
2g > 0.

The �rst two parts of this assumption are rather common smoothness con-
ditions for  (�), which are also found in Knight (1989, 1991). The main results
are expected to hold even if  (�) is allowed to be discontinuous at a �nite
number of points, as is exempli�ed by comparing the results below with those
of Herce (1993). In that case, however, di�erent methods of proof must be
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used. This is not pursued here. In the third part of Assumption 6.2, attention
is restricted to functions that are at most of the same order of magnitude for
large " as the function  (") = ", which de�nes the OLS estimator. This causes
the focus to be on estimators that are less sensitive to outliers than the OLS
estimator (see Hampel et al. (1986) and Huber (1981)). The next two parts
of the assumption contain a centering condition for the transformed innova-
tions  ("t), and a moment condition for  0("t), respectively. Finally, the last
condition of Assumption 6.2 rules out some singularities, as in Assumption 6.1.

In order to test the unit root hypothesis, an estimate of the covariance ma-
trix VT of �̂r is needed. Out of the several asymptotically equivalent formulas
that are available in the literature, I use the standard one given in Hampel et
al. (1986, p. 316),

VT =
hPT

t=1 
0("̂t)x

r
tx

r>
t

i�1 hPT
t=1 ("̂t)

2xrtx
r>
t

i hPT
t=1 

0("̂t)x
r
tx

r>
t

i�1

; (6:4)

(compare Chapters 4 and 5). Note that VT is a heteroskedasticity consistent
type of covariance matrix estimator, as in Huber (1981) and White (1980).
This can easily be seen by inserting the  (�) function of the OLS estimator,
 ("̂t) = "̂t. The robustness of VT to heteroskedasticity was also noted in
Simpson, Ruppert, and Carroll (1992). As already mentioned in Chapter 4, it
is not customary to use this type of standard errors for calculating unit root
tests. However, their use mitigates some of the �nite sample problems caused
by the occurrence of outliers in the data (see Chapter 4). This emerges from the
simulation experiment presented in Section 6.3. For reasons of comparison, the
heteroskedasticity consistent standard errors are used for both the M estimator
and the OLS based unit root tests. It is important to note that the OLS based
tests now di�er from their original versions, compare Fuller (1976), Phillips
(1987), and Phillips and Perron (1988). Although this di�erence vanishes in
the limit, it is important in �nite samples.

It will prove useful to de�ne the r-dimensional vector er = (0; . . . ; 0; 1)>.
Following Fuller (1976), the statistics of interest for testing the unit root hy-
pothesis are T (er>�̂r � 1) and t = (er>�̂r � 1)=(er>VT e

r)1=2. In order to
give expressions for the asymptotic distributions of these two test statistics,
introduce the bivariate partial sum process BT (s) =

PbsT c
t=1 ("t;  ("t))

>, with
s a real number between zero and one. Using Assumptions 6.1, 6.2, and the
results of Phillips and Durlauf (1986), it follows that BT (s)=T

1=2 converges
weakly to the bivariate Brownian motion B(s), which has covariance matrix


 =

�
��2
" ��" 

��" ��2
 

�
= lim

T!1
E[BT (1)BT (1)

>]=T <1: (6:5)

The two elements of B are denoted by ��"b1 and �� b2, respectively, with b1 and
b2 two (correlated) standard Brownian motions. Theorem 6.1 now states the
asymptotic distribution of the two test statistics.



6.2. AN ASYMPTOTIC ANALYSIS 125

Theorem 6.1 Given Assumptions 6.1 and 6.2, regression model (6.2), and

the estimator de�ned in (6.3), then if ("̂t � "t) = op(1) uniformly for t =
1; . . . ; T ,

T (er>�̂r � 1))
�� 
� ��"

er>
�Z

xrxr>
��1�Z

xrdb2 +
(��" � �" )e

r

2�� ��"

�
(6:6)

and

t )
�� 
� 

�
er>
�R

xrxr>
��1 �R

xrdb2 +
1
2
(��" � �" )e

r=�� ��"
�

h
er>
�R

xrxr>
��1

er
i1=2 ; (6:7)

with �2
 = E( ("t)

2), �" = E("t ("t)), x
r(s) = (1; . . . ; sr�1; b1(s))

> for r > 0
and xr(s) = b1(s) for r = 0.

The condition ("̂t � "t) = op(1) is a consistency requirement as in Knight
(1989, 1991) and Chapter 5. It is not needed if  (�) is the derivative of a
convex function with a unique minimum. In that case, di�erent methods of
proof can be used to obtain identical results (compare Davis, Knight, and Liu
(1992) and Knight (1989, 1991)). In other cases, the condition requires that a
consistent estimate is chosen out of the set of possible solutions to (6.3). This
is especially important if  (") is zero outside some interval, because then (6.3)
has in�nitely many solutions (see also Hampel et al. (1986) and Huber (1981)).
For the case of i.i.d. innovations, ��2

 = �2
 , ��

2
" = �2

" , and ��2
" = �2

" , such that
(6.7) reduces to the result of Theorem 5.1 in Chapter 5.

Using the techniques of Park and Phillips (1988), the results of Theorem
6.1 can also be formulated in terms of detrended Brownian motions. Let the
detrended Brownian motion br1(s) be the residual from the continuous time
least-squares regression of the model b1(s) = 
0 + . . . + 
r�1s

r�1 + br1(s), then

T (er>�̂r � 1)) �� 

�
� ��"

Z
(br1)

2

��1�Z
br1db2 + (��" � �" )=(2�� ��")

�

and

t ) �� 

�
�2
 

Z
(br1)

2

��1=2�Z
br1db2 + (��" � �" )=(2�� ��")

�
:

The limiting distributions in Theorem 6.1 depend upon a number of nui-
sance parameters. Tests that do not depend upon these quantities can, how-
ever, easily be obtained. The nuisance parameters just have to be replaced
by consistent estimates, as is done in Phillips (1987) and Phillips and Perron
(1988). The most di�cult quantity to estimate is 
, the elements of which
appear in (6.6) and (6.7). Following Phillips (1987) and Herce (1993), one can
use an estimate of the spectral density evaluated at zero, multiplied by 2�. In
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this chapter the Parzen window is used to obtain this estimate. Denote the
estimated elements of 
 by �s2", �s

2
 and �s" , respectively. For example,

�s2" = T�1
X̀
k=�`

wk`"̂t"̂t�k; (6:8)

with ` a truncation parameter satisfying both ` ! 1 and `=T 1=4 ! 0 if T
diverges to in�nity. Moreover,

wk` =

8<
:

(1� 6k2(`+ 1)�2) (1� jkj(`+ 1)�1) for jkj � (`+ 1)=2;

2 (1� jkj(`+ 1)�1)
3

for jkj > (`+ 1)=2:

So �s2" uses a limited number of estimated autocovariances in order to approxi-
mate the long run covariance ��2

" . The number of autocovariances that is used,
increases with the sample size in order to guarantee consistency. Finally, let

m = T�1
PT

t=1  
0("̂t); s2" = T�1

PT
t=1 "̂

2
t ;

s2 = T�1
PT

t=1  ("̂t)
2; s" = T�1

PT

t=1 "̂t ("̂t):

(6:9)

The unit root tests that do not have nuisance parameters in their asymptotic
distributions are now given by

M r
1; =

�s"
�s 

2
4m T (e

r>�̂r � 1)� 1
2
(�s" � s" )e

r>

 
T�2

TX
t=1

xrtx
r>
t

!�1

er

3
5
(6:10)

and

M r
2; =

s 

�s 
t �

�s" � s" 

2�s 

2
4er>

 
T�2

TX
t=1

xrtx
r>
t

!�1

er

3
5
1=2

: (6:11)

Corollary 6.1 Given the conditions of Theorem 6.1 and the de�nitions in

(6.8) and (6.9),

M r
1; ) er>

�Z
xrxr>

��1 Z
xrdb2

and

M r
2; )

er>
�R

xrxr>
��1 R

xrdb2h
er>
�R

xrxr>
��1

er
i1=2 :

The critical values of the unit root tests M r
1; and M r

2; can be obtained by
means of simulation. This is done in Section 6.4. If  (") = ", the Brownian
motion b2 equals b1 and the critical values for large T can be found in, for
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example, Fuller (1976). For small or moderate T , however, these critical values
are too small, giving rise to an actual size above the nominal signi�cance level.
This is caused by the heteroskedasticity consistent standard errors used in the
construction of the test. The correct critical values for several sample sizes can
be found in Section 6.4.

Remark 6.1 From the proof of Theorem 6.1 it can be seen that the asymp-
totic distributions do not change if regression model (6.2) is augmented with
regressors of the form yt�k � yt�k�1, for k � 1. Therefore, instead of us-
ing the semiparametric corrections suggested in the Corollary, one can make
parametric corrections by including additional explanatory variables of the
mentioned form. This leads to augmented DF-t type unit root tests, which
have a similar asymptotic distribution as the ones mentioned in Theorem 6.1.
This prewhitening technique can be related to the estimator for 
 suggested
by Andrews and Monahan (1992).

Remark 6.2 By the de�nition of xrt , attention was restricted to time polyno-
mials as additional deterministic regressors. Other deterministic functions of
time can be easily dealt with as well. The main condition is that the regressors
have to converge in the space of CADLAG functions (see Billingsley (1968)).
Therefore, the above theorem can easily be extended to situations with trend
breaks at known dates (see, e.g., Perron (1989)).

It is interesting to quantify the change in the asymptotic distributions of
the unit root tests based on M estimators and on the OLS estimator. Let
M r

1; and M r
2; for  (") = " be denoted by M r

1;" and M
r
2;", respectively. Then

Theorem 6.2 states that a particular linear combination of M r
2; and M r

2;" is
asymptotically normally distributed. This result can be used in an intuitive
way to evaluate the e�ect of the choice of  (�) on the asymptotic distribution
of M r

1; relative to that of M r
1;".

Theorem 6.2 Let �2
" = E("2t ), � = ��" =�� ��" (see (6.5)), and �̂ = �s" =�s �s"

(see (6.8)). Then given the conditions of Theorem 6.1,

M r
1; � �̂M r

1;" ) N(0; 1� �2)
q
er>(

R
xrxr>)�1er

and

M r
2; � �̂M r

2;" ) N(0; 1� �2);

with N(m; s2) a normal random variate with mean m and variance s2.

The parameter � gives an indication of the discrepancy between the asymp-
totic distributions of the unit root tests based on M estimators and on the OLS
estimator. It can be interpreted as the long run correlation between the in-
novations "t and their transformation  ("t). If  (�) is `close to' the identity
function, � will be close to unity and the variance of the normal variate of The-
orem 6.2 will be approximately zero. This formalizes the intuitive idea that
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the asymptotic distributions of two unit root tests are approximately the same
if their de�ning  (�) functions are close. The necessary closeness criterion is
provided by the quantity �.

Remark 6.3 Theorem 6.2 can also be used to test the unit root hypothesis
directly, as is done in Herce (1993). This results in two other unit root tests,
namely Lr1; = (M r

1; � �̂M
r
1;")=c� and L

r
2; = (M r

2; � �̂M
r
2;")=c�, with  (") 6= "

and c� = (1 � �̂2)1=2. Note that the asymptotic distribution of Lr2; does not
depend on the order r of the time polynomial included in the regression model.

6.3 The Choice of the M Estimator

M estimators, as de�ned in (6.3), are not scale invariant. This is an undesirable
property. In order to make them scale invariant, the function  ("̂t) can be
replaced by �" ("̂t=�"). The unknown parameter �" has to be estimated. If
the estimator for �" converges in probability to some positive constant, in
general �", then all the results of the previous section still hold (see Davis et
al. (1992) and Knight (1989)). Moreover, if a scale equivariant estimator is
used to estimate �", then the modi�ed M estimator becomes scale invariant.

There are at least two di�erent strategies for choosing the functional form
of  (�). First, following Cox and Llatas (1991), one can choose  (�) such that
the asymptotic mean squared error of the estimator for nearly nonstationary
alternatives is minimized. Given the distribution of the innovations, the op-
timal  (�) in this context is a linear combination of the maximum likelihood
estimator and the OLS estimator (compare the results of Chapter 7). Second,
one can take a robustness point of view and choose  (�) in such a way that
the estimator becomes less sensitive to outlying observations. Note that this
insensitivity is only important in �nite samples. Asymptotically, the e�ect
of the outliers under the null hypothesis is eliminated by the presence of the
correction terms in M r

1; and M r
2; . Under the alternative hypothesis, a suit-

able choice for  (�) may increase the �nite sample power of the tests. This is
illustrated in Herce (1993) and in the next section.

This chapter concentrates on the second approach. This choice is moti-
vated by the simulations in Franses and Haldrup (1994) and in the previous
two chapters. There it is shown that certain types of outliers have large distor-
tionary e�ects on the behavior of the traditional unit root tests. In contrast to
Chapter 5, the present chapter considers M estimators with a low breakdown
point. These estimators are easier to compute than the high breakdown ones
and provide at least some protection against discordant observations (compare
Chapter 4).
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6.4 Simulation Experiment

In this section the level and power properties of the unit root tests presented
in Section 6.2 are explored by means of a Monte Carlo simulation experiment.
The setup of the experiment closely follows Herce (1993). An extensive tabu-
lation of the results is available in Lucas (1994). Here, only a summary of the
experiment and the main conclusions are presented.

The �rst choice concerns the speci�cation of  (�). For illustrative purposes,
I consider the OLS estimator, given by  (") = ", and the maximum likelihood
estimator for Student t distributed observations (MLT), given by  (") = (c+
1)"=(c + "2). The degrees of freedom parameter c is kept �xed and equal to
3. The sensitivity of this estimator to outliers increases with the parameter
c. I also consider the Huber  function, which is often used in the robustness
literature (see Hampel et al. (1986), Huber (1981)). It is given by  (") =
min(c;max(�c; ")), with c = 1:345. The value of c is such that the estimator
has a relative e�ciency of 95% with respect to the mean if one estimates a
location parameter for a set of i.i.d. Gaussian disturbances (compare, e.g.,
Hampel et al. (1986), Yohai (1987)). The use of the MLT estimator can be
defended by noting that it has a bounded in
uence function in the stationary
time series context (see Chapter 4 for details). Moreover, the use of the Student
t distribution as a way of relaxing the normality assumption is fairly common in
econometrics. In all cases I used the scale invariant version of the M estimator,
as described in Section 6.3. I chose the median absolute deviation divided by
0.6745 for estimating the scale. This estimator is a consistent estimator for
the standard deviation of Gaussian innovations.

Of course, di�erent choices for  (�) may give rise to a di�erent behavior
of the unit root tests. However, the speci�cations provided above appear to
perform reasonably well in a variety of circumstances. In particular, they have
better size and power properties in �nite samples than the traditional OLS
based tests. This is revealed in the simulations described below.

The distribution of the test statistics M r
1; , M

r
2; , L

r
1; and Lr2; can be

simulated in the traditional way, see Fuller (1976) and Herce (1993). First,
one generates a time series according to (6.1) with i.i.d. standard Gaussian
errors "t. Next, one calculates the test statistics for r = 0; 1; 2 and the chosen
speci�cation for  (�). The values of the statistics can be stored and the process
repeated a large, say N , number of times. I used N = 10; 000 and T = 100, 200
and 5,000. Using the N simulated values, the �-quantile of the distribution of
the unit root tests is estimated by the �Nth order statistic. The results are
presented in Table 6.1. The distributions of the tests do not vary much over
the chosen speci�cations of  (�). This can be expected, because according to
Theorem 6.2, M r

2; � �̂M r
1;" ) N(0; 1� �2). It is easily checked by numerical

integration that for the present choices of  (�), � is greater than 0.94. As
a result, when applying the test one can use the critical values for the OLS
simulations in Table 6.1, even if  (") 6= ". The only condition is that � should
not depart too much from unity.
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TABLE 6.1
Quantiles for Unit Root Tests

test  (�) T = 100 T = 200 T = 5000

0.010 0.050 0.010 0.050 0.010 0.050

OLS -13.42 -8.09 -13.73 -7.94 -13.59 -8.15

M0

1
HUB -13.32 -8.09 -13.54 -7.82 -13.27 -7.93

t(3) -13.04 -7.76 -13.10 -7.65 -13.07 -7.84

OLS -2.73 -2.04 -2.63 -1.96 -2.57 -1.96

M0

2
HUB -2.79 -2.02 -2.67 -1.95 -2.53 -1.94

t(3) -2.83 -2.01 -2.69 -1.97 -2.53 -1.95

L0

1
HUB -6.85 -3.79 -6.68 -3.82 -6.53 -3.77

t(3) -6.78 -3.80 -6.62 -3.83 -6.46 -3.84

L0

2
HUB -2.51 -1.76 -2.37 -1.71 -2.33 -1.68

t(3) -2.48 -1.74 -2.41 -1.73 -2.39 -1.63

OLS -19.95 -13.98 -19.58 -13.78 -20.05 -13.94

M1

1
HUB -19.89 -13.81 -19.40 -13.56 -19.48 -13.60

t(3) -19.61 -13.47 -19.11 -13.40 -19.34 -13.40

OLS -3.82 -3.06 -3.54 -2.94 -3.39 -2.85

M1

2
HUB -3.90 -3.10 -3.61 -2.95 -3.39 -2.82

t(3) -3.96 -3.08 -3.66 -2.93 -3.37 -2.80

L1

1
HUB -9.62 -5.67 -8.77 -5.46 -8.46 -5.23

t(3) -9.83 -5.73 -8.88 -5.48 -8.15 -5.33

L1

2
HUB -2.83 -1.91 -2.61 -1.78 -2.32 -1.65

t(3) -2.87 -1.89 -2.58 -1.78 -2.31 -1.64

OLS -27.40 -20.67 -27.93 -20.85 -28.46 -21.61

M2

1
HUB -27.40 -20.56 -27.75 -20.63 -28.14 -21.13

t(3) -26.80 -20.39 -27.37 -20.39 -27.28 -20.68

OLS -4.40 -3.66 -4.17 -3.53 -3.95 -3.40

M2

2
HUB -4.42 -3.68 -4.20 -3.54 -3.93 -3.37

t(3) -4.47 -3.66 -4.18 -3.51 -3.88 -3.34

L2

1
HUB -13.32 -8.23 -12.63 -7.79 -10.89 -7.33

t(3) -13.40 -8.37 -12.02 -7.80 -11.10 -7.36

L2

2
HUB -3.14 -2.02 -2.84 -1.92 -2.29 -1.64

t(3) -3.23 -2.06 -2.80 -1.87 -2.33 -1.65

The table contains the 5% and 1% critical values of several unit root tests.

The entries are based on 10,000 Monte Carlo simulations. The tests Mr
1; 

and Mr
2; are presented just above Corollary 6.1, with some necessary

additional de�nitions found in (6.8) and (6.9). The tests Lr
1; and Lr

2; 

are presented in Remark 6.3, with �̂ as de�ned in Theorem 6.2. OLS

means that the unit root test is based on the OLS estimator. Similarly,

HUB and t(3) mean that the test is based on the Huber M estimator and

on a Student t likelihood with three degrees of freedom, respectively (see

also the second paragraph of Section 6.4).
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The di�erence between the values for M r
2 in Table 6.1 and those in Fuller

(1976) is caused by the heteroskedasticity consistent standard errors, used for
calculating the tests. Although the e�ect vanishes in the limit, it appears to
be important in �nite samples.

The power simulations are set up as follows. The data generating process
is yt = �yt�1 + "t, with � =0.90, 0.95, 0.99 and 1.00. I use two values for
the sample size T , namely 100 and 200. In order to study the sensitivity
of the results, I use three distributions for the errors: the standard normal
(N(0; 1)), the double exponential (DExp) and a truncated Cauchy (TCauchy).
The double exponential has exponentially decreasing tails that are fatter than
those of the normal distribution. The truncated Cauchy is a badly behaved
distribution in the sense that the probability of obtaining large drawings is
relatively high. In order to ensure the existence of moments, I truncate the
original Cauchy distribution to the interval [�c; c], with c = 12:7. In this way
95% of the probability mass of the original Cauchy distribution is captured.

The sensitivity of the tests with respect to the correlation structure of the
errors is investigated by considering the additive outlier model, as in Chapter
5. This is a kind of measurement error model, and therefore the use of au-
tocorrelation consistent test statistics seems advisable. The time series yt is
observed with error as yt+ ut. The measurement error ut is i.i.d. and equals 0
with probability 0.95. Otherwise, it equals three times the drawing from one
of the distributions presented earlier.1

In this chapter I only consider the regression models with trend (r = 2).
Results for the other regression models can be found in Lucas (1994). Using
the 5% simulated critical values for the di�erent tests and  (�) functions, the
rejection frequencies of the unit root tests were stored for the di�erent values
of the autoregressive parameter � using 1; 000 replications. The truncation
parameter needed for estimating the elements of 
 was 10 for T = 100 and
15 for T = 200. Making use of additional information about the correlation
structure of the errors for choosing a smaller truncation parameter did not
substantially change the results. The rejection frequencies for i.i.d. errors and
for the additive outlier model are given in Tables 6.2 and 6.3, respectively.
Because the Lr1; and Lr2; tests appeared to have lower power than M r

1; and
M r

2; , they are omitted from the discussion.
For the case of i.i.d. Gaussian errors, the performance of all tests is compa-

rable. The M2
1; have an estimated size that is signi�cantly above the nominal

level of �ve per cent. As the critical values of Table 6.1 are used, this discrep-
ancy appears to be due to the speci�c set of simulated time series underlying
the entries in Table 6.2. For fat-tailed errrors, Table 6.2 reveals that power can
be gained by using the Huber or MLT estimator. This power gain is clearest for
TCauchy errors. This is due to the fact that robust M estimators fully exploit
the advantages of having occasional large errors, i.e., innovative outliers (see
Davis et al. (1992)). Also note that the estimated sizes of several of the tests
are signi�cantly below the nominal �ve per cent level for fat-tailed errors. As

1For the truncated Cauchy distribution, the multiplication by the factor 3 is omitted.
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TABLE 6.2
Rejection Frequencies of Several Unit Root Tests Based on

M Estimators; the Case of i.i.d. Innovations
T = 100 T = 200

cdf �= 0.90 0.95 0.99 1.00 0.90 0.95 0.99 1.00

M2

1;OLS 27.3 13.6 7.2 8.0 78.9 30.0 9.2 9.2

M2

1;HUB 27.9 13.5 7.4 9.0 78.7 31.3 9.9 9.0

N(0; 1) M2

1;MLT 28.3 14.1 6.9 9.5 77.3 31.6 10.0 9.0

M2

2;OLS 19.9 9.6 5.8 6.7 66.0 20.4 6.9 7.6

M2

2;HUB 20.3 11.0 6.5 6.3 59.2 20.3 7.6 6.9

M2

2;MLT 20.5 11.7 7.7 7.2 54.8 19.2 6.9 7.3

M2

1;OLS 28.8 13.4 5.8 5.7 81.8 34.2 7.3 7.0

M2

1;HUB 33.6 13.5 4.1 4.2 90.5 38.9 6.2 4.6

DExp M2

1;MLT 36.8 14.5 3.9 4.1 92.1 40.2 5.9 4.0

M2

2;OLS 20.9 10.2 3.8 3.5 68.7 24.3 5.3 4.8

M2

2;HUB 30.0 12.9 3.5 3.1 77.9 33.8 4.7 2.9

M2

2;MLT 31.7 12.3 3.8 2.9 80.2 37.5 5.1 2.8

M2

1;OLS 17.4 8.2 5.8 5.0 62.4 22.1 6.5 7.2

M2

1;HUB 45.5 12.8 2.6 1.5 89.8 50.7 3.3 1.9

TCauchy M2

1;MLT 54.9 21.8 4.1 2.6 90.4 61.6 5.3 2.1

M2

2;OLS 17.5 6.2 2.1 1.5 56.2 15.8 3.8 4.5

M2

2;HUB 52.3 19.9 3.9 2.5 90.4 58.5 5.6 2.2

M2

2;MLT 61.2 32.1 5.9 3.8 92.4 68.5 10.3 3.2

The Table presents the rejection frequencies of unit root tests based on M estimators.

The model for generating the data is yt = �yt�1 + "t, with "t a set of i.i.d. distur-

bances from either the standard normal (N(0; 1)), the double exponential (DExp),

or the truncated Cauchy (TCauchy) distribution. For each entry 1,000 Monte Carlo

replications are used. Standard errors of the entries range from 0.4 to at most 1.6.

The nominal level of the tests is 5%.

the power properties of these tests are generally quite good, I do not consider
it to be much of a problem that the tests are somewhat conservative under the
null hypothesis.

For the additive outlier case in Table 6.3, the actual sizes of all tests typ-
ically seem to exceed the nominal level, especially if one considers the M2

1; 

tests. This is in line with the simulations in Chapter 5. The e�ects found
here are, however, less dramatic. As mentioned before, the present OLS based
tests are not exactly the ones suggested by Phillips (1987) and Phillips and
Perron (1988), but rather heteroskedasticity consistent variants of these. The
heteroskedasticity consistent estimates of the standard errors seem to mitigate
the size problems of the M2

2; tests. Still, the sizes of the Huber and MLT
based tests are closer to the nominal level than the sizes of the OLS based
tests. Also note that the power of all tests has dropped relative to the setting
with i.i.d. errors.

Other simulations using di�erent correlation structures for the errors were
also performed. These seemed to con�rm the conclusion that the performance
of the tests is comparable in the Gaussian case, slightly favoring the use of OLS
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TABLE 6.3
Rejection Frequencies of Several Unit Root Tests Based on

M Estimators; the Case of Additive Outliers
T = 100 T = 200

cdf �= 0.90 0.95 0.99 1.00 0.90 0.95 0.99 1.00

M2

1;OLS 68.3 42.0 27.8 25.4 97.4 70.8 33.5 26.3

M2

1;HUB 57.2 31.6 20.2 18.0 92.4 54.6 20.6 15.8

N(0; 1) M2

1;MLT 53.0 29.7 17.4 16.6 88.1 48.6 17.7 14.0

M2

2;OLS 32.2 17.1 9.9 8.3 76.1 34.0 13.0 10.8

M2

2;HUB 22.6 11.5 7.5 6.9 68.1 28.8 9.5 7.6

M2

2;MLT 23.1 12.5 9.1 7.9 64.6 28.2 10.2 8.1

M2

1;OLS 77.8 55.3 43.1 40.4 98.4 79.9 45.5 44.1

M2

1;HUB 64.1 36.0 24.6 24.2 93.0 58.7 22.6 21.0

DExp M2

1;MLT 53.8 30.5 17.7 19.4 88.9 49.6 17.8 16.2

M2

2;OLS 33.8 19.7 12.5 11.7 73.8 36.4 13.7 12.1

M2

2;HUB 16.9 8.7 5.9 5.7 62.0 23.8 7.6 5.4

M2

2;MLT 18.6 11.3 7.7 7.0 63.9 27.0 9.0 7.2

M2

1;OLS 47.0 34.3 26.8 27.6 89.9 67.5 39.3 32.2

M2

1;HUB 40.2 22.9 15.9 17.0 79.8 48.9 23.1 18.7

TCauchy M2

1;MLT 37.7 22.4 15.0 14.7 74.6 44.0 20.6 17.0

M2

2;OLS 26.0 15.2 11.6 10.4 67.8 39.9 18.2 15.2

M2

2;HUB 19.9 11.8 8.7 8.0 58.7 28.8 14.3 10.9

M2

2;MLT 22.6 14.1 9.7 9.4 55.9 30.3 15.3 11.5

The Table presents the rejection frequencies of unit root tests based on M estimators.

The model for generating the data is yt = xt + ut, with xt = �xt�1 + �t, �t a set

of i.i.d. standard normal disturbances, and ut a set of i.i.d. disturbances. ut is

equal to zero with probability 0.95, and otherwise it is a drawing from three times

the standard normal (N(0; 1)), three times the double exponential (DExp), or from

the truncated Cauchy (TCauchy) distribution. For each entry 1,000 Monte Carlo

replications are used. Standard errors of the entries range from 0.4 to at most 1.6.

The nominal level of the tests is 5%.

based tests. If the errors are fat-tailed, the use of the Huber or MLT estimator
seems preferable. If the errors "t in (6.1) have an autoregressive structure, the
power of the tests can drop to the nominal size, especially if r = 2. This �nding
holds for all the M estimators considered in the simulations. Alternatively, if
the errors have a moving average structure and are negatively correlated, all
the tests have severe size problems. This makes them virtually useless for
practical situations.

The overall conclusion from these simulations is that the behavior of the
tests based on the presented M estimators is similar to that of the OLS based
tests. Substantial power gains can be made by using the non-OLS estimators if
the errors are fat-tailed. Also note that the computation time of M estimators
is approximately the same as that of OLS. This is intuitively clear by writing
(6.3) as an (iterative) weighted least-squares problem, as in Hampel et al.
(1986) and Huber (1981). Therefore, it seems worthwhile to perform one of
the outlier robust unit root tests presented in this paper, instead of or along
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with the traditional OLS based tests.

6.5 Concluding remarks

In this chapter the asymptotic distribution theory for unit root tests based on
M estimators was discussed. The asymptotic distribution theory turned out
to be similar to the theory for the traditional OLS based tests as developed
in Phillips (1987) and Phillips and Perron (1988). As one would expect, the
asymptotic distributions of a unit root tests based on an M and on the OLS
estimator are approximately the same if the M estimator is close to the OLS es-
timator. A natural closeness criterion was povided by the long run correlation
between the innovations and their transformation  ("t), where  (�) de�nes the
M estimator. It was also shown that a linear combination of an outlier robust
test and an OLS based test is asymptotically normally distributed. This result
was used to construct new unit root tests, as in Herce (1993).

A simulation experiment was provided, illustrating the level and power
properties of several tests. Unit root tests based on a linear combination of an
OLS based unit root test and an outlier robust test appeared to have low power.
For the more traditional unit root tests, however, power could be gained by
using outlier robust estimators if the errors were fat-tailed. This power gain
had to be paid in terms of a power loss for Gaussian errors. In many settings,
however, the power gain in nonnormal situations outweighted the loss in the
Gaussian case. As the computation time of M estimators is similar to that of
OLS, it seems worthwhile to use these robust tests instead of, or at least along
with, traditional OLS based tests.

A second �nding that emerged from the simulation study and that was also
noted in Chapter 4 is that the use of heteroskedasticity consistent standard
error estimates, as in White (1980), mitigates the size problems of the Dickey-
Fuller t-test in additive outlier situations. Therefore, the use of these standard
errors seems an easy way of repairing some of the problems of the OLS based
tests.

6.A Proofs

In order to prove the theorems of Section 6.2, I �rst introduce some additional no-

tation. Let Dr be a diagonal matrix with diag(Dr) = (T�0:5; . . . ; T�r+0:5; (��"T )
�1)

for r � 1, and Dr = (��"T )
�1 for r = 0. Furthermore, let F"

t be the sigma algebra

generated by "t; "t�1; . . . and let Et(�) be the conditional expectation with respect

to F"
t . Convergence in probability is denoted by

p
!. The remaining notation is the

same as in Section 6.2. The parameter r is assumed to be nonnegative. Lemma 6.1

facilitates the proofs of the theorems.

Lemma 6.1 Given Assumptions 6.1 and 6.2,

(a)
PT

t=1D
rxrt ("t)

2xr>t Dr ) �2 
R
xrxr>
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(b)
PT

t=1D
rxrt 

0("t)x
r>
t Dr ) � 

R
xrxr>

(c)
PT

t=1D
rxrt ("t)) �� 

R
xrdb2 + (��" � �" )e

r=2��"

Joint convergence of (a) to (c) also applies.

Proof. To prove (a), note that under the present assumptions

lim
n!1

sup
t
EjEt�n( ("t)

2)�E( ("t)
2)j = 0

(see, e.g., Doob (1960), Ibragimov and Linnik (1971)). Hence, Theorem 3.3 of

Hansen (1992) can be applied in order to obtain

sup
0�s�1

������
bsT cX
t=1

Drxrtx
r>
t Dr( ("t)

2 � �2 )

������
p
! 0:

Part (a) now follows from the fact that
PT

t=1D
rxrtx

r>
t Dr )

R
xrxr>, along the lines

of Phillips (1987) and Phillips and Durlauf (1986). Part (b) is proved similarly.

Part (c) is proved by using the martingale di�erence approximation technique

described in Hansen (1992). De�ne ut =
P1

i=0Etf ("t+i)g, then by applying The-

orem 3.1 of Hansen (1992), it only remains to be proved thatPT
t=1D

r(xrt � xrt�1)ut �DrxrTuT+1
p
! (��" � �" )e

r=2��": (6:12)

As the function  (�) is continuous, by Theorem 3.49 of White (1984) the process

f ("t)g is strong mixing with mixing coe�cients of the same size as the ones in

Assumption 6.1. Therefore, using the proof of Theorem 3.1 of Hansen (1992),

supt�T jutj=T
0:5 p

! 0. As T 0:5Drxrt = Op(1), we obtain that DrxrTuT+1
p
! 0. Let

a be the �rst term on the left-hand side of (6.12). Using the proof of Theorem 4.1

in Hansen (1992), it is easily shown that the (r + 1)th element of a converges in

probability to
P1

i=1E("t ("t+i))=��", which equals (��" � �" )=2��". The remaining

elements of a converge to 0 in probability by applying the corollary to Theorem 3.3

in Hansen (1992). This establishes part (c) of the lemma.

Joint convergence follows straightforwardly by stacking the (vectorized) left-hand

side of (a) through (c) into a single vector. 2

Proof of Theorem 6.1. First, a Taylor series expansion is taken of (6.3)

with respect to "̂t around the true innovation "t. We obtain

0 =

TX
t=1

 ("t)x
r
t �

TX
t=1

 0("t)x
r
tx
r>
t (�̂r � er) +RT ; (6:13)

because "t = yt � yt�1 = yt � xr>t er. Premultiplying (6.13) by Dr and using the

Lipschitz condition for  0(�), we get

jRT j � K
PT

t=1j("̂t � "t)D
rxrtx

r>
t Dr(Dr)�1(�̂r � er)j;

for some constant K. The absolute value of a vector is taken elementwise. The

condition ("̂t � "t) = op(1) uniformly for t = 1; . . . ; T now implies that RT can be

replaced by op(1)(D
r)�1(�̂r � er). Therefore, (6.13) can be rewritten as

(Dr)�1(�̂r � er) =

"
TX
t=1

Drxrt 
0("t)x

r>
t Dr + op(1)

#�1 " TX
t=1

Drxrt ("t)

#
:
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Using Lemma 6.1, it follows that

T (er>�̂r � 1) = er>(Dr)�1(�̂r � er)=��"

)
�� 

��"� 
er>(

R
xrxr>)�1(

R
xrdb2 + (��" � �" )=2��"�� ):

For proving the second part of the theorem, it only has to be shown that VT )
�2 ��

�2
" ��2

 (
R
xrxr>)�1. Notice that under the present conditions

PT
t=1( ("̂t)

2 �  ("t)
2)Drxrtx

r>
t Dr p

! 0:

The theorem now follows directly by applying Lemma 6.1. 2

Proof of Corollary 6.1. Consistency of �s", �s , and �s" follows from, e.g.,

Newey and West (1987), Phillips (1987) and White (1984), while that of m , s ,

and s" follows from the corollary in Hansen (1992). Corollary 6.1 now follows from

the consistency of these estimators and Theorem 6.1. 2

Proof of Theorem 6.2. First note that �̂ is a consistent estimator of �.

Therefore, we only have to prove that M r
1; � �M r

1;" and M r
2; � �M r

2;" converge

weakly to the random variates mentioned in the theorem. I only present the proof

for the �rst relation. The second one follows in a similar way. Applying Corollary

6.1, we obtain

M r
1; � �M r

1;" ) er>
�R
xrxr>

��1 �R
xrd(b2 � �b1)

�
:

Note that the bivariate Brownian motion (b1; b2) has covariance matrix

~
 =

�
1 �

� 1

�
:

If we de�ne the matrix

A =

�
1 0

�� 1

�
;

then the bivariate Brownian motion (b1; b3)
> = A(b1; b2)

> has covariance matrix

A~
A> =

�
1 0

0 1� �2

�
:

Therefore, the elements of xr are uncorrelated with b3. Hence, conditional on xr,R
xrdb3 is a normally distributed random vector with mean zero and variance co-

variance matrix
R
xrxr>. This proves the theorem. 2


