
Chapter 7

Cointegration Testing Using

Pseudo Likelihood Ratio Tests

Chapters 4 through 6 dealt with the problem of constructing outlier robust,
univariate unit root testing procedures. In Chapters 7 and 8, multivariate unit
root tests, also known as cointegration tests, are studied.

The present chapter is set up as follows. Section 7.1 introduces the concept
of cointegration and discusses the cointegration testing procedure of Johansen
(1988, 1991). This section also comments on the possibilities of using outlier
robust estimation procedures in order to construct outlier robust cointegra-
tion tests. Section 7.2 introduces the pseudo maximum likelihood (PML) es-
timation principle and discusses the classes of estimators and data generating
processes that are used. In Section 7.3, the asymptotic distribution of a PML
based cointegration test is derived. The relation between this new test and
the one put forward by Johansen (1988) is discussed. Section 7.4 derives an
optimality result for the choice of the pseudo likelihood. It turns out that
power can be gained in situations with fat-tailed innovations if non-Gaussian
PML estimators are used. In Section 7.5, a simple Bartlett-type correction
factor is proposed for the PML based test. The corrected test is designed to
have approximately the same critical values as the test of Johansen (1988). In
Section 7.6, the results of a small simulation experiment are described, illus-
trating the performance of di�erent PML based cointegration tests. Section
7.7 brie
y discusses the problems of introducing deterministic regressors or
additional nuisance parameters into the model. Chapter 8 deals in more detail
with deterministic regressors in nonstationary, multivariate time series mod-
els. Finally, Section 7.8 contains some concluding remarks. The proofs of the
theorems in this chapter can be found in Appendix 7.A.

7.1 Testing for Cointegration

Chapters 4 through 6 dealt with the topic of autoregressive unit root testing
in a univariate framework. Consider the simple autoregressive model of order
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one,
�yt = �yt�1 + "t; (7:1)

with � the �rst di�erence operator, �yt = yt�yt�1, and f"tg and i.i.d. process.
The tests developed so far in this thesis were concerned with the hypothesis
H0 : � = 0. For � = 0, (7.1) describes a regression model in �rst di�erences,
such that yt can be rewritten as

yt = y0 +
tX

s=1

"s: (7:2)

(7.2) clearly demonstrates that if "t has a positive variance, the variable yt is
nonstationary. Using the terminology of Section 4.1, yt in (7.2) is integrated
of order one (I(1)), because yt is nonstationary, while �yt is stationary.

One of the easiest ways to generalize the univariate unit root tests to the
multivariate setting is to replace the univariate series yt by a vector of k di�er-
ent series, yt = (y1t; . . . ; ykt)

>. One then obtains the model �yt = �yt�1 + "t,
or 0

B@
�y1t
...

�ykt

1
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...
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0
B@

"1t
...
"kt

1
CA ; (7:3)

with � a (k � k) matrix of unknown regression parameters. Assume that
jIk � (Ik + �)zj = 0 implies either jzj > 1 or z = 1, with z 2 C and Ik
denoting the unit matrix of order k. So, explosive processes and processes with
complex unit roots or a root at minus one are excluded. Complex unit roots
are encountered in the analysis of seasonal time series (see, e.g., Hylleberg
et al. (1990) and Franses (1991, Chapter 4)). Because seasonal time series
analysis is not the focus of this thesis, the intricacies of complex unit roots
and roots of minus one are discarded. All methods in Chapters 7 and 8 can,
however, be generalized towards the case with complex roots.

Just as in the univariate case, one can test whether the matrix � in (7.3)
is equal to zero. If � = 0, then all the components of yt are driven by di�erent
partial sum processes. Apart from the cases j�j 6= 0 and � = 0, one can
have situations in which � is singular, but nonzero (j�j = 0, while � 6= 0).
This leads to several complications in the multivariate setting that were not
encountered in the univariate context. The di�erent components of yt can now
be integrated of order one, without the complete � matrix being equal to zero.

Example 7.1 Let � be equal to the (k � k) matrix

� =

0
BBBBB@

�1 0 � � � 0 1
0 �1 � � � 0 1
...

...
. . .

...
...

0 0 � � � �1 1
0 0 � � � 0 0

1
CCCCCA ;
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then (7.3) can be rewritten as�
yjt = ykt + "jt; for j 6= k;

�ykt = "kt:
(7:4)

4

From (7.4) one can easily see that all the components of yt are nonstation-
ary. There are, however, two additional properties of (7.4) that are important.
First, there is only one partial sum process causing the nonstationarity in the
elements of yt, namely

Pt

s=1 "ks. This contrasts with the case � = 0, for
which there are k di�erent random walks generating the nonstationarity in
yt. Second, there are (k � 1) linear combinations of the elements of yt that
are stationary, namely yjt � ykt for j 6= k. This also contrasts with the case
� = 0, for which there are no linear combinations of the elements of yt that
are stationary. Both of these properties are dealt with in more detail, below.

Section 4.1 discussed the notion of integratedness of order d. A process fytg
is said to be integrated of order d if its dth order di�erences form a stationary
process, while its (d�1)th order di�erences still form a nonstationary process.
If one is confronted with a vector process fytg that is integrated of order d,
part of the nonstationarity may be common accross the di�erent components
of yt. This was illustrated in Example 7.1. The fact that di�erent variables
may have a common source of nonstationarity led to the introduction of the
concept of cointegration (see Engle and Granger (1987)). Assume that all the
elements of the vector process fytg are integrated of order1 d, yit � I(d) for
i = 1; . . . ; k. The elements of yt are said to be cointegrated of order (d; b),
yt � CI(d; b), with 0 < b � d, if there exists a linear combination of the
elements of yt, a

>yt with a 2 IRk and a 6= 0, such that a>yt � I(d� b). The
vector a is called the cointegrating vector. It is possible that there are several
linearly independent cointegrating vectors for one process. In Example 7.1,
yt � CI(1; 1) and there are (k� 1) linearly independent cointegrating vectors.

If variables are cointegrated, then one can construct linear combinations of
those variables that are integrated of a smaller order than the original variables.
In economics, the case that is mostly studied is that in which the original
variables are I(1) and some linear combination(s) are I(0). Recently, also
the I(2) case has empirically been dealt with, see, e.g., Juselius (1995) and the

1In principle, the assumption that all the elements of yt are integrated of order d can be
replaced by the assumption that the elements of yt are integrated of at most order d. For
example, consider the case with two variables y1t � I(1) and y2t � I(0). Then the elements
of yt = (y1t; y2t)

> are integrated of at most order one and there exists a linear combination
of the elements of yt, namely 0 � y1t + 1 � y2t, that is stationary. So the cointegrating vector
in this case is just the second column of the unit matrix of order two. It is a bit an abuse
of language, however, to say that y1t and y2t are cointegrated, because the `co-part' of
cointegration suggests that there is a common source of nonstationarity in both variables.
Keeping in mind this problem with the terminology, all the test procedures that are discussed
in this second part of the thesis can also be used in situations where the elements of the
vector process fytg are integrated of at most order d.
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references cited therein. Typical examples of I(2) series are monetary variables
like the nominal money stock and prices. Note that if prices are I(2), in
ation
rates are I(1). Similarly, if the nominal money stock and prices have the same
I(2) trend, it might be the case that the real money stock is I(1) instead of
I(2). In this thesis I restrict my attention to the simpler case of variables that
are at most I(1).

I will now show under which conditions the rank of the matrix � in (7.3)
coincides with the number of linearly independent cointegrating vectors for
the process fytg. Assume that there are r linearly independent cointegrating
vectors and let B denote a (k � r) matrix whose columns are equal to the
cointegrating vectors. If r is equal to zero, the matrix B is unde�ned. The
structure of the argument that the rank of � is equal to r, is as follows. First,
it is shown that � can be written as AB>, with A a (k � r) matrix. Next, it
is shown that A has rank r.2

Note that for r > 0 the matrix B has full column rank r. Let B? denote
a (k � (k � r)) matrix of full column rank, such that B>

?B = 0. Using these
de�nitions, (7.3) can be rewritten as

�yt = �B(B>B)�1B>yt�1 +�B?(B
>

?B?)
�1B>

?yt�1 + "t: (7:5)

From the assumption that the elements of yt are at most I(1), it follows that
�yt is stationary. The stationarity of B>yt�1 follows from the fact that the
columns of B constitute all the linearly independent cointegrating vectors of
the system. The stationarity of the "t process follows directly from the i.i.d.
assumption for the error process. So the only term in (7.5) that exhibits I(1)
behavior is �B?(B

>
?
B?)

�1B>
?
yt�1. Because the left-hand side of (7.5) is I(0),

it must follow that the right-hand side of (7.5) is also I(0). This can only
be the case if �B?(B

>
?
B?)

�1B>
?
yt�1 � 0, or equivalently, if �B? = 0. This

condition implies that � can be written as AB>, where A is a (k� r) matrix.
Therefore, (7.5) can be rewritten as

�yt = AB>yt�1 + "t: (7:6)

It now remains to be shown that A has full column rank r. Premultiplying
(7.6) by B>, one obtains

B>�yt = (B>A)B>yt�1 +B>"t: (7:7)

Let the singular value decomposition of the matrix (B>A) be given by U�V >,
with U and V two orthogonal (r�r) matrices and � an (r�r) diagonal matrix

2Note that the proof of the equality of the rank of � and the number of linearly inde-
pendent cointegrating relations departs slightly from the argument one usually �nds in the
literature. Usually, one assumes that the rank of � is r and then derives that (under certain
conditions) there are r independent stationary linear relations (see, e.g., Johansen (1991)).
Here, in contrast, it is assumed that the linear relations B>yt are stationary, from which it
is derived that the rank of � must be equal to r (under the same regularity conditions as in
the usual approach).
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containing the singular values of B>A. De�ne zt = U>B>yt, then (7.7) can be
rewritten as

�zt = �V >Uzt�1 + U>B>"t: (7:8)

(7.8) implies that the diagonal elements of � must be strictly positive, oth-
erwise the stationarity of B>yt is contradicted. Thus, the matrix B>A has
full rank, which implies two things. First, the matrix A has full column rank
r, which establishes that the rank of � is r. Second, the matrix B>

?
A? has

full rank, where A? is a (k � (k � r)) matrix of full column rank, such that
A>
?
A = 0. The second of these two results provides a condition that is used

in Granger's representation theorem (see Johansen (1991)). If the condition
fails, one can show using (7.6) and (7.8) that yt must be integrated of at least
order two.

The main conclusion from the above paragraph is that there are two major
conditions for the number of cointegrating vectors to be equal to the rank
of the matrix �. These conditions are that: 1. the roots of the equation
jIk�(Ik+�)zj = 0 lie outside the unit circle or are equal to one; 2. jB>

?
A?j 6= 0,

i.e., the elements of yt are at most I(1).
As a side result of the above derivations, one obtains the vector error3

correction model (VECM) representation of the yt process in (7.6). Here the
variables B>yt�1 are interpreted as long-run equilibrium relationships (see,
e.g., Banerjee et al. (1993), L�utkepohl (1993, Section 11.1.2), and Hamilton
(1994, Section 19.1)). The parameters in the matrix A are called the error
correction parameters. The idea is that if the system is in equilibrium, i.e.,
B>yt�1 � 0, then the changes in the elements of yt will be small. Alternatively,
if the system is far out of equilibrium, the ECM induces a change in yt towards
the equilibrium relations B>yt, at least if the elements of A have the correct
signs.

Another way of looking at CI(1; 1) processes is by decomposing the yt pro-
cess into stationary and nonstationary components. Using Theorem 8.1 from
Section 8.3, one obtains that under the two assumptions mentioned earlier,

yt = y0 +B?(A
>

?B?)
�1A>?

tX
s=1

"s + S(L)("t � "0); (7:9)

with S(L) a matrix polynomial in the lag operator L and S(L)("t � "0) a
stationary process. The decomposition in (7.9) reveals that the elements of yt
are driven by the stationary process S(L)("t� "0) and the (k� r)-dimensional
nonstationary partial sum processes A>

?

Pt
s=1 "s, which are called the common

trends of the system. In Example 7.1 the common trend is given by
Pt

s=1 "ks.
Cointegration is concerned with �nding the linear combinations of the elements
of yt that eliminate the common trends. It is easily seen from (7.9) that the
linear combinations B>yt are exactly the ones that satisfy this objective.

3Hendry recently advocates the use of the term equilibrium instead of error correction
mechanism. The two terms have identical acronyms. I leave it to the reader to decide upon
which of the two terminologies is best.
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So far, only the relationship between the cointegrating vectors, the common
trends, and the rank of the matrix � have been discussed. Nothing has been
said about the estimation of the unknown parameters in (7.3) nor about the
determination of the rank of �. There is a huge literature on the construction
of statistics for determining the number of cointegrating relationships and the
exact form of these relationships, see, e.g., Engle and Granger (1987), Phillips
and Durlauf (1986), Johansen (1988, 1989, 1991), Park and Phillips (1988),
Phillips (1988, 1991a), Boswijk (1992), Park (1992), Kleibergen and van Dijk
(1994), and Stock (1994). In all of these procedures the ordinary least-squares
(OLS) estimator plays an important role. Skimming the empirical literature
for applications of cointegration testing procedures, one �nds that the likeli-
hood based testing procedure of Johansen (1988, 1991) is mostly used. The
procedure of Johansen also forms the basis of the present chapter and is, there-
fore, explained in more detail below. The next chapter, instead, starts from
the procedure put forward by Kleibergen and van Dijk (1994).

Johansen begins with the model

�yt = �yt�1 + �1�yt�1 + . . . + �p�yt�p + "t: (7:10)

The multivariate process yt is observed for t = �p; . . . ; T . In addition to
the regressors present in (7.10), deterministic trend functions and seasonal
dummies can be added. This is postponed until Chapter 8. Model (7.10)
di�ers from (7.3) in that additional dynamics are incorporated. This turns out
to be irrelevant for the asymptotic analysis (compare Remark 6.1). Johansen
now proceeds by assuming that f"tg is a Gaussian i.i.d. process with mean
zero and covariance matrix 
11. Conditioning on y0; . . . ; y�p, one obtains the
following (conditional) likelihood for (7.10):

TY
t=1

j2�
11j
�1=2

� exp

�
�
1

2
(�yt � �yt�1 � �Zt)

>
�111 (�yt � �yt�1 � �Zt)

�
;

(7:11)
where � = (�1; . . . ;�p), and Z

>
t = (�y>t�1; . . . ;�y

>
t�p). Under the hypothesis

that there are r cointegrating relationships, the matrix � can be written as
� = AB>, with A and B denoting two (k � r) matrices of full column rank.
Conditional on A and B, the maximum likelihood (ML) estimator for � from
(7.11) is the OLS estimator

�̂ =

 
TX
t=1

(�yt � AB>yt�1)Z
>

t

! 
TX
t=1

ZtZ
>

t

!�1

:

Now de�ne the vectors R1t = yt�1 �M1kM
�1
kk Zt and R0t = �yt �M1kM

�1
kk Zt,

with M1k =
PT

t=1 yt�1Z
>
t , M0k =

PT

t=1�ytZ
>
t , and Mkk =

PT

t=1 ZtZ
>
t . One

obtains that �̂ = (M0k��M1k)M
�1
kk and thatR1t andR0t are the residuals from

the regressions of yt�1 on Zt and of �yt on Zt, respectively. Next, conditional
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on B, the ML estimators for A and 
11 from (7.11) are the OLS estimators

Â =

 
TX
t=1

R0tR
>

1tB

! 
TX
t=1

B>R1tR
>

1tB

!�1

;

and


̂11 = T�1
TX
t=1

(R0t � ÂB>R1t)(R0t � ÂB>R1t)
>:

Let S00 =
PT

t=1R0tR
>
0t, S01 =

PT
t=1R0tR

>
1t, S10 = S>01, and S11 =

PT
t=1R1tR

>
1t,

then the ML estimator for B has to minimize

j
̂11j = jS00 � S01B(B
>S11B)

�1B>S10j;

which is equivalent to minimizing

jS00j � jB
>(S11 � S10S

�1
00 S01)Bj=jB

>S11Bj: (7:12)

(7.12) is minimized by setting the columns of B equal to the eigenvectors

corresponding to the r largest eigenvalues of the matrix S
�1=2
11 S10S

�1
00 S01S

�1=2
11 .

Note that B cannot be determined uniquely, as di�erent normalizations can be
chosen for the eigenvectors. For example, B and B� produce the same value
of the objective funtion (7.12) if � is a nonsingular matrix. Stated di�erently,
the matrix B is not identi�ed. This is immediately clear from (7.11). Because
the pair (A;B) produces the same matrix � as the pair (A��1; B�), these two
parameter con�gurations also lead to identical values of the likelihood function.
From this it follows that A and B are not identi�ed and that only the column
spaces of these variables can be determined from the data. One has to impose
restrictions on the elements of either A or B (or both) in order to obtain
estimates of the parameters. These restrictions can be arbitrary normalization
restrictions or restrictions that are derived from economic theory. For the
remainder of this chapter, it is assumed that no restrictions are available from
economic theory, and that B is normalized such that B>S11B = Ir.

Given the maximum likelihood estimators of all the unknown parameters,
the maximum value of the log-likelihood under the hypothesis that the rank
of � is equal to r, is

�
1

2
ln(jS00j)�

1

2

rX
i=1

ln(1� �i); (7:13)

with �1 > . . . > �k denoting the eigenvalues of the matrix S
�1=2
11 S10S

�1
00 S01S

�1=2
11 .

One can now construct the likelihood ratio test for the null hypothesis Hr :
rank(�) = r against the alternative Hk : rank(�) = k. Using (7.13), one
obtains the test statistic

LRr = �2T
kX

i=r+1

ln(1� �i):
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This statistic is known as the trace-test. Alternatively, one can test the null
hypothesis Hr : rank(�) = r against the alternative Hr+1 : rank(�) = r + 1.
This results in the test statistic LRmax

r = �2T ln(1��r+1), which is known as
the maximum eigenvalue test. Johansen derived the asymptotic distributions
of both tests and showed that they can be expressed in terms of functionals of
Brownian motions (see also Section 7.3).

Both the theoretical foundation in the likelihood principle and the compu-
tational ease of the Johansen method have stimulated its widespread use in
applied econometric work. As appears from the above discussion, the proce-
dure of Johansen heavily relies on the Gaussian (pseudo) maximum likelihood
((P)ML) estimator. In Chapter 2, several disadvantages of the Gaussian PML
estimator were mentioned. For example, the variance of the Gaussian PML es-
timator quickly increases as the disturbances become more heavy-tailed. More-
over, outliers and in
uential observations can have a large impact on the es-
timator. For both issues, see Huber (1981) and Hampel et al. (1986). The
sensitivity of the Gaussian PML estimator has its e�ect on inference procedures
that are based on it. In order to reduce the sensitivity of inference procedures,
one can base them on other estimators, e.g., maximum likelihood type (M) es-
timators (see Huber (1981)) and pseudo maximum likelihood estimators (see
White (1982) and Gouri�eroux et al. (1984)). Such alternative estimators can
be chosen such that they are less sensitive than Gaussian PML and, at the
same time, have a reasonable e�ciency if the errors are normally distributed.
Moreover, some of these estimators outperform the Gaussian PML estimator
in terms of e�ciency if the errors in the model are nonnormal.

Also in the present context of cointegration testing, one can expect that
tests based on the Gaussian PML estimator are more sensitive to outliers and
fat-tailed innovations than tests based on non-Gaussian PML estimators. In
particular, one can expect that the nonnormality of the error process can be
exploited in order to improve the power properties of the cointegration test-
ing procedure. For example, it is well-known that in a stationary context the
maximum likelihood estimator is, in general, more e�cient than a Gaussian
PML estimator. Therefore, it is intuitively clear that maximum likelihood
type estimators are more e�cient if the hypothesis of integration (no cointe-
gration) is slightly violated. This is formalized in the present chapter within
the framework of nearly non-cointegrated time series (see Phillips (1988)).

The main objective of the present chapter is to develop a cointegration test-
ing procedure based on pseudo maximum likelihood estimators (see Gouri�eroux
et al. (1984)) and to study the properties of this procedure by means of an
asymptotic analysis and simulations. The considered test is a generalization of
the trace test of Johansen (1988, 1991) presented below (7.13). It uses the ra-
tio of two possibly non-Gaussian pseudo likelihoods. As mentioned above, the
motivation for this approach is twofold. First, in many economic applications,
e.g., in �nance (see de Vries (1994)), the normality assumption for the error
term is untenable. This leaves some room for improving the power properties
of the cointegration test of Johansen. Second, dealing with outliers and in
u-
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ential observations in the data is a common feature of empirical econometric
model building. A test that automatically corrects for some of these atypical
observations seems a useful tool for the applied researcher.

This chapter only considers vector autoregressive (VAR) time series mod-
els. This means that attention is restricted to the parametric cointegration
testing approach as adopted by Johansen (1988, 1991). This contrasts with
the semiparametric approach of, e.g., Phillips (1987, 1988, 1991), Phillips and
Durlauf (1986), and Park and Phillips (1988). An advantage of using the
parametric approach is that one can easily construct tests that, like those of
Johansen, are based on the (pseudo) likelihood ratio principle.

This chapter extends the literature in several ways. First, pseudo maxi-
mum likelihood estimators are used for testing the cointegration hypothesis.
This leads to the construction of new test statistics. The relation of these
statistics to the likelihood ratio test of Johansen is established. Second, the
optimal choice of the pseudo likelihood and the score function is discussed in a
multivariate, nearly nonstationary framework. In this way, the �ndings of Cox
and Llatas (1991) are generalized. Third, simulation evidence is provided, il-
lustrating that the new cointegration tests outperform the likelihood ratio test
of Johansen if the innovations are fat-tailed. The notation used in this chapter
was explained in Subsection 1.4.4.

7.2 Preliminaries

The central model in this chapter is the vector autoregressive (VAR) model
of order p + 1, given in (7.10). The error terms "t are assumed to satisfy the
following conditions.

Assumption 7.1 (i) f"tg
1
t=0 is an i.i.d. process with density function f("t);

(ii) E("0) = 0; (iii) 
11 = E("0"
>
0 ) is �nite and positive de�nite.

Assumption 7.1 is stronger than the assumptions made in Phillips (1988).
As a result, the asymptotic distribution of the cointegration test statistic has
a simpler form. The requirement that the second moment of "t exists, can
be dispensed with. The limiting distribution of the cointegration tests for
innovations with in�nite variance is probably distributed as a �2 random vari-
able with r degrees of freedom or as a weighted sum of r independent �2(1)
random variables, at least if the function  of Assumption 7.3 in Section 7.3
below is bounded (compare Knight (1989, 1990)). This statement, however, is
not proved formally in this thesis.4 Finally, the introduction of deterministic

4Although no formal proof is given, one can make the result intuitively clear. Assume that
the �rst moment of "t exists, but that the second moment does not exist. Further assume that
 is bounded. The (canonical) correlations between "t and  (V

1=2"t) are then equal to zero.

This follows from the observation that E( (

�1=2
11

"t)"
>

t ) and E( (

�1=2
11

"t) (

�1=2
11

"t)
>) are

bounded, while E("t"
>

t ) is in�nite. As a result, the Brownian motion Ŵ2 and the stochastic
process Û in Theorem 7.1 are uncorrelated, giving rise to a �2 limiting result.
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regressors in the model is not of central interest in this chapter and, therefore,
delayed until Section 7.7 and Chapter 8.

Next, the two central restrictions mentioned in Section 7.1 are imposed on
the model.

Assumption 7.2 (i) The elements of yt are integrated of at most order one;

(ii) the equation

jIk � z(Ik +�)� z(1� z)�1 � . . .� zp(1� z)�pj = 0

with z 2 C has roots that satisfy either jzj > 1 or z = 1.

In order to determine the rank of the matrix �, estimates are needed of the
parameters in (7.10). Motivated by the arguments raised in Section 7.1, this
chapter considers the class of Pseudo Maximum Likelihood (PML) estimators
as an alternative to the Gaussian maximum likelihood estimator of Johansen
(1988). Assume that the pseudo likelihood has the form

LT (�) /
TY
t=1

j
11j
�1=2

� exp
�
��(


�1=2
11 et)

�
; (7:14)

where �(�) is a function satisfying the regularity conditions of Assumption
7.3 in Section 7.3 below. This function can be interpreted as the negative of
the (pseudo) log likelihood. The derivative of � with respect to the unknown
parameters can, therefore, be interpreted as the (pseudo) score. The matrix

11 in (7.14) is a scaling matrix, et = �yt��yt�1��1�yt�1� . . .��p�yt�p,
and � is the vector of unknown parameters. If the matrix 
11 is not known, it
can be estimated along with the parameters from (7.10). The pseudo likelihood

may be improper in the sense that
R
exp(��(


�1=2
11 "t))d"t need not exist. In

this way, pseudo likelihoods with a redescending score function are also covered
by the results in this paper. The PML estimator is given by the vector �̂T that
maximizes `T (�) = ln(LT (�)). Note that (7.14) comprises most likelihood
functions that are used in the literature. The Gaussian maximum likelihood
estimator of Johansen (1991), for example, is obtained by setting �(e) = e>e=2.
Also the Student t maximum likelihood estimator, as discussed by Prucha and
Kelejian (1984), and the class of maximum likelihood type (M) estimators (see,
e.g., Huber (1981) and Hampel et al. (1986)) are contained as special cases of
(7.14).

In Section 7.1, the two likelihood ratio based testing procedures of Johansen
were presented, namely the trace test and the maximum eigenvalue test. This
chapter only discusses the trace test. The results for the maximum eigenvalue
test can be obtained using similar techniques as the ones employed here.

The hypotheses of interest concern the rank of the matrix �. As this
rank can range from zero to k, there are k hypotheses of interest. The rth
hypothesis postulates that there are at most r cointegrating relationships, Hr :
rank(�) � r, with r = 0; . . . ; k � 1. The alternative hypothesis in each case is
Hk : rank(�) = k.
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Using the pseudo log likelihood `(�), three testing principles can be em-
ployed, namely the likelihood ratio (LR), the Lagrange multiplier (LM), and
the Wald principle. The Wald and LM testing principles are considered in
the next chapter. Here, the focus is on the likelihood ratio principle for con-
structing a test statistic. If ~�T;r denotes the PML estimator under the null

hypothesis, Hr, and �̂T denotes the PML estimator under the alternative hy-
pothesis, then the Pseudo Likelihood Ratio (PLR) test is given by

PLRr = 2(`(�̂T )� `(~�T;r)); (7:15)

(compare White (1982)). A subscript r is added to the test statistic in order
to indicate the null hypothesis that is tested. If no confusion is caused, this
subscript is omitted. The limiting distribution of PLRr is derived in the next
section.

It was show in the previous section that under the null hypothesis Hr, �
can be written as � = AB>, with A and B two (k� r) matrices of full column
rank. One of the interesting questions in this chapter concerns the possibility
of gaining power by exploiting the nonnormality of the error process in the
estimation stage. This question cannot be addressed if one only considers the
asymptotic distribution theory of the test statistic under the null hypothesis
of no cointegration. Instead, (local) alternatives to the null hypothesis have
to be considered. An adequate way of analysing the asymptotic distribution
theory of the PLR test under local alternatives is given in Johansen (1989)
and Rahbek (1994), who use of theory for nearly-nonstationary processes as
presented in Phillips (1988). Following Johansen (1989), the local alternatives
considered here are of the form

� = AB> + T�1A1B
>

1 ; (7:16)

with A1 and B1 two (k� r1) matrices of full column rank and 0 � r1 � k� r.
The decomposition in (7.16) implies that there are r1 additional cointegration
vectors B1, which enter model (7.10) with loadings that tend to zero as the
sample size increases. The order of T�1 is necessary for obtaining a nondegen-
erate power function. It is assumed that the matrix B1 satis�es B

>B1 = 0,
such that the cointegrating vectors in B1 are orthogonal to the cointegrating
vectors in B. If B>

1 B 6= 0, the matrix A in all subsequent derivations should be
replaced by a matrix AT = A+O(T�1). This has no e�ect on the �nal results.
Therefore, the assumption B>

1 B = 0 is maintained throughout in order not to
burden the notation more than is necessary.

7.3 Asymptotic Distribution Theory

In this section, the asymptotic distribution of the PLR test statistic (7.15)
is discussed under the sequence of local alternatives (7.16). Apart from the
conditions on the behavior of "t stated in Assumption 7.1, also some regularity
conditions are needed for the function �(�) used in the de�nition of the pseudo
likelihood (7.14). I assume the following conditions are satis�ed.
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Assumption 7.3 (i) �(�) is twice continuously di�erentiable; the �rst and

second order derivatives are denoted by  (

�1=2
11 "t) = @�(


�1=2
11 "t)=@"t and

 0(

�1=2
11 "t) = @ (


�1=2
11 "t)=@"

>
t , respectively; (ii)  0(


�1=2
11 "t) is �rst order

Lipschitz; (iii) E( (

�1=2
11 "0)) = 0; (iv) E( 0(


�1=2
11 "0)) = C1, with C1 pos-

itive de�nite; (v) the random vector  (

�1=2
11 "0) 
 "0 has �nite second order

moments; (vi) E( 0(
�1=211 "0)
 "0) = 0.

Parts (i) and (ii) of Assumption 7.3 impose some smoothness conditions on
the pseudo likelihood. The conditions are somewhat stricter than necessary.
Discontinuities in the function  can be handled if the density of "t is su�-
ciently smooth. This can be seen by comparing the results of Herce (1993) for
the Least Absolute Deviations estimator with those of Chapter 6 for smooth
M estimators. If allowance is made for discontinuities in, e.g.,  , the meth-
ods of proof have to be changed considerably. Therefore, the attention here
is restricted to smooth versions of �. Part (iii) of Assumption 7.3 is another
centering condition in order to guarantee the consistency of the PML estima-
tor. It is important to realize that this condition is nontrivial. It implies that
more is known about the distribution of the "t process than just its mean and
the �niteness of its variance. For the simple case that the distribution of "t
is spherically symmetric, however, it su�ces that the function � is spherically
symmetric in order to meet part (iii) of the assumption. Part (iv) implies
that the PML estimator can be approximated using a �rst order Taylor series
expansion of the �rst order condition that de�nes the estimator. Part (v) is
a moment condition. For the Gaussian PML estimator, it states that 4th or-
der moments of the errors exist. The condition is somewhat too strict and is
mainly used to facilitate the proofs of the theorems. It can, for example, be re-
placed by the conditions that  (


�1=2
11 "0) has �nite second order moments and

that @`T (�)=@
11 has �nite absolute moments of order 1 + � for some � > 0.

Note that (v) implies that the second order moment of  (

�1=2
11 "0) exists and

is �nite. Finally, part (vi) implies that we can abstract from the fact that 
11

is estimated rather than known. If this part of Assumption 7.3 is not met,
the limiting distribution of the PLR test changes. Note that (vi) is satis�ed
if both �(�) and f(�) are even, i.e., f("t) = f(�"t), and if the appropriate
moments exist.

The limiting behavior of (B>
?
B?)

�1B>
?
yt�1 is presented in the next lemma,

which follows directly from Phillips (1988), Johansen (1989), and Phillips and
Durlauf (1986).

Lemma 7.1 Given Assumptions 7.1 through 7.3, then

T�1=2
bsT cX
t=1

(">t ;  (

�1=2
11 "t)

>)) (W1(s)
>;W2(s)

>);

with (W1(s)
>;W2(s)

>)> a multivariate Brownian motion with covariance ma-

trix


 =

�

11 
12


21 
22

�
;
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and s 2 [0; 1]. Moreover, de�ne C2 = A>
?
A1B

>
1 B?, 	 =

Pp+1
i=1 i�i, �1 =

Ik +�+ �1, �p+1 = ��p, and �i = �i � �i�1 for i = 2; . . . ; p, then

T�1=2(B>

?B?)
�1B>

?ybsT c ) U(s);

where U(s) is the Ornstein-Uhlenbeck process that satis�es the stochastic dif-

ferential equation

(A>?	B?)dU(s) = C2U(s)ds + dA>?W1(s):

In order to establish the limiting behavior of the PLR statistic, it turns
out to be useful to de�ne the matrix

S0 = (A>?
11A?)
�1=2A>?
12C

�1
1 A?(A

>

?C
�1
1 
22C

�1
1 A?)

�1=2; (7:17)

which is the correlation matrix between A>
?
"t and A>

?
C�1
1  (


�1=2
11 "t). Let

S1RS
>
2 denote the singular value decomposition of S0, with S1 and S2 two

orthogonal matrices and R a diagonal matrix containing the absolute values
of the canonical correlations between A>

?
"t and A

>
?
C�1
1  (
�1=211 "t). Finally, let

"̂t denote the residuals calculated at some estimate �̂. Using these de�nitions,
the limiting behavior of the PLR statistic can be established.

Theorem 7.1 Let "̂t and ~"t denote the residuals calculated at �̂T and ~�r;T ,
respectively. Given Assumptions 7.1 through 7.3 and "̂t � "t = op(1) and

~"t � "t = op(1) uniformly in t, then PLR) PLR, with

PLR = tr

�
~K0(

Z
ÛdŴ>

2 )
>(

Z
Û Û>)�1(

Z
ÛdŴ>

2 )

�
+

2 � tr

�
~K0S

>

2
�K
�1=2
0 (A>?
11A?)

1=2S1
~C2(

Z
ÛdŴ>

2 )

�
+

tr

�
~C>

2 S
>

1 (A
>

?
11A?)
1=2K0(A

>

?
11A?)
1=2S1

~C2(

Z
Û Û>)

�
;

where tr(�) is the trace operator, Û(s) is an Ornstein-Uhlenbeck process satis-

fying the stochastic di�erential equation

dÛ(s) = ~C2Û(s)ds+ dŴ1(s);

Ŵ1(s) and Ŵ2(s) are two standard Brownian motions with diagonal correlation

matrix R (de�ned below (7.17)), and

~C2 = S>1 (A
>

?
11A?)
�1=2A>?A1B

>

1 B?(A
>

?	B?)
�1(A>?
11A?)

1=2S1;

K0 = (A>?C
�1
1 A?)

�1;

�K0 = (A>?C
�1
1 
22C

�1
1 A?);

~K0 = S>2
�K
1=2
0 K0

�K
1=2
0 S2:
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As mentioned in Section 7.1, the proofs of all theorems and lemmas can be
found in Appendix 7.A.

Remark 7.1 The additional two conditions in Theorem 7.1, "̂t � "t = op(1)
and ~"t � "t = op(1) uniformly in t, ensure that the correct optimum is chosen
from the (possibly large) set of local optima. In fact, the conditions imply
that A;�1; . . . ;�p, and 
11 be consistently estimated, while the actual unit
root parameters and cointegrating vectors (�22 and � in Appendix 7.A) are
consistently estimated at a rate higher than T 1=2. Low-level conditions for
consistency in a (possibly) nonlinear context can be found in, e.g., Gallant
(1987).

It is illustrative to consider the two main di�erences between the result of
Theorem 7.1 and the result of Johansen (1989). Johansen assumes Gaussian

error terms, thus imposing  (

�1=2
11 "t) = 
�111 "t. It then follows that the Brow-

nian motion W2(s) is a linear transformation of the Brownian motion W1(s),
namely W2(s) = 
�111W1(s). This implies that Ŵ2(s) and Ŵ1(s) are perfectly
correlated in the sense that R = Ik�r. If a di�erent speci�cation is chosen for
 , Ŵ1 and Ŵ2 are imperfectly correlated, which complicates the asymptotic
distribution of the PLR test.

In order to explicate the di�erence between the general PML estimator
and the Gaussian one, de�ne the Brownian motion Ŵ3(s) = Ŵ2(s)�RŴ1(s).
All stochastic integrals of the form

R
ÛdŴ>

2 can now be split into two parts.

The �rst part equals
R
ÛdŴ>

1 R, which is a Gaussian functional (see Phillips

(1991a)). The second part is
R
ÛdŴ3(s), which is mixed normally distributed.

One obtains the following theorem.

Theorem 7.2 De�ne the matrices K1 =
R
ÛdŴ>

1 and K2 = K>
1 K

�1
3 K1, with

K3 =
R
Û Û>. Then under the assumptions of Theorem 7.1,

PLR ) tr
�
~C>

2 S
>

1 (A
>

?
11A?)
1=2K0(A

>

?
11A?)
1=2S1

~C2K3

�
+

2 � tr

�
~K0S

>

2
�K
�1=2
0 (A>?
11A?)

1=2S1
~C2(

Z
ÛdŴ>

3 +K1R)

�
+

tr

�
~K0RK2R + 2 ~K0(

Z
ÛdŴ>

3 )K
�1
3 K1R

�
+

tr

�
~K0(

Z
ÛdŴ>

3 )
>K�1

3 (

Z
ÛdŴ>

3 )

�
: (7.18)

By imposing the Gaussian speci�cation of  as in Johansen (1989), Theo-
rem 7.2 has the following obvious corollary.

Corollary 7.1 Let the assumptions of Theorem 7.1 be satis�ed. If  (

�1=2
11 "t) =


�111 "t, then S1 can be chosen equal to Ik�r and

PLR) tr
�
K2 + 2 ~C2K1 + ~C2K3

~C>

2

�
:
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Theorem 7.2 reveals that the PLR statistic depends in several ways on nui-
sance parameters. Consider the asymptotic distribution of the PLR statistic
under the null hypothesis, so A1B

>
1 = 0. Then from Theorem 7.2, one can

distinguish two sources of dependence. First, the asymptotic distribution is
in
uenced by the premultiplication with the matrix ~K0 in each of the terms
of (7.18) that do not involve ~C2. This source of dependence is due to the dis-
crepancy between the pseudo and the true likelihood. As was already noted in
White (1982), misspeci�cation of the likelihood causes a breakdown of the in-
formation matrix equality. In the present setting this means that if the pseudo
likelihood does not coincide with the true likelihood, C1 6= 
22. Therefore, the
matrix ~K0 can be eliminated either by correctly specifying the likelihood or by
using the Gaussian PML estimator. The second source of dependence enters
through the presence of the matrix R in (7.18). This dependence is due to the
use of a non-Gaussian PML estimator. It is interesting to note that both types
of dependence disappear if one sets  (


�1=2
11 "t) = 
�111 "t, see Corollary 7.1.

As a side result of Theorem 7.2 one obtains that nuisance parameters re-
main present in the limiting distribution of PLR, even if the pseudo likelihood
coincides with the actual likelihood. This result is presented in the following
corollary.

Corollary 7.2 If "t has density f("t) = cj
11j
�1=2 exp(��(


�1=2
11 "t)), where c

is such that
R
f("t)d"t = 1, and if A1B

>
1 = 0, then

PLR) tr

�
(

Z
Ŵ1dŴ

>

2 )
>(

Z
Ŵ1Ŵ

>

1 )
�1(

Z
Ŵ1dŴ

>

2 )

�
;

with E(Ŵ1(s)Ŵ2(s)
>) = sR.

Corollary 7.2 states that if the pseudo likelihood is correctly speci�ed, then
the only nuisance parameters that enter the asymptotic distribution of the
PLR test are the canonical correlations between A>?"t and A

>
?C

�1
1  (


�1=2
11 "t).

Under the conditions of Corollary 7.1, this correlation is perfect. In most other
circumstances, however, the correlation is imperfect, which results in a more
complicated asymptotic distribution of the test statistic.

Corollary 7.2 can be used to simulate critical values of LR cointegration
tests for correctly speci�ed non-Gaussian likelihoods. A procedure for obtain-
ing consistent estimates of these values is fairly straightforward. For given
parameter estimates, the matrix S0 in (7.17) can be consistently estimated:

replace 
11 by T
�1
PT

t=1 "̂t"̂
>
t , C1 by T

�1
PT

t=1  
0(
̂

�1=2
11 "̂t), etc., with "̂t denot-

ing the tth regression residual. The estimate of S0 can then be used to estimate
the canonical correlations R by means of a singular value decomposition. Let
R̂ denote a diagonal matrix containing the estimated singular values of S0.
Then the critical values of PLR can be simulated in the usual way by gener-
ating random walks Ŵ1;T and Ŵ2;T of length T with correlation matrix R̂, and
replacing the integrals in Corollary 7.2 by sums. Note that this methodology
can be extended to simulate the critical values of the PLR test for misspeci�ed
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pseudo likelihoods. In that case, also a consistent estimate of ~K0 is needed.
Such an estimate can be constructed in the same way as described above using
the residuals "̂t.

The above procedure for computing critical values has two major draw-
backs. First, critical values have to be simulated for every estimate of R. This
might prove too time consuming for useful practical purposes. Second and
more important, the critical values of PLR provide poor approximations to
the critical values of the PLR test in �nite samples, see Chapter 8. Therefore,
Section 7.6 simulates the values of the PLR test directly in order to obtain crit-
ical values. Moreover, Section 7.5 proposes some simple strategies to correct
the PLR test, such that simulations are not needed altogether, and standard
available tables can be used.

7.4 The Choice of the Pseudo Likelihood

In order to use a PML estimator, one has to specify the function � in (7.14).
Di�erent objectives lead to di�erent choices of the pseudo likelihood. In this
section, the optimal choice of � is investigated if the criterion is to minimize
E(PLR), where PLR is de�ned in Theorem 7.1. This criterion is intimately
linked to the minimum (asymptotic) mean squared error (MSE) criterion of
Cox and Llatas (1991). The MSE considered is that of the estimator for
the restricted elements of the matrix � in (7.10), i.e., the actual unit root
parameters �22 in Appendix 7.A. This is seen by looking at the proof of
Theorem 7.1. For example, when testing H0 : r = 0, versus Hk : r = k,
the relevant MSE is that of the estimator for the complete matrix �. In
the stationary context, minimization of E(PLR) produces the true maximum
likelihood estimator. Therefore, the criterion also seems natural for guiding
the choice of the pseudo likelihood in a setting with nonstationary variables.
Moreover, as in the stationary context, one can expect the minimum MSE of
the estimators for the unit root parameters to be translated in a better power
behavior of the cointegration tests based on these estimators.

This section produces two major conclusions. First, given the objective
function stated above, the optimal pseudo score function  � is a linear com-
bination of the score function of the Gaussian PML estimator and the score
function of the true ML estimator. This contrasts with the results one ob-
tains in the stationary setting. Second, only part of the pseudo likelihood is
identi�ed if one uses the above criterion.

Before stating the main theorem of this section, the following additional
assumption is introduced.

Assumption 7.4 The density function f("t) is twice continuously di�eren-

tiable with respect to its argument and vanishes on the edge of its support.

Assumption 7.4 imposes a smoothness condition on the distribution of the
error terms in (7.10). This condition can again be relaxed at the expense of
additional complications in the derivations and the resulting formulae.
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In constructing an optimal PML estimator, one could directly try to mini-
mize E(PLR) with respect to �(�) subject to the restriction E( (


�1=2
11 "t)) = 0.

This results in a parabolic partial di�erential equation in k variables, which is
rather hard to solve. Therefore, the problem is tackled from a slightly di�erent
angle. First, the class of PML estimators is enlarged to the class of PMLF esti-
mators. The latter type of estimators solve a �rst order condition rather than
a maximization problem. Di�erentiating the logarithm of (7.14) with respect
to � and equating to zero, one obtains a system of equations in the vector of
unknown parameters �. The value �̂ that solves this system of equations is
labeled the PMLF estimator of �, where the F stands for the First order con-
ditions. For every PML estimator there is a corresponding PMLF estimator.
The converse, however, is not true if k � 2. The criterion E(PLR) is now

minimized with respect to  (�) subject to the restriction E( (

�1=2
11 "t)) = 0.

This produces the optimal PMLF estimator. It turns out that this estimator
corresponds to a PML estimator only in certain special cases. For k = 1, one
again obtains the results of Cox and Llatas (1991).

A problem with the approach sketched above is that the function  (�)
does not uniquely de�ne a PMLF estimator. If instead of  (�) one uses
~ (�) = C3 (�), with jC3j 6= 0, then the same PMLF estimator is obtained.
This indicates that further restrictions are needed in order to uniquely de�ne
 (�). The set of restrictions chosen here is E( 0(


�1=2
11 "t)) = C1 = Ik. Other

normalizations are, of course, also possible. This particular set of restrictions,
however, results in considerable simpli�cations in the derivations below. The
following lemma presents the expectation of PLR subject to the two relevant
restrictions.

Lemma 7.2 If the conditions of Theorem 7.1 are satis�ed and C1 = Ik, then

E(PLR) = tr(K0
�C2

�K3
�C>

2 ) + (k � r)tr(K0P ) +

tr(K0(A
>

?
21A?)K
�1=2
5

�K2K
�1=2
5 (A>?
12A?));

with �Ki = E(S1KiS
>
1 ) for i = 2; 3,

K5 = A>?
11A?;

�C2 = C2(A
>

?	B?)
�1(A>?
11A?)

1=2;

P = �K0 � (A>?
21A?)K
�1
5 (A>?
12A?);

S1 de�ned below (7.17), Ki, i = 1; 2; 3 de�ned in Theorem 7.2, C2 and 	
de�ned in Lemma 7.1, and K0 and �K0 de�ned in Theorem 7.1.

Note that the distribution of S1KiS
>
1 does not depend upon S1 for i = 2; 3,

because S1Ŵ1 is a standard Brownian motion due to the orthogonality of S1.
Moreover, (S1

~C2S
>
1 ) is independent of the value of S1. Therefore, if ~W1(s)

denotes S1Ŵ1(s), then ~U(s) = S1Û(s) follows the Ornstein-Uhlenbeck process

d ~U(s) = (S1
~C2S

>

1 ) ~U(s)ds+ d ~W1(s):
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The Lagrangean L of the constrained optimization problem can now be
written as

L = E(PLR)� �>1 E( (

�1=2
11 "t)) + vec(�2)

>vec(Ik � E( 0(

�1=2
11 "t)));

where �1 and �2 are the Lagrange multipliers. Setting the �rst order variation
of the Lagrangean with respect to  equal to zero, one can solve for the optimal
choice of  . The result is presented in the following theorem.

Theorem 7.3 Let Assumption 7.4 and the conditions of Theorem 7.1 be sat-

is�ed. Then the function  � that minimizes E(PLR) subject to the restrictions

E( (

�1=2
11 "t)) = 0 and E( 0(


�1=2
11 "t)) = Ik, has to satisfy

(k � r)A>? 
�(


�1=2
11 "t) = K4A

>

?"t + (K4 � (k � r)Ik�r)A
>

?I
�1d ln f("t)

d"t
;

with

K4 = �A>?

�

21A?(K
�1=2
5

�K2K
�1=2
5 � (k � r)K�1

5 );

f("t) the density function of "t, I = �E((d ln f("t))=(d"
>
t d"t)) the information

matrix, and 
�21 such that

(k � r)A>?

�

21A? = K4A
>

?
11A? + ((k � r)Ik�r �K4)A
>

?I
�1A?:

Theorem 7.3 reveals that only A>
?
 can be identi�ed if one uses the ob-

jective function and the restrictions above. So only that part of  that is
orthogonal to the space spanned by the error correction vectors A, matters
asymptotically for the optimal choice of  . Furthermore, Theorem 7.3 shows
that the optimal choice of the score function  is, in general, not proportional
to the likelihood score. In fact, omitting for the moment the premultiplica-
tion by the matrix A>

?
, the optimal score function is a linear combination of

the Gaussian pseudo score and the true likelihood score. Similar results were
found in the univariate context by Cox and Llatas (1991). The present results
are surprising, because in the stationary setting it is known that the (asymp-
totically) optimal estimator from an MSE perspective is the ML estimator.
This no longer holds in the nearly-nonstationary setting. Finally, if f(�) is the

Gaussian density, the optimal  has to satisfy A>
?
 �(


�1=2
11 "t) = A>

?
"t. As a

consequence,

 �(
�1=211 "t) = A?(A
>

?A?)
�1A>?"t + A(A>A)�1A>g("t); (7:19)

where the function g(�) is such that  � still satis�es Assumption 7.3 and the
restriction E(@g("t)=@"

>
t ) = I. For example, if f(�) is the standard bivariate

Gaussian density, both g("t) = ("1;t; "2;t)
> and g("t) = ("31;t=3; "

3
2;t=3)

> are
suitable speci�cations for g(�), which again illustrates the partial identi�cation
of  �.

Given the optimal PMLF estimator of Theorem 7.3, one can try to �nd the
corresponding PML estimator. This, however, raises a problem. In the uni-
variate context, one can easily write �� as a linear combination of the Gaussian
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log likelihood and the true log likelihood (see Cox and Llatas (1991)). In the
multivariate setting this cannot be achieved in general. A su�cient condition
for the existence of a PML estimator corresponding to the optimal PMLF esti-
mator is that 
11 is proportional to the inverse of the information matrix. This
condition can even be slightly relaxed, as is shown in the following corollary.

Corollary 7.3 If the conditions of Theorem 7.3 are satis�ed and if A>
?

11A? /

A>
?
I
�1A?, then the constants a and b can be chosen such that

��(

�1=2
11 "t) = a">t I"t=2 + b ln(f("t))

de�nes a PML estimator that is optimal in the sense of Theorem 7.3.

In order to illustrate the construction of the optimal PMLF estimator,
consider the following simple example.

Example 7.2 Let the density of "t be the k-variate Student t density with
� > 2 degrees of freedom,

f("t) =
�((� + k)=2)

�(�=2)j�(� � 2)!11j
k=2

�
1 + ">t "t=((� � 2)!11)

��(�+k)=2
; (7:20)

with !11 > 0. It follows that 
11 = E("t"
>
t ) = !11Ik. It is straightforward to

verify that the negative score function of the Student t distribution equals

 (

�1=2
11 "t) = (� + k)("t)=((� � 2)!11 + ">t "t);

and that the Fisher information matrix equals

I = E(@ (

�1=2
11 "t)=@"t) =

�(� + k)

(� � 2)(� + k + 2)!11

Ik:

Using these ingredients, one can compute the weighting factor K4 of Theorem
7.3. Consider the test of Hk�1 : rank(�) � k � 1, versus Hk : rank(�) = k.
Furthermore, assume that A1 and B1 in (7.16) have rank one, implying that
there is one additional cointegrating vector with loadings that decrease to zero
as the sample size increases. Without loss of generality, it can be assumed that
A? and B? are such that A>

?

11A? = 1 and A>

?
	B? = 1, respectively. One

obtains
K4 = �!21( �K2 � 1); (7:21)

with �K2 2 IR and !21 = A>
?

�21A? 2 IR. Following Theorem 7.3, !21 must

satisfy
!21 = K4 + (1�K4)�; (7:22)

with

� = A>?I
�1A? =

(� � 2)(� + k + 2)

�(� + k)
:
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Rewriting (7.22) using (7.21), one obtains !21 = �=(1 + (1 � �)( �K2 � 1)).
Substituting this expression for !21 back into (7.21), one gets the weighting
factor

K4 = ��( �K2 � 1)=(1 + (1� �)( �K2 � 1)):

To evaluate the weighting factor K4, the techniques described in Cox and
Llatas (1991) can be employed. Using the results of Bobkoski (1983), the joint
moment generating function of K1 and K3 (see the de�nitions in Theorem 7.2)
is given by

�(s0; s) = E(exp(�s0K3 � sK1))

= exp((C2 + s)=2)(cosh(z) + (C2 + s) sinh(z)=z)�1=2;

with z = (C2
2 + 2C2s + 2s0)

1=2. From this one obtains

�K2 =

Z
1

0

@2�(s0; 0)=@s
2ds0:

The above integral can be approximated using numerical integration. Some
plots of the weighting factor K4 for several values of C2 are presented in Figure
7.1. Notice that for increasing values of 1=�, the weight of the Gaussian part
in the optimal pseudo score function decreases. Moreover, the further one is
away from the null hypothesis, i.e., the larger C2, the more weight is attached
to the true maximum likelihood score. This corresponds with the fact that for
stationary time series, i.e., for C2 !1, the maximum likelihood estimator is
optimal. 4

Example 7.2 suggests that power can be gained by exploiting the distri-
butional properties of the innovations that drive the time series. The gain is
higher for data that exhibit a higher degree of leptokurtosis and can be realized
by using estimators that are, in a sense, \between" the Gaussian and the true
maximum likelihood estimator.

In order to apply the optimal PMLF estimator, one needs an estimate of
C2. As this matrix contains the parameters that determine the local alterna-
tive, it cannot be estimated consistently (see Cox and Llatas (1991)). The
information on C2 does not grow su�ciently fast with the sample size. An op-
erational two step procedure can be devised along the lines of Cox and Llatas
(1991, p. 1116). Alternatively, one can use the true ML estimator without
the Gaussian part in the score function. As the weights of the true ML part
in the optimal speci�cation of  � are larger than 0.8 in the example above,
one can still expect a power gain by using such an alternative to Gaussian
PML estimation.5 As a third possibility, one can use a PML estimator that

5Note that one can also consider a more ambitious approach. For example, one can try
to estimate the density of the innovations "t using preliminary estimates of the parameters
and a kind of kernel estimator. The estimated density can then be used to compute (non-
parametric) maximum likelihood estimators, which can be used to construct a PLR test.
This approach should have very appealing properties from an asymptotic point of view, e.g.,
power and few nuisance parameters. The implications in �nite samples, however, remain to
be investigated (also compare the npml estimator used in Section 3.3).
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Figure 7.1.| Weight of the Gaussian score function in the optimal pseudo
score function  �(�).

o�ers some protection against leptokurtosis and outliers if one suspects that
such phenomena are important problems in the data set that is dealt with.
Otherwise, the Gaussian PML estimator can be used. This third procedure is
often employed in robust statistics and is especially useful if one is uncertain
about the exact speci�cation of the true likelihood function. The main prob-
lem with the latter two approaches is the presence of nuisance parameters in
the limiting distribution of the PLR test statistic. Some simple corrections for
solving this problem in practical circumstances are given in Section 7.5. An
additional concern for the third approach is that one has to verify that part
(iii) of Assumption 7.3 is satis�ed, or stated di�erently, that one is estimating
the correct quantity (compare the simulations with recentered �2 distribution
in Section 3.3).

7.5 Obtaining Critical Values

The critical values of most unit root tests are usually obtained by means of
simulation.6 Simulating the distribution of the PLR test for nonlinear PML

6There are techniques that allow one to compute the critical values by means of numerical
integration (see Evans and Savin (1981, 1984) and Abadir (1992)), but these techniques are
still quite di�cult to implement in a multivariate context (see Abadir and Larsson (1994)).
Therefore, they are not applied here. Moreover, Chapter 8 reveals that the asymptotic
distribution can provide a very crude approximation to the �nite sample distribution of
cointegration tests based on robust estimators. Therefore, instead of simulating the limiting
distribution by approximating the (stochastic) integrals in Theorem 7.1, the critical values
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estimators in a multivariate setting is very time consuming. In this section,
a simple Bartlett type correction for the PLR statistic is considered. The re-
sulting corrected statistic, PLR�, aims to have approximately the same critical
values as the Gaussian PLR statistic of Johansen. The simple correction does
not provide an asymptotically correct inference procedure. It merely serves as
a tool for the applied researcher.

The idea is as follows. Consider the distribution of PLR under the null
hypothesis, so C2 = 0. Theorem 7.1 reveals that the behavior of the PLR test
is similar for di�erent speci�cations of the pseudo likelihood. In particular,
Theorem 7.2 reveals that the PLR test can asymptotically be represented as
the squared norm of the sum of two independent stochastic vectors, one of
which is a Gaussian functional, while the other one is normally distributed.
Consequently, the tail behavior of the PLR statistic is similar for a wide variety
of PML estimators. This fact can be exploited in deriving an approximation
to the critical values of the test. Let PLRG denote the PLR statistic based
on the Gaussian PML estimator, so  (


�1=2
11 "t) = 
�111 "t. Similarly, let PLR

G

denote the weak limit of PLRG. Moreover, de�ne

PLR� = PLR � E(PLR
G
) � (E(PLR))�1; (7:23)

then PLR� has asymptotically the same mean and the same tail behavior as
PLRG. Therefore, the critical values of the PLRG statistic intuitively provide
a reasonable approximation to the critical values of the PLR� statistic.

From Lemma 7.2 one can obtain an expression for the correction factor in
(7.23). This correction factor depends on the alternative hypothesis through
the value of A1B

>
1 in the matrix C2. As the main objective here is to provide

a correction such that PLR� has approximately the same limiting distribu-
tion under the null hypothesis as PLRG, the correction factor is evaluated at
A1B

>
1 = 0. The expression for this factor is given by

E(PLR
G
)

E(PLR)

�����
A1B

>

1
=0

=
tr( �K2)

tr(K0
~R �K2

~R>) + (k � r)tr(K0P )
; (7:24)

with ~R = (A>
?
C�1
1 
21A?)K

�1=2
5 , K5 and P as de�ned in Lemma 7.2, and K0

and �K2 de�ned in Theorem 7.1 and 7.2, respectively. There are three points to
note about the corrected PLR statistic. First, the inference based on PLR� in
combination with the critical values of PLRG is asymptotically biased. For one
thing, the actual and nominal size of the test do not coincide when the sample
size tends to in�nity. Moreover, the correction factor (7.24) is only appropriate
under the null hypothesis. Under the alternative, a di�erent adjustment might
be called for. In Section 7.6, it is investigated by means of simulation whether
the PLR� statistic combined with the PLRG critical values provides a useful
testing procedure. It is also checked whether the resulting bias in the inference
procedure is negligible in practical situations.

are approximated by simulating the PLR test directly.
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A second point to note about PLR�, is that the PLR� procedure as it
stands is not feasible, because the correction factor (7.24) depends upon un-
known parameters. The unknown quantities can, however, be consistently
estimated. Given a consistent estimate Â of A, one can choose (k� r) linearly
independent vectors orthogonal to Â. These produce an estimate Â? of A?.
The feasible correction factor will be independent of the method for construct-
ing Â?. In particular, if Â? is replaced by Â?C5 for some nonsingular matrix
C5, then the correction factor remains the same. Furthermore, from the esti-
mated parameters and the model one can compute residuals "̂t, which can be
used to estimate 
ij as

�

̂11 
̂12


̂21 
̂22

�
= T�1

TX
t=1

�
"̂>t ;  (
̂

�1=2
11 "̂t)

>)
�> �

"̂>t ;  (
̂
�1=2
11 "̂t)

>)
�
:

Similarly, C1 can be estimated by Ĉ1 = T�1
PT

t=1  
0(
̂

�1=2
11 "̂t). Substituting

these estimates into the appropriate formulae, one obtains estimates ofK0, K5,
~R, and P . The computation of �K2 is somewhat more problematic. In e�ect,
one needs the joint characteristic function of

R
Ŵ1dŴ

>
1 and

R
Ŵ1Ŵ

>
1 . This

function can be found in Abadir and Larsson (1994). Another, perhaps simpler
route is to obtain an estimate of �K2 by means of simulation. Constructing
random walks yt of length T + 1 using Gaussian innovations with mean zero
and covariance matrix Ik�r, one can approximate

R
Ŵ1dŴ

>
1 and

R
Ŵ1Ŵ

>
1 by

K̂1 = T�1
PT

t=1 yt(yt+1�yt)
> and K̂3 = T�2

PT
t=1 yty

>
t , respectively. Similarly,

one can approximate K2 by K̂2 = K̂>
1 K̂

�1
3 K̂1. The Monte-Carlo mean of this

estimator over 10,000 replications serves as an estimator of �K2. Both from the
simulations and from the theoretical results of Abadir and Larsson (1994) and
Abadir et al. (1994) it appears that �K2 is proportional to the unit matrix.
Therefore, (7.24) can be rewritten as

�k2(k � r)
�k2tr(K0

~R ~R>) + (k � r)tr(K0P )
; (7:25)

with �k2 a positive constant, ~R de�ned below (7.24), and P de�ned in Lemma
7.2. Some values of �k2 are presented in Table 7.1. Using the proposed estima-
tors for the unknown parameters in (7.25), one can construct a feasible PLR�

procedure.
A third point to note about the PLR� test is that the Bartlett type correc-

tion factor in (7.24) only corrects the mean of the test statistic. Correcting for
the mean, however, is insu�cient for correcting all the cumulants of the limit-
ing distribution simultaneously. Further modi�cations can be thought of that,
for example, also correct the variance or other higher order moments of PLR�

to that of PLRG. The resulting correction factors must again be consistently
estimated for the procedure to be feasible. This becomes considerably more
complicated if additional moments are taken into account. Therefore, I stick
to the simple correction proposed in (7.24).
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TABLE 7.1
Monte-Carlo Estimates of �k2

k � r 1 2 3 4 5
�k2 1.1428 3.0830 4.9801 7.0453 9.0597

(0.0150) (0.0260) (0.0331) (0.0395) (0.0442)

The matrix �K2, de�ned in Theorem 7.2, is proportional to �k2Ik�r .
The table presents estimates of �k2 based on 10,000 Monte-Carlo
simulations of samples of size 1,000. Monte-Carlo standard errors
are between parenthesis.

7.6 Simulation Results

This section presents the results of a small simulation experiment. The ex-
periment serves as an illustration of the properties of some simple PLR tests
relative to the Johansen test.

First, the simulations under the null hypothesis are described. These simu-
lations provide the critical values of the PLR test. The simulation experiment
was set up as follows. For several values of k�r, a (k�r)-variate random walk
yt, t = 0; . . . ; T , was generated with standard Gaussian innovations. Using the
generated time series yt, the test statistics PLR0 and PLR

�
0 were computed,

which test the hypothesis of zero cointegrating relations versus k�r cointegrat-
ing relations. This was done over N Monte-Carlo simulations. The number of
observations and replications used, are T = 100 and N = 1; 000, respectively.

In order to illustrate the properties of the PLR test, only a very simple
pseudo likelihood was considered, namely the multivariate Student t (compare
(7.20)),

�(

�1=2
11 "t) =

1

2
(� + k) ln(� + ">t 


�1
11 "t):

The cases considered were � = 1; 3; 5; 7; 10;1. Note that setting � =1 yields
the Gaussian PML estimator of Johansen. The results of the experiment are
summarized in Table 7.2 and in the left panels of Figure 7.2.

One feature that appears from both the �gures and the table is that the
distribution shifts to the right if either the degrees of freedom parameter in
the pseudo likelihood, �, decreases, or the dimension of the Brownian motion,
k � r, increases. The e�ect of a decrease in � is larger in higher dimensions.

The results for the corrected tests, PLR�, are presented in Table 7.3 and in
the right panels of Figure 7.2. For the simulations described above, Â? = Ik.
This follows from the fact that under the null hypothesis of no cointegrating
relations rank(�) = 0, which implies rank(A) = rank(B) = 0. By comparing
the plots of the empirical cumulative distribution functions (c.d.f.'s) in the right
panels of Figure 7.2 with those in the left panels, one sees that the distribution
of the Gaussian PLR test gives a reasonable approximation to the c.d.f. of
the feasible PLR� test.

It is interesting to know whether there is an ordering in the di�erent PLR�

statistics with respect to the degrees of freedom parameter � for a given data
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Figure 7.2.| Empirical distribution functions of PLR and PLR�.

The �gure contains the c.d.f.'s of the PLR test and the corrected PLR test (PLR�), based on 1,000
Monte Carlo simulations and sample size 100. For a generated data set, the PLR test is directly
calculated using the Student t pseudo likelihood with � degrees of freedom. k�r denotes the dimension
of the random walk process for which the test is computed.
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TABLE 7.2
Critical Values of the PLR Test for the Student t

Pseudo Likelihood
� k � r quantile

0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990

1 0.593 0.862 1.279 1.980 2.926 3.866 4.999 6.551
2 5.376 6.067 7.126 8.611 10.747 12.343 14.069 16.599

1 3 14.985 16.131 17.588 18.918 21.303 23.510 24.624 28.680
4 27.982 29.713 31.487 34.300 38.013 40.978 43.477 45.461
5 46.009 47.970 50.348 53.223 57.451 61.892 65.355 71.507

1 0.624 0.902 1.387 2.014 2.925 3.961 4.939 6.380
2 5.520 6.298 7.269 8.856 10.749 12.729 14.250 16.488

10 3 15.280 16.575 17.982 19.593 22.029 24.234 26.964 29.083
4 28.573 30.250 32.804 35.478 39.018 41.596 43.221 45.648
5 46.847 49.277 51.945 55.039 59.560 62.844 67.923 72.987

1 0.609 0.921 1.395 2.032 3.015 4.052 5.098 6.603
2 5.608 6.505 7.386 8.793 10.976 12.982 14.392 16.738

7 3 15.349 16.796 18.264 19.993 22.512 24.669 27.758 29.968
4 28.995 30.742 33.056 36.024 39.730 42.386 44.627 46.715
5 47.517 49.936 52.797 56.121 60.327 63.852 69.874 73.856

1 0.642 0.948 1.420 2.067 3.114 4.185 5.457 6.555
2 5.735 6.729 7.669 9.007 11.354 13.384 14.744 16.753

5 3 15.704 17.100 18.610 20.555 22.963 25.430 28.871 30.468
4 29.576 31.378 33.660 36.711 40.595 43.483 45.659 48.489
5 48.092 50.644 53.795 57.067 61.505 65.432 71.293 74.638

1 0.666 1.005 1.520 2.193 3.313 4.446 5.924 7.222
2 6.144 7.014 8.135 9.504 11.938 14.096 15.648 17.493

3 3 16.390 17.884 19.421 21.554 24.225 27.343 30.178 33.553
4 30.708 32.607 35.106 38.212 42.311 45.642 48.346 50.738
5 49.698 52.567 55.820 59.317 64.291 68.185 73.429 77.554

1 0.905 1.318 1.960 2.978 4.730 6.597 8.471 11.838
2 7.421 8.592 9.906 11.649 14.594 17.091 18.890 21.610

1 3 18.985 20.862 22.678 25.116 28.991 32.571 35.252 39.386
4 34.563 36.919 39.233 43.086 47.953 52.507 55.409 61.065
5 54.824 58.057 61.284 66.168 70.775 76.600 81.671 86.197

� is the degrees of freedom parameter of the Student t pseudo likelihood, k is the
dimension of the time series, and r is the cointegrating rank. The critical values
were obtained using 1,000 Monte-Carlo simulations with multivariate random walks
of length 100 with standard Gaussian innovations.
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TABLE 7.3
Critical Values of the feasible PLR� Test for the

Student t Pseudo Likelihood

� k � r quantile

0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990

1 0.630 0.966 1.427 2.009 3.102 4.138 5.202 7.534
2 5.448 6.107 7.116 8.273 10.136 12.023 13.648 16.457

1 3 14.679 16.130 17.517 19.201 22.439 25.215 27.180 29.212
4 28.057 29.896 32.200 35.253 39.089 42.152 45.845 49.148
5 47.108 49.368 52.044 54.705 59.708 63.608 66.166 69.774

1 0.606 0.980 1.436 1.956 2.979 4.018 4.913 7.111
2 5.405 6.152 7.115 8.233 10.204 12.108 13.563 16.325

10 3 14.648 15.969 17.342 19.586 22.260 24.316 27.572 29.804
4 28.003 29.807 31.665 34.665 38.712 42.003 44.932 49.242
5 47.326 49.260 51.591 54.429 58.612 62.658 65.309 68.525

1 0.616 0.988 1.423 1.966 2.947 4.081 4.871 7.015
2 5.427 6.183 7.115 8.283 10.393 12.215 13.759 16.056

7 3 14.629 16.057 17.408 19.719 22.205 24.575 27.360 30.279
4 28.026 29.838 31.803 34.703 38.963 42.031 45.459 49.717
5 47.295 49.341 51.697 54.670 58.357 63.215 65.664 66.854

1 0.630 0.992 1.404 2.002 2.912 4.085 5.232 6.919
2 5.466 6.191 7.087 8.295 10.314 12.236 14.153 15.695

5 3 14.590 16.094 17.488 19.698 22.150 24.664 27.308 31.070
4 27.985 29.814 31.895 34.535 39.019 42.310 45.451 50.674
5 47.310 49.054 51.982 54.965 59.301 63.494 65.328 66.748

1 0.636 0.976 1.392 2.058 2.921 3.983 5.300 6.556
2 5.475 6.209 7.061 8.379 10.615 12.285 14.698 16.470

3 3 14.794 16.125 17.695 19.853 22.401 25.126 27.513 31.116
4 28.047 29.993 32.260 35.105 39.520 42.476 45.891 52.061
5 47.292 48.948 52.492 55.261 60.517 63.292 66.712 68.268

1 0.584 0.843 1.282 1.906 3.189 4.262 5.188 6.635
2 5.334 6.212 7.162 8.499 11.109 13.001 15.467 17.912

1 3 14.566 16.329 18.181 20.280 23.024 26.645 29.534 33.019
4 28.394 30.467 33.180 36.219 40.016 44.683 48.106 54.271
5 47.670 50.454 53.390 56.880 62.311 66.579 70.099 72.670

� is the degrees of freedom parameter of the Student t pseudo likelihood, k is the
dimension of the time series, and r is the cointegrating rank. The critical values
were obtained using 1,000 Monte-Carlo simulations with multivariate random walks
of length 100 with standard Gaussian innovations. PLR� was computed by applying
the correction factor in (7.24) to every realization of PLR.
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set. This turns out not to be the case, as is illustrated in Figure 7.3. Consider
the setting with k � r = 1 For every simulated time series that was used to
construct Table 7.3, the di�erence is computed between the Gaussian test and
the Student t based PLR� statistic with � = 10 (left panel of Figure 7.3) and
� = 1 (right panel). This di�erence regularly alternates sign, indicating that
the Student t based PLR� statistics can be above as well as below the Gaus-
sian test statistic for a given data set. The magnitude of the di�erence seems
to decrease with the degrees of freedom parameter �. For � = 1, the maximum
absolute di�erence is approximately 7, whereas the maximum absolute di�er-
ence for � = 10 is about 2.3. Similar results hold if one considers the absolute
di�erence between two Student t based PLR� tests.

Figure 7.3.| Di�erence per simulation between the Gaussian feasible PLR�

statistic and the Student t based feasible PLR� statistic for k � r = 1 and
� = 10 and � = 1

Both �ndings can be explained by looking at Theorem 7.2. First, the dif-
ference between two PLR� tests based on di�erent pseudo likelihoods is a
random variable with zero mean. This follows from the fact that all PLR�

statistics are designed to have the same mean as the Gaussian PLR statis-
tic. Second, the variance of the independent Brownian motion Ŵ3 depends
upon the canonical correlations R between A>?"t and A>?C

�1
1  (


�1=2
11 "t) as

E(Ŵ3(s)Ŵ3(s)
>) = s(Ik�r � R2). As the canonical correlations are increasing

functions of the degrees of freedom parameter � for Gaussian "t, one can ex-
pect the di�erence between the two tests in Figure 7.3 to be larger for lower
values of �.

Next, the power of the PLR test is considered. As was demonstrated
in Section 7.3, the power of the PLR test depends upon the parameter ma-
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trix C2 = A>
?
A1B

>
1 B?, which contains (k � r)2 parameters. Johansen (1989)

demonstrates how to reduce the number of free parameters by exploiting the
invariance property of the Ornstein-Uhlenbeck process under rotation. The in-
teresting question in this chapter, however, is not so much the absolute power
of the PLR tests, but rather the power of the tests relative to that of the
Gaussian PLR test. Therefore, in this chapter a simple model is considered in
order to compare the power di�erences between Gaussian and non-Gaussian
based tests in a setting with normal and leptokurtic innovations, respectively.

In the simulation experiment for the power of the PLR test, the following
data generating process is used:�

�y1t
�y2t

�
=

�
�~c2=T

0

�
(y1;t�1 � y2;t�1) +

�
"1t
"2t

�
; (7:26)

where ~c2 is a positive constant, and where the "t either have a standard normal
distribution or a truncated Cauchy distribution (see further below). The two
roots of the VAR polynomial in (7.26) are 1 and (1 � ~c2=T )

�1, respectively.
In order to satisfy Assumption 7.2, it must hold that 0 � ~c2 < 2T , such that
both roots are on or outside the unit circle. Note that for ~c2 = 0 the system
in (7.26) has two unit roots and there exist no cointegrating relationships. If
0 < ~c2 < 2T , then there is one cointegrating relationship and the cointegrating
vector lies in the space spanned by (1;�1), while the error correction parameter
is �~c2=T .

Five di�erent test statistics are considered for the power simulations, namely
the Gaussian PLR test, the Student t based PLR test with 5 degrees and 1
degree of freedom, and the two corrected Student t based PLR� tests. The
rejection frequencies of these tests are simulated in the usual way. After gen-
erating a time series according to (7.26), the value of each of the above test
statistics is computed and compared with its 5% and 10% critical value, re-
spectively. For the �rst three tests, the critical values from Table 7.2 are
used. For the last two tests, the critical values of the Gaussian PLR test are
used. The simulations use time series of length T = 1; 000 and 1; 250 Monte
Carlo replications. Simulations with T = 100 resulted in identical conclusions.
The standard errors of the rejection frequencies are smaller than or equal to
0:5N�1=2

� 0:014.
Using the data generating process in (7.26), two experiments were per-

formed. In the �rst experiment, the "t were drawn from a bivariate normal
distribution with mean zero and covariance matrix I2. The restriction of the
covariance matrix to be the unit matrix is unimportant in the present setup,
because of the presence of the scaling matrix 
11 in the pseudo likelihood. For
Gaussian "t, Theorem 7.3 reveals that the optimal pseudo score function from a
minimumMSE perspective is the Gaussian score function,  (


�1=2
11 "t) = 
�111 "t.

Therefore, one can expect the Johansen or Gaussian PLR test to have the
largest power in this case.

In the second experiment, the Gaussian distribution for "t was replaced
by the truncated bivariate Cauchy distribution. The Cauchy distribution was
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TABLE 7.4
Rejection Frequencies of the PLR Tests

for Gaussian Innovations
~c2 PLRG PLR5 PLR1 PLR�

5
PLR�

1

10% level
0 0.101 0.116 0.115 0.113 0.120
1 0.086 0.122 0.137 0.118 0.140
5 0.330 0.304 0.238 0.301 0.244
10 0.702 0.652 0.524 0.648 0.534
20 0.997 0.985 0.870 0.984 0.877

5% level
0 0.057 0.056 0.071 0.059 0.078
1 0.050 0.061 0.077 0.067 0.085
5 0.207 0.180 0.152 0.194 0.165
10 0.559 0.514 0.399 0.531 0.421
20 0.981 0.946 0.794 0.953 0.814

The table contains the rejection frequencies of
the Gaussian based PLR test (PLRG), the Stu-
dents t based PLR test with 5 (PLR5) and 1
(PLR1) degrees of freedom, and the corrected
PLR tests for the Student t pseudo likelihood
with 5 (PLR�

5
) and 1 (PLR�

1
) degrees of freedom.

The hypothesis of no cointegrating relationships
(H0) is tested against the alternative of station-
arity (H2). The data generating process is (7.26)
with Gaussian innovations "t.

truncated to the set f"21t+"
2
2t � F0:95(2; 1)g, with F0:95(2; 1) the 95th percentile

of the F distribution with two degrees and one degree of freedom, respectively.
The truncation was introduced in order to guarantee the existence of a su�-
cient number of moments (compare Assumption 7.1). Although the truncated
Cauchy distribution does not satisfy Assumption 7.4 from Section 7.4, one can
still expect from Theorem 7.3 that a power gain can be realized by exploiting
the non-Gaussian form of the distribution.

The results of the �rst experiment are presented in Table 7.4. For ~c2 = 0,
the rejection frequency should be equal to the size of the test. This appears to
be approximately true for most test statistics. There are, however, some slight
size distortions for PLR1 and PLR

�
1 at the 5% level. Under small deviations

from the null hypothesis, the number of rejections generally increases for all test
statistics. As expected on the basis of Theorem 7.3, the rejection frequencies of
the Gaussian PLR test are higher than those of the other tests. Furthermore,
the size and power of the corrected PLR statistics are approximately equal
to that of their uncorrected counterparts. This argues in favor of the Bartlett
type correction of the PLR test, because it avoids the need for computing new
critical values for every separate choice of the pseudo likelihood.

The results of the second experiment are given in Table 7.5. The �rst
thing to notice is that the non-Gaussian PLR tests have an actual size below
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TABLE 7.5
Rejection Frequencies of the PLR Tests

for Truncated Cauchy Innovations
~c2 PLRG PLR5 PLR1 PLR�

5
PLR�

1

10% level
0 0.084 0.012 0.017 0.130 0.144
1 0.096 0.035 0.109 0.289 0.395
5 0.307 0.737 0.878 0.949 0.979
10 0.722 0.994 0.998 0.999 1.000
20 0.995 1.000 1.000 1.000 1.000

5% level
0 0.049 0.006 0.007 0.090 0.098
1 0.051 0.019 0.062 0.201 0.314
5 0.205 0.606 0.818 0.922 0.966
10 0.576 0.981 0.998 0.999 1.000
20 0.978 1.000 1.000 1.000 1.000

The data generating process is (7.26) with Gaus-
sian innovations "t. For further exlanation, see
the note to Table 7.4.

the nominal size. The power of these non-Gaussian PLR tests, however, very
rapidly exceeds the power of the Johansen test if one considers (local) depar-
tures from the null hypothesis. For ~c2 = 5, the rejection frequencies of PLR5

and PLR1 at the 5% level are already three and four times as high as that of
PLRG. This demonstrates that it is worthwhile to exploit the nonnormality
of the innovations in order to increase the power of cointegration tests. The
power could be further increased if the discrepancy between the actual and
nominal sizes of the tests could be corrected. This, however, is a separate
subject and it is not dealt with in this thesis.

A second point that can be noticed in Table 7.5 is that the actual sizes of
the corrected test statistics PLR�

5 and PLR
�
1 are above their nominal values

if the innovations are truncated Cauchy. This makes inference based on the
corrected test statistics di�cult to interpret in this situation.

7.7 Model Extensions

This section brie
y discusses two possible model extensions and their e�ects
on the asymptotic distribution of the PLR statistic. First, the consequences
of including deterministic functions of time as additional regressors in (7.10)
are discussed. Second, the e�ect of incorporating additional unknown nuisance
parameters in the pseudo likelihood (7.14) are dealt with.

It is well known that the incorporation of deterministic time trends in (7.10)
complicates the asymptotic analysis. For example, if the data generating pro-
cess is (7.10) and if one uses a regression model that contains a constant term
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in addition to the regressors in (7.10), then the Ornstein-Uhlenbeck process
Û(s) in Theorem 7.1 has to be replaced by the demeaned stochastic process

Û(s)�
R 1

0
Û(s)ds. Similarly, the presence of a linear time trend as an additional

regressor results in detrended stochastic processes in the limiting distribution
of the PLR statistic. The results get even more complicated if one allows for
deterministic components to be present in the data generating process (7.10)
instead of only in the �tted regression model. A well known example of such a
process is the random walk with nonzero drift. For such processes, the inter-
pretation of the deterministic components and their e�ect on the asymptotic
distributions are rather delicate (see Johansen (1994) and Chapter 8).

All of the above points have been addressed in the literature for multivariate
time series in the context of Gaussian (pseudo) maximum likelihood estimators.
The results, however, carry over in a straightforward manner to the present
context of non-Gaussian PML estimators. This is illustrated by the results
in the next chapter. Consequently, also the results of Rahbek (1994) for the
power of the Gaussian PLR test in the presence of nonzero drift terms in (7.10)
go through. This leaves one with the dilemma of choosing the appropriate
additional deterministic regressors. If one chooses too few of them, inference
is, in general, asymptotically biased. If one chooses the correct regressors, the
test statistics are not asymptotically similar (see Johansen (1991, Theorems 2.1
and 2.2)). Finally, if one incorporates too many deterministic functions of time
as additional regressors, the power of the PLR test diminishes (see Rahbek
(1994)). It is also important to note that the incorporation of additional
regressors and of nonzero drift terms in the data generating process complicates
the form of the simple Bartlett type corrections discussed in Section 7.5.

A second type of model extension concerns the presence of additional nui-
sance parameters in the pseudo likelihood. So far, only the presence of a
scaling matrix 
11 has been dealt with. If this matrix was unknown, it could
be estimated along with the other parameters under suitable regularity con-
ditions (see Assumption 7.1 and Appendix 7.A). From the proof of Theorem
7.1 in Appendix 7.A, one can see that the appropriately normalized Hessian
of the pseudo likelihood is asymptotically block diagonal between 
11 and the
parameters that are of interest for constructing the PLR test. Consequently,
one could also use a consistent preliminary estimate of 
11 in the construction
of the PLR test without altering the asymptotic distribution of the test. This
�nding can easily be generalized towards cases where additional nuisance pa-
rameters are present in the pseudo likelihood. A simple example is given by
the Student t pseudo likelihood, where the degrees of freedom parameter � is
unknown and estimated.

One can think of three strategies for dealing with unknown nuisance param-
eters. First, one can set the nuisance parameters equal to some user de�ned
values. This strategy may prove useful if one only uses the PLR test for pro-
tection against outliers and leptokurtosis. The nuisance parameters can then
be regarded as a type of tuning constants. This way of tackling the prob-
lem is often encountered in robust statistics. Second, one can use preliminary
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consistent estimates of the parameters in order to eliminate them. Third,
one can estimate the nuisance parameters along with the other parameters of
(7.10) by formulating the relevant pseudo score equations. Such estimators are
consistent under suitable regularity conditions (compare Assumption 7.1 and
Appendix 7.A).

7.8 Conclusions

In this chapter, the properties of likelihood ratio type tests for testing the
cointegration hypothesis were studied. Instead of using the Gaussian likeli-
hood, inference was based on a certain class of pseudo likelihoods. This class
contained several well known densities, like the Gaussian and the Student t
density. The asymptotic distribution of the pseudo likelihood ratio (PLR)
test was derived for a sequence of local alternatives to the null hypothesis of
no cointegration. This asymptotic distribution was shown to depend on three
types of nuisance parameters, arising from: the distance from the null hypoth-
esis, the possible misspeci�cation of the pseudo likelihood, and the use of a
non-Gaussian pseudo likelihood. Even if the likelihood was correctly speci�ed,
nuisance parameters remained present if a non-Gaussian pseudo likelihood was
used.

Also the optimal choice of the pseudo score vector was discussed. The
optimal pseudo score turned out to be only partially identi�ed and equal to
a linear combination of the Gaussian PML score and the true ML score. A
simple Bartlett type correction for the PLR test was proposed, which had
approximately the same critical values as the Gaussian PML test of Johansen
(1988, 1991), thus avoiding the need for calculating new critical values for every
choice of the pseudo likelihood. Using a simulation experiment, the properties
of all the tests were investigated. It was found that the choice of the pseudo
likelihood can have a great in
uence on both the distribution of the PLR test
under the null hypothesis, i.e., on the level, and under the alternative, i.e., on
the power. It also turned out that the distribution of the Bartlett corrected
PLR test was reasonably well approximated by that of the Gaussian PLR test
in case of Gaussian random walks.

The power simulations demonstrated the validity of the asymptotic argu-
ments. If the innovations are Gaussian, the Johansen trace test is optimal
from a power point of view. If the innovations are, in contrast, truncated
Cauchy, the Student t based PLR tests perform better in terms of power. It
also appeared that the actual sizes of the non-Gaussian based PLR tests were
below the nominal size. Moreover, for irregularly behaved innovations like the
truncated Cauchy ones, the corrected PLR tests turned out to be less useful
due to the fact that their actual sizes exceeded the nominal ones.

Several interesting topics for future research in this area remain. First,
it is worthwhile to devise corrections to the PLR statistic that approximate
the Gaussian PLR test better in the tail of the distribution than the simple
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Bartlett type corrections used here. Second, more simulation evidence must be
gathered in order to demonstrate the advantages and disadvantages of the non-
Gaussian PLR test over the Gaussian one in situations that are of practical in-
terest. This especially concerns the inclusion of deterministic functions of time
in the regression model as well as nonzero drift terms in the data generating
process. Third, the e�ects of dynamic misspeci�cation of the regression model
on the asymptotic distribution of the PLR test must be studied. Unreported
preliminary results indicate that the PLR test is very sensitive to dynamic
model misspeci�cation. Methods for correcting the e�ects of misspeci�cation
have to be designed. Some interesting possibilities for this approach can be
found in Phillips (1991a), who uses the Whittle likelihood for the Gaussian
PML estimator, and in Bierens (1994), who constructs a nonparametric coin-
tegration test. Fourth, the outlier robust cointegration tests discussed in this
chapter can be generalized in order to deal with periodic and seasonal coin-
tegration. Finally, it remains to be shown how well non-Gaussian PLR tests
perform on empirical data. One of the chief di�culties is to construct fast it-
eration schemes in order to maximize the pseudo likelihood. As this likelihood
is, in general, highly nonlinear in the parameters, this might prove a nontrivial
task. A simple empirical example using the Student t pseudo likelihood can
be found in Franses and Lucas (1995).

7.A Proofs

This Appendix provides the proofs of the statements in Sections 7.3 and 7.4.

In order to prove Theorem 7.1, some further notation is needed. First, normalize

the matrix B of cointegration vectors such that B> = (Ir; �
>), with � a ((k�r)�r)

matrix. Note that under the null hypothesis Hr, such a normalization is always

possible, because rank(B) = r. The choice of the leading submatrix in B> to be the

unit matrix may, however, require a reordering of the elements of yt. As the (pseudo)

likelihood ratio test is invariant under such reparameterizations, no generality is

lost by imposing this condition. Next, let A> = (�>11; �
>
21). Also introduce the

(k � (k � r)) matrix K6, which has the property that ~A = (A;K6) has full rank.

Under the hypothesis Hk the matrix � can then be decomposed as

� = AB> +K6�22(0; Ik�r) = A(Ir; 0) + ~A(�; �>22)
>(0; Ik�r); (7:27)

with �22 a ((k � r) � (k � r)) matrix. The number of parameters in A, �, and

�22 equals the number of elements in �, namely k2. Therefore, the parametric

decomposition of � in (7.27) can be used to estimate the parameters of (7.10) under

the hypothesis Hk. Note that (7.27) can also be used to estimate the parameters of

(7.10) under the null hypothesis Hr. This is seen by setting �22 = 0, which results

in � = AB>, with A and B of full column rank. Therefore, (7.27) can be used to

reformulate the hypotheses of interest as H 0
r : �22 = 0 versus H 0

k : �22 6= 0. Similar

decompositions are found in Phillips (1991a) and Kleibergen and van Dijk (1994),

who both use K>
6 = (0; Ik�r).

De�ne the vector of parameters � to be vec((�2; �
>
22)

>; A;�;
11), where � =

(�1; . . . ;�p). The hypothesis �22 = 0 can now be formulated as H� = 0, with
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H = (Ik�r; 0) 
 (0; Ik�r). Let ~�r;T denote the estimator of � under the hypothesis

�22 = 0 and let �̂T denote the estimator under the alternative. Furthermore, let �T
denote the true parameters for the local alternative speci�cation in (7.16) and let

�0 denote the true parameters for A1B
>
1 = 0. Note that �T approaches �0 as the

sample size tends to in�nity. Using these de�nitions, the following lemma can be

proved.

Lemma 7.3

lim
T!1

T (�T � �0) = vec
�
~A�1A1B

>
1 B?; A1B

>
1 (0; Ik�r)

>; 0
�
;

where ~A was de�ned earlier as ~A = (A;K6).

Proof. The �nal block of zeros is a trivial consequence of the fact that � and 
11

are identical under the null hypothesis and under the local alternatives. Now let

�� =

�
��11
��21

K6��22

��
Ir ��>

0 Ik�r

�

be such that �� = AB> +A1B
>
1 =T . Multiplying �� from the right by (Ir; 0)

> yields

(��>11; ��
>
21) = A> + (Ir; 0)

>B1A
>
1 =T , while right multiplication by the matrix B? =

(��; Ik�r)
> yields

(A;K6)

�
��> � �>

��22

�
= ~A

�
��> � �>

��22

�
= A1B

>
1 B?=T:

2

The key convergence results are given in the following lemma.

Lemma 7.4 Given the conditions of Theorem 7.1,

D
@`T (�T )

@�
) �

� R
U 
 d ~A>W2

�1

�
;

D
@2`T (�T )

@�>@�
D )

� R
UU> 
 ~A>C1

~A 0

0 �1

�
;

where �1 = Op(1), �1 = Op(1), U(s) is the Ornstein-Uhlenbeck process de�ned in

Lemma 7.1, and

D =

�
Ik(k�r)=T 0

0 I=T 1=2

�
:

Proof. It is straightforward to verify that

@`T (�0)

@�>
=

TX
t=1

(y>2;t�1 
  
>
t
~A;Z>1t 
  

>
t ; Z

>
2t);

where  t =  (

�1=2
11 "t), and y2;t�1 contains the last k� r rows of yt�1. The vectors

Z1t and Z2t are de�ned as Z>1t = (y>t�1B;�y
>
t�1; . . . ;�y

>
t�p), and

Z>2t = �
1

2
(vec(
�111 ))

> �  >t 

1=2
11 (">t 
 Ik)

@vec(

�1=2
11 )

@(vec(
11))>
;
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respectively. Note that Z1t and Z2t only contain stationary elements, which together

with the i.i.d. assumption for "t and the existence of the appropriate moments,

implies that T�1=2
PT

t=1(Z
>
1t 
  

>
t ; Z

>
2t) = Op(1). Furthermore we have that

y2;t = (0; Ik�r)yt = (0; Ik�r)(B(B
>B)�1B> +B?(B

>
?B?)

�1B>
?)yt;

where B>
?
= (��; Ik�r). From Lemma 7.1 and the stationarity of B>yt, it follows

that y2;bsT c=T
1=2 ) U(s). The �rst part of the lemma now follows directly from

Phillips (1988) and Hansen (1992).

Let  0t =  0(

�1=2
11 "t), then

D
@2`T (�0)

@�>@�
D =

TX
t=1

0
@ Q11;t Q12;t Q13;t

Q>12;t Q22;t Q23;t

Q>13;t Q>23;t Q33;t

1
A+ op(1); (7:28)

with

Q11;t = �
y2;t�1y

>
2;t�1

T 2

 ~A> 0t

~A

Q12;t = �
y2;t�1Z

>
1t

T 3=2

 ~A> 0t +

�
y2;t�1 

>
t

T 3=2

 I

�
vec( ~A>)

vec(A;�)>

Q13;t =

�
y2;t�1"

>
t

T 3=2

 ~A> 0t


1=2
11

�
vec(


�1=2
11 )

vec(
11)>

Q22;t = �
Z1tZ

>
1t

T

  0t

Q23;t =

�
Z1t"

>
t

T

  0t


1=2
11

�
vec(


�1=2
11 )

vec(
11)>

Q33;t = �@Z2t=@vec(
11)
>:

It is easily checked that under the present conditions
PT

t=1(Q12;t; Q13;t) converges

to zero for T ! 1. Furthermore, the weak convergence of
PT

t=1Q11;t follows from

Phillips and Durlauf (1986) and Hansen (1992). The convergence of the remain-

ing blocks in (7.28) follows directly by applying the law of large numbers. Joint

convergence also holds. 2

The next lemma gives the appropriate convergence result for the Hessian of the

pseudo likelihood.

Lemma 7.5 Let �̂T with corresponding residuals "̂t be such that 
̂
�1=2
11 "̂t�


�1=2
11 "t =

op(1) uniformly in t, then

D

(
@2`T (�̂T )

@�>@�
�
@2`T (�T )

@�>@�

)
D

p
! 0;

with D and �T as de�ned earlier.
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Proof. This follows straightforwardly from the Lipschitz continuity of  0 and the

convergence of (7.28) (compare Chapter 6). 2

One of the major results of Lemmas 7.4 and 7.5 is that the appropriately normal-

ized Hessian of the pseudo log likelihood is asymptotically block diagonal between

the parameters � and �22 on the one hand, and the parameters A, �, and 
11 on

the other hand. This simpli�es the proof of Theorem 7.1, because the e�ect of 
11

being estimated rather than known can now be discarded. Moreover, without loss

of generality, attention can be restricted to the case p = 0, i.e., the VAR(1) model.

Therefore, with a slight abuse of notation, the sequel of this appendix only discusses

the case p = 0 with �xed and known scaling matrix 
11.

Proof of Theorem 7.1. One has vec(�22) = H�, with � as de�ned above

Lemma 7.3. Following Gallant (1987, Chapter 3, Theorems 13 and 15), one obtains

2(`T (~�)� `T (�̂)) =
@`T (�T )

@�>
J�1H>(HJ�1H>)�1HJ�1

@`T (~�)

@�
+

2
@`T (�T )

@�>
J�1H>(HJ�1H>)�1H(�0 � �T ) +

(�0 � �T )
>H>(HJ�1H>)�1H(�0 � �T ) + op(1);

(7.29)

where J = @2`T (�T )=(@�
>@�). Note that H � D = H=T . Using this fact and the

Lemmas 7.3 through 7.5, one can prove that the last term of (7.29) converges weakly

to�
vec((0; Ik�r) ~A

�1A1B
>
1 B?)

�>�
(

Z
UU>)
 ((0; Ik�r)( ~A

>C1
~A)�1(0; Ik�r)

>)�1
�

�
vec((0; Ik�r) ~A

�1A1B
>
1 B?)

�
=

(vec(C2))
>(

Z
UU> 
K0)vec(C2) =

tr(K0C2(

Z
UU>)C>2 ): (7:30)

Similarly, one can show that H(DJD)�1D@`T (�T )=@� converges weakly to

(Ik�r 
 (0; Ik�r))((

Z
UU>)
 ~A>C1

~A)�1(

Z
U 
 d ~A>W2) =

((

Z
UU>)�1 
 (0; Ik�r) ~A

�1C�11 )(

Z
U 
 dW2):

As a result, the �rst and second terms in (7.29) converge weakly to

(

Z
U 
 dW2)

>((

Z
UU>)�1 
 (0; Ik�r) ~A

�1C�11 )>�

((

Z
UU>)
 ((0; Ik�r)( ~A

>C1
~A)�1(0; Ik�r)

>)�1)�
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((

Z
UU>)�1 
 (0; Ik�r) ~A

�1C�11 )(

Z
U 
 dW2) =

(

Z
U 
 dA>?C

�1
1 W2)

>((

Z
UU>)�1 
K0)(

Z
U 
 dA>?C

�1
1 W2) =

tr(K0(

Z
Ud(A>?C

�1
1 W2)

>)>(

Z
UU>)�1(

Z
Ud(A>?C

�1
1 W2)

>)); (7:31)

and

2 � (

Z
U 
 dA>?C

�1
1 W2)

>(Ik�r 
K0)vec(C2) =

2 � tr(K0C2

Z
Ud(A>?C

�1
1 W2)

>); (7:32)

respectively. Now replacing U and A>
?
C�11 W2 in (7.30), (7.31), and (7.32) by

Û(s) = S>1 (A
>
?
11A?)

�1=2(A>?	B?)U(s);

and

Ŵ2(s) = S>2 (A
>
?C

�1
1 
22C

�1
1 A?)

�1=2A>?C
�1
1 W2(s);

respectively, one obtains

tr

�
~C>2 S

>
1 (A

>
?
11A?)

1=2K0(A
>
?
11A?)

1=2S1 ~C2(

Z
Û Û>)

�
; (7:30

')

tr

�
~K0(

Z
ÛdŴ>

2 )
>(

Z
Û Û>)�1(

Z
ÛdŴ>

2 )

�
; (7:31

')and

2 � tr

�
~K0S

>
2
�K
�1=2
0 (A>?
11A?)

1=2S1 ~C2(

Z
ÛdŴ>

2 )

�
: (7:32

') It is easily checked that, given the result of Lemma 7.1, Û(s) satis�es the stochastic

di�erential equation presented in Theorem 7.1. Moreover, let Ŵ1(s) = A>
?
W1(s),

then E(Ŵ1(s)Ŵ2(s)
>) = S>1 S0S2 = R. 2

Proof of Theorem 7.2. The result follows directly from Theorem 7.1 and

the fact that Ŵ2 = RŴ1(s) + Ŵ3(s). 2

Proof of Corollary 7.1. From the fact that  (

�1=2
11 "t) = 
�111 "t, it follows

that 
22 = C1 = 
�111 . Therefore, R, S0, S1, S2, and
~K0 reduce to the unit matrix,

Ŵ1 = Ŵ2, and K
�1
0 = (A>

?

11A?). The result now follows directly from Theorem

7.1. 2

Proof of Corollary 7.2. Under the conditions stated in the corollary, the

information matrix equality holds, meaning that

E(d2 ln(f("t))=(d"
>
t d"t)) = �E((d ln(f("t))=d"t)(d ln(f("t))=d"t)

>):
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For the speci�c form of f(�) given in the corollary, this implies that C1 = 
22. Using

this fact and the the fact that ~C2 = 0, the result follows directly from Theorem 7.2.

2

Proof of Lemma 7.2. The only stochastic variable in the �rst term of (7.18)

is K3, which has expectation S>1
�K3S1. Using some elementary matrix manipula-

tions, it is easily shown that the expectation of the �rst term equals tr(K0
�C2

�K3
�C>2 ),

with �C2 as de�ned in the lemma.

The second term in (7.18) consists of two parts. The �rst part vanishes, because

E(
R
ÛdŴ>

3 ) = 0 through the independence of Ŵ1 and Ŵ3. The second part can be

rewritten as

2 � tr
�
K0

�C2
�K1(A

>
?
11A?)

�1=2(A>?
12C
�1
1 A?)

�
:

Let u1 be a univariate Ornstein-Uhlenbeck process generated by the standard Brow-

nian motion w1. Let w2 denote a standard Brownian motion that is uncorrelated

with w1. Then the elements of �K1 are either of the form E(
R
u1dw1) or E(

R
u1dw2).

From the independence of w1 and w2, it follows easily that E(
R
u1dw2) = 0. More-

over, using the results of Bobkoski (1983), it follows that

E(

Z
u1dw1) = �@�(0; 0)=@s = 0;

with � as de�ned in Example 7.2. So one obtains �K1 = 0.

Similar to the �rst component of the second term, the second component in the

third term in (7.18) vanishes in expectation. The other component can easily be

rewritten as

tr( �K
1=2
0 K0

�K
1=2
0 S>0

�K2S0);

which equals

tr
�
K0(A

>
?C

�1
1 
21A?)(A

>
?
11A?)

�1=2 �K2(A
>
?
11A?)

�1=2(A>?
12C
�1
1 A?)

�
:

In order to compute the expectation of the fourth term, de�ne the sigma algebras

F1s for 0 � s � 1 that are generated by Ŵ1(s). Due to the independence of Ŵ1

and Ŵ3, the conditional distribution of the fourth term in (7.18) given F1s is �2.

Therefore the expectation of this term equals (k � r)tr( ~K0(Ik�r � R2)), which can

be rewritten as (k � r)tr(K0P ). 2

Proof of Theorem 7.3. The Euler-Lagrange equations for the maximization

problem are given by

@L=@ i =

kX
j=1

@2L=(@xj@ 
0
ij);

for i = 1; . . . ; k. Working out these conditions, one obtains the set of equations

2fA?K0A
>
?
21A?(K

�1=2
5

�K2K
�1=2
5 � (k � r)K�1

5 )A>?"+

2(k � r)fA?K0A
>
? � f�1 +�2

_f = 0; (7:33)

where f = f("), _f = df=d",  =  (

�1=2
11 "), and " = "t. Integrating (7.33) and using

the fact that E( ) = E(") = 0, one obtains �1 = 0. Furthermore, premultiplying
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(7.33) by A>, it follows that A>�2 = 0. Finally, premultiplying (7.33) by A>
?
=f ,

one obtains

A>?
21A?(K
�1=2
5

�K2K
�1=2
5 � (k � r)K�1

5 )A>?"+

(k � r)A>? =
1

2
A>?�2( _f=f): (7:34)

Di�erentiating (7.34) with respect to ">, taking expectations, and using the fact

that E( 0) = Ik, one obtains

A>?
21A?(K
�1=2
5

�K2K
�1=2
5 � (k � r)K�1

5 )A>? + (k � r)A>? =
1

2
A>?�2I; (7:35)

with I = �E((d2 ln(f))=(d">d")) being the Fisher information matrix. Combining

the equations A>�2 = 0 with (7.35), one can solve for �2 and obtain

�2 = 2A?K0((k � r)Ik�r � �K4)A
>
?I

�1;

with
�K4 = �A

>
?
21A?(K

�1=2
5

�K2K
�1=2
5 � (k � r)K�1

5 ):

Substituting this solution back into (7.34) and solving for  , one obtains the result

(k � r)A>? = �K4A
>
?"+ ( �K4 � (k � r)Ik)A

>
?I

�1( _f=f): (7:36)

Note that  in (7.36) enters on the right-hand side as well as on the left-hand side,

namely in the matrix 
21 (or �K4). Multiplying (7.36) from the right by ">A? and

taking expectations, one can solve for the value of 
21 (or �K4). When doing this,

note that E( _f">=f) = �Ik due to the fact that f vanishes on the edge of its support

(see Assumption 7.4). Substituting the solution for 
21 back into (7.36), the �nal

result is established. 2

Proof of Corollary 7.3. Let ~ �(

�1=2
11 "t) = @��(


�1=2
11 "t)=@"t, then

~ �(

�1=2
11 "t) = aI"t + b

d ln f("t)

d"t
:

De�ne (k�r) �(

�1=2
11 "t) = I

�1 ~ �(

�1=2
11 "t), then the �rst order conditions implied

by the functions  � and ~ � have the same solution(s). Therefore, they de�ne the

same PML estimator. One has that

(k � r) �(

�1=2
11 "t) = a"t + bI�1

d ln f("t)

d"t
:

Following Section 7.5, �K2 = �k2Ik�r. Therefore,

K4 = �(�k2 � (k � r))A>?

�
21A?K

�1
5 :

Using the fact that A>
?
I�1A? = k3K5 for some k3 6= 0, one further obtains

(k�r)A>?

�
21A? = �A>?


�
21A?(

�k2�(k�r))+k3(k�r)K5+A
>
?


�
21A?(

�k2�(k�r))k3;

such that

A>?

�
21A? = k3(k � r)K5=(�k2 � k3(�k2 � (k � r)))

and K4 = k4Ik�r, with

k4 = �k3(k � r)(�k2 � (k � r))=(�k2 � k3(�k2 � (k � r))):

The result now follows by setting a = k4 and b = k4 � (k � r). 2


