
Chapter 8

Cointegration Testing Using an

Outlier Robust Wald Test

This chapter considers the same problem as Chapter 7, namely that of mul-
tivariate unit root testing or cointegration testing. There are two important
di�erences between the present and the previous chapter. First, both chap-
ters use a di�erent testing principle. In Chapter 7, a robust alternative for
the Gaussian pseudo likelihood ratio test of Johansen (1988) was developed,
whereas an outlier robust Wald test is considered in the present chapter. A
second important di�erence concerns the presence of deterministic drift terms
in both the data generating process and the regression model. The e�ect of
such terms was only briey touched upon in Section 7.7. In this chapter much
more emphasis is placed upon the consequences of drift terms and deterministic
regressors.

As in Chapter 7, the asymptotic distribution of the cointegration test is
derived. Moreover, some of the �nite sample properties of the test are studied
by means of a Monte-Carlo simulation experiment.

As already mentioned in Section 7.7, nonzero drift terms in the data gen-
erating process complicate the derivation of the asymptotic distributions of
cointegration tests. The relevance of this statement will become apparent in
the present chapter. The notation is sometimes cumbersome, while the sepa-
rate treatment of all di�erent possibilities for the data generating process and
the regression models gives the material a messy appearance. This, however,
seems to be unavoidable.

The chapter is set up as follows. In Section 8.1, the model and the testing
procedure of Kleibergen and van Dijk (1994) are introduced (see also Kleiber-
gen (1994)). An obvious obvious modi�cation of the original testing procedure
is discussed, which makes the test resistant to outliers. Moreover, the di�erent
sets of interesting null hypotheses are introduced, and attention is devoted to
the importance of the deterministic components in the model. Section 8.2 pro-
vides the test statistics for each of the hypotheses put forward in Section 8.1.
In Section 8.3, the asymptotic distribution of these test statistics is derived.
In Section 8.4, the properties of the outlier robust Wald test are evaluated
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by means of simulations. In Section 8.5, some brief comments can be found
on the importance of the ordering of the variables for the Wald test. Some
possibilities for solving the sensitivity of the Wald test with respect to this or-
dering are proposed. Finally, Section 8.6 concludes this chapter and presents
some interesting lines for future research. The appendix contains the proofs of
the theorems from the main text. The notational conventions adopted in this
chapter were explained in Subsection 1.4.4.

8.1 The Model, the Testing Procedure, and

the Hypotheses

This section describes the Wald cointegration test put forward by Kleibergen
and van Dijk (1994). It is shown how this test can be generalized in order
to yield an outlier robust cointegration test. Finally, the di�erent interesting
hypothesis are discussed. Throughout this section, it must be kept in mind
that there are two classes of interesting hypotheses. First, one is interested in
the number of cointegrating relationships. Second, one is interested in how the
deterministic components of the model, like the constant term and the linear
time trend, enter the cointegrating relationships. Considering both types of
hypotheses leads to a wide variety of test statistics.

8.1.1 The Model

The model used throughout this chapter is similar to (7.10). The only di�er-
ence is that a linear time trend is added to the speci�cation. More general
polynomials in t can also be dealt with, but at the cost of additional complex-
ity and cumbersome notation. Moreover, quadratic and cubic trend functions
are often deemed unrealistic from an economic perspective. Therefore, only
the case of a linear time trend is considered in this chapter. Assume the data
generating process is

�yt = �yt�1 +	1�yt�1 + . . . + 	p�yt�p +  + �t+ "t; (8:1)

with yt 2 IRk, and

j(1� z)Ik � z�� z(1� z)	1 � . . .� zp(1� z)	p�1j = 0 (8:2)

implying either jzj > 1 or z = 1. Moreover, assume that the elements of yt are
at most integrated of order one. The vector yt is observed for t = �p; . . . ; T
and all inference procedures are conducted conditional on the values of y�p

through y0.
As was explained in Section 7.1, the rank of the matrix � in (8.1) cor-

responds to the number of cointegrating relationships. Under the hypothesis
that rank(�) = r, the matrix � can be decomposed as � = AB>, with A and
B two (k � r) matrices of full column rank. Note that in contrast to Chapter
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7, B>yt now no longer needs to be stationary in the sense that the mean of
B>yt does not depend upon t. This is a consequence of the presence of the
linear trend in the data generating process (8.1).

The interpretation of the deterministic components in the model, i.e., the
constant and the trend, heavily depend upon the rank of the matrix �. Con-
sider the two extreme cases of � having full rank and � being equal to zero. If
� has full rank, then yt is stationary around a linear time trend. In contrast,
if � = 0, then (8.1) indicates that �yt is stationary around a linear trend, im-
plying that yt is the sum of a random walk process and a quadratic time trend.
The di�erent interpretations of the deterministic part of the model under the
null hypothesis of no cointegration and under the alternative of stationarity
should be kept in mind when discussing the di�erent test statistics. If one
wants the deterministic part of the model to have the same interpretation un-
der the null and under the alternative hypothesis, additional restrictions must
be imposed on the coe�cients of the trend function (see the discussion of the
test statistics in Subsection 8.1.3, below). These restrictions can also be tested.
More on the interpretation of deterministic components in models like (8.1)
can be found in Johansen (1994).

8.1.2 The Testing Procedure

In order to test for the number of cointegrating relationships, Kleibergen and
van Dijk (1994) consider the LU -decomposition of the matrix �. Under the
hypothesis that rank(�) = r, they set

� = ��> =

�
�11 0
�21 �22

��
Ir ��>2
0 Ik�r

�
=

�
�11 ��11�

>
2

�21 ��21�
>
2 + �22

�
; (8:3)

with �2 a ((k � r) � r) matrix, �11 an (r � r) matrix of full rank, �21 a
((k� r)� r) matrix, and �22 a ((k� r)� (k� r)) matrix. Note the similarity
between the decomposition in (8.3) and the one used in the proof of Theorem
7.1 in Appendix 7.A. The total number of parameters in �11, �21, �22, and
�2 equals the number of elements in the matrix �. A nice feature of the
decomposition in (8.3) is that it allows for an explicit parameterization of
the hypotheses of interest (see also further below in this subsection). Using
(8.3), the cointegration hypothesis can be tested using linear restrictions and
ordinary regression techniques.

A decomposition of the type (8.3) is not always possible. First, the nonsin-
gularity assumption for �11 may require a reordering of the elements of yt. The
nonsingularity of �11 plays a crucial role in the derivation of the asymptotic
distribution of the Wald test for cointegration. This is undesirable, as one
would, in general, like a testing procedure to be invariant under such simple
transformations as reordering the variables. The case j�11j = 0 is discussed in
more detail in Section 8.5.

A second problem with the decomposition in (8.3) is the presence of the
identity matrix Ir in the matrix �. The normalization of the upper-left block
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of � to be the unit matrix, may be invalid. As a simple example, consider the
case where k = 2, r = 1, and�

�y1t
�y2t

�
=

�
0 �0:5
0 �0:5

��
y1;t�1
y2;t�1

�
+

�
"1t
"2t

�
:

An LU -decomposition of the form (8.3) is now impossible, as such a decom-
position would have to satisfy �11 = 0 and �11�2 = 0:5. This defect can again
be taken care of by reordering the elements of yt.

Using the decomposition in (8.3) and the assumption that j�11j 6= 0, rank
de�ciency of the matrix � corresponds to a rank de�ciency of �22. In par-
ticular, rank(�) = r if and only if �22 = 0. For �22 = 0, the cointegrating
vectors are given by the columns of (Ir;��

>
2 )

>. Therefore, one can test for
the existence of r linearly independent cointegrating relationships by testing
whether �22 = 0. This idea underlies the testing procedure of Kleibergen and
van Dijk (1994).

Kleibergen and van Dijk propose the following two-step procedure. De�ne
� = (	1; . . . ;	p), Z

>
t = (�X>

t�1; . . . ;�X
>
t�p), and let �1, y1t, �1, 1, �1, and

"1t denote the �rst r rows of �, yt, �, , �, and "t, respectively. Analoguously,
�2 denotes the last (k � r) rows of �. Similar de�nitions hold for the other
quantities. Using these de�nitions and the decomposition presented in (8.3),
(8.1) can be split into the two parts, namely

�y1t = �1Zt + 1 + �1t+�1yt�1 + "1t

= �1Zt + �11(B
>yt�1 + ��111 1 + ��111 �1t) + "1t

= �1Zt + �11(B
>yt�1 � ~1 � ~�1t) + "1t; (8.4)

and

�y2t = �2Zt + 2 + �2t +�2yt�1 + "2t

= �2Zt + �21(B
>yt�1 + ��111 (1 + �1t)) + �22y2;t�1 +

A>?( + �t) + "2t

= �2Zt + �21(B
>yt�1 � ~1 � ~�1t) + �22y2;t�1 +

~2 + ~�2t+ "2t; (8.5)

with ~1 = ���111 1, ~�1 = ���111 �1, ~2 = A>
?
, ~�2 = A>

?
�, A> = (�>11; �

>
21),

A>
?
= (��21�

�1
11 ; Ik�r), B

> = (Ir;��
>
2 ), and B>

?
= (�2; Ik�r). Note that

B>
?
B = A>

?
A = 0. Estimators of all these quantities are denoted by putting a ^

above the parameter one is estimating, for example, ~̂1 for ��̂
�1
11 ̂1. Kleibergen

and van Dijk propose to start computing the test for �22 = 0 by estimating
(8.4). In this way, one obtains an estimate of the cointegrating relationships,

say (B̂>yt�1 � ~̂1 � ~̂�1), with �̂>2 = ��̂�111 �̂12. This estimate can then be used
as a regressor in (8.5) instead of the unobserved quantity (B>yt�1 � ~1� ~�1t).

After estimating (8.5) with the generated regressor (B̂>yt�1 � ~̂1 � ~̂�1), the
hypothesis �22 = 0 can be tested using a Wald type test. This procedure has
the attractive property that only simple regression techniques are needed.



8.1. THE MODEL, THE TEST, AND THE HYPOTHESES 181

There are two problems with the approach of Kleibergen and van Dijk
(1994). First, the use of a generated regressor in estimating (8.5) creates an
errors-in-variables problem. This complicates the derivation of the asymptotic
distribution of the test statistics. The e�ect of this errors-in-variables problem
does not vanish for T ! 1. Second, Kleibergen and van Dijk use the OLS
estimator for estimating (8.4) and (8.5). As mentioned in previous chapters,
the OLS estimator is sensitive to outliers and other departures from the nor-
mality assumption. Therefore, it is suggested in this chapter to use the class
of M estimators to obtain estimates of the parameters in (8.4) and (8.5). As
in the univariate case, these estimators have better robustness properties for
a variety of data generating processes. The precise formulations of the test
statistics based on M estimators are presented in the next section.

8.1.3 The Hypotheses of Interest

Now turn to the di�erent hypotheses that are of interest when testing for the
existence of cointegrating relations. The type and number of deterministic
components in both the data generating process and in the chosen regression
model are extremely important. Therefore, the following �ve data generating
processes are distinguished:

1. no deterministic regressors in either (8.4) or (8.5) (~1 = 0, ~2 = 0, ~�1 = 0,
~�2 = 0);

2. an intercept in (8.4), which enters the cointegrating relationship; no ad-
ditional intercept in (8.5) (~2 = 0, ~�1 = 0, ~�2 = 0);

3. an intercept in (8.4), which enters the cointegrating relationship; an ad-
ditional intercept in (8.5) (~�1 = 0, ~�2 = 0);

4. a linear time trend in (8.4), which enters the cointegrating relationship;
an intercept in (8.5) (~�2 = 0);

5. a linear time trend in (8.4), which enters the cointegrating relationship;
an additional linear time trend in (8.5).

Similarly, one can distinguish �ve di�erent speci�cations for the regression
model when estimating (8.4) and (8.5). This leads to a total of 25 combinations
of regression models and data generating processes. The number of possibilities
is reduced by focusing on situations where the regression model is correctly
speci�ed or over-speci�ed. This leaves 15 combinations of data generating
processes and regression models.

By testing whether �22 = 0, one tests whether the number of cointegrating
relationships is at most r. This immediately produces the �rst set of relevant
hypotheses, namely Ha:b

r : �22 = 0, where Ha:b
r denotes the null hypothesis

of rank(�) � r under data generating process a, a = 1; . . . ; 5, and regression
model b, b = a; . . . ; 5. The alternative hypothesis is taken to be Ha:b

k . In or-
der to determine the rank of � exactly, a sequential testing procedure can be
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devised. Starting from r = 0, one tests whether Ha:b
r is rejected. If it is not

rejected, one concludes that one cannot reject the hypothesis of no cointegra-
tion. Otherwise, r is increased by one and the whole procedure is repeated
again. Finally, if one rejects Ha:b

k�1, one concludes that all the elements of yt
are stationary. This sequential testing procedure follows a di�erent sequence
of hypotheses than the procedure proposed by Kleibergen and van Dijk (1994).
Kleibergen and van Dijk start with r = k and reduce r by one each time the
hypothesis Ha:b

r is not rejected. The sequence proposed here follows the one
that is usually employed for the Johansen likelihood ratio test for cointegration
(see Johansen (1988, 1991, 1994)).

As mentioned at the beginning of this section, it is also interesting to know
how the deterimistic components enter the model. For example, if ~�2 = 0, the
linear trend is only present in (8.4) and not in (8.5). Alternatively, if ~�2 6= 0,
a linear trend is also present in (8.5), implying a quadratic trend in the levels
of yt, at least if �22 = 0. Therefore, it is also interesting to consider joint
hypotheses on the elements of �22, 2, and �2. For example, if one suspects
that the constant term only enters the cointegrating relationship, one would
like to test H�a:3

r : �22 = 0 ^ 2 = 0, for a = 1 of 2. Similarly, a joint
hypothesis can be devised for the number of cointegrating relationships and
the presence of a trend outside these relationships, H�a:5

r : �22 = 0 ^ �2 = 0;
for a = 1; . . . ; 4.

In total one now has 21 hypothesis of interest for each value of r. In the next
section, the appropriate test statistics are de�ned for each of these hypotheses.
The asymptotic distributions of these statistics are derived in Section 8.3.

8.2 Construction of the Test Statistics

In this section, the test statistics are speci�ed that correspond to the hypothe-
ses Ha:b

r andH�a:b
r , presented in Subsection 8.1.3. As was mentioned previously,

one �rst has to obtain estimates of the parameters in (8.4). In this chapter,
the class of M estimators is used for obtaining the estimates. The �rst prob-
lem that has to be dealt with is to extend the de�nition of M estimators to
the multivariate setting. This turns out to be reasonably straightforward in
the present context. Both (8.4) and (8.5) can be viewed as sets of seemingly
unrelated regressions (SUR) (see, e.g., Judge et al. (1988)). Each equation
of (8.4) has the same set of regressors. The same holds for (8.5). Therefore,
following Koenker and Portnoy (1990), the parameters of (8.4) and (8.5) can
be estimated by computing the M estimator for each equation separately. No
e�ciency is lost by ignoring the cross-correlations between the error terms of
the di�erent equations.

In order to simplify the notation later on, de�ne the matrices of parameters,
�b

1 and �b
2, and the vectors of regressors, F b

t , Y
b
1t, and Y b

2t, for the di�erent
regression models. The following de�nitions hold for the matrices containing
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the coe�cients:

�1
1 = (�1;�1); �2

1 = �3
1 = (�1

1; 1); �4
1 = �5

1 = (�3
1; �1);

and

�1
2 = �2

2 = (�21; �22;�2); �3
2 = �4

2 = (�1
2; ~2); �5

2 = (�3
2;
~�1):

The regressors of the �rst step regression are given by

Y 1
1t = (y>t�1; Z

>

t )
>; Y 2

1t = Y 3
1t = ((Y 1

1t)
>; 1)>; Y 4

1t = Y 5
1t = ((Y 3

1t)
>; t)>:

In order to de�ne the regressors of the second step regression, an estimate of the
cointegrating relationship is required. Let F b

t be the cointegrating relationship
for regression model b:

F 1
t = y1;t�1 � �>2 y2;t�1; F 2

t = F 3
t = F 1

t � ~1; F 4
t = F 5

t = F 3
t �

~�1t:

The second step regressors are now given by

Y 1
2t = ((F 1

t )
>; y>2;t�1; Z

>

t )
>; Y 2

2t = ((F 2
t )
>; y>2;t�1; Z

>

t )
>;

Y 3
2t = ((F 3

t )
>; y>2;t�1; Z

>

t ; 1)
>; Y 4

2t = ((F 4
t )
>; y>2;t�1; Z

>

t ; 1)
>;

and
Y 5
2t = ((F 5

t )
>; y>2;t�1; Z

>

t ; 1; t)
>:

If the parameters in the de�nition of F b
t are replaced by their estimates, F b

t is
replaced by F̂ b

t . Similarly, if F
b
t in the de�nition of Y b

2t is replaced by F̂ b
t , Y

b
2t

is replaced by Ŷ b
2t.

Let �n(�), n = 1; . . . ; k, be a function that is continuously di�erentiable.
Furthermore, let �̂b

nt be equal to �n("̂
b
n1t), with "̂bn1t the nth row of "̂b1t =

�y1t � �̂b
1Y

b
1t. Then the M estimator of the parameters in (8.4) solves

TX
t=1

Y b
1t�̂

b
nt = 0; n = 1; . . . ; r; (8:6)

with respect to �̂b
1. The parameter estimates of the �rst set of equations can be

used to construct an estimate of the cointegrating relationship, F̂ b
t . Estimators

of the parameters needed to construct F̂ b
t , can be obtained by exploiting the

relations in (8.3). The estimator of �2 equals ��̂
�1
11 �̂12, with �̂11 and �̂12 the

�rst r, respectively, the last (k � r), columns of the M estimator for �1. The
estimators for ~1 and ~�1 follow from (8.3) and (8.4), namely ~̂1 = ��̂�111 ̂1 and
~̂�1 = ��̂�111 �̂1.

The M estimator for the parameters in (8.5) can be de�ned similarly to
(8.6). Let �̂bnt denote the (n� r)th row of �̂bt = �y2t� �̂b

2Ŷ
b
2t. The M estimator

of the parameters in (8.5) then solves

TX
t=1

Ŷ b
2t�n(�̂

b
nt) = 0; n = r + 1; . . . ; k; (8:7)
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with respect to �̂b
2.

The estimates that are obtained by solving (8.7), can be used to test the
hypotheses Ha:b

r and H�a:b
r . In addition to the estimates of the unknown pa-

rameters, one needs an estimate of the covariance matrix of �̂b
2. Such an

estimate can be used to construct the Wald test. The standard formula for
the covariance matrix of an M estimator (see Hampel et al. (1986)) cannot
be applied directly to each separate equation of (8.7), because the error terms
of the di�erent equations in (8.5) are cross-correlated. This problem is eas-
ily solved by considering (8.7) for n = r + 1; . . . ; k simultaneously. A second
and more di�cult problem concerns the presence of a generated regressor, F̂ b

t ,
in (8.7). As mentioned in Section 8.1, F b

t is replaced by F̂ b
t in order to ob-

tain estimates of the parameters in (8.5). Consequently, "2t is replaced by
�t = "2t � �21(F̂

b
t � F b

t ). The fact that T
1=2(�2 � "2t) = Op(1), a�ects the co-

variance matrix of the M estimator. This phenomenon has already thoroughly
been studied in the context of stationary variables (see, e.g., Pagan (1984) and
Oxley and McAleer (1993)). The results of Kleibergen and van Dijk (1994) and
those in Section 8.3 below, indicate that similar problems arise in the context
of nonstationary variables.

Based on the results of Section 8.3, the following covariance matrix esti-
mator is proposed. Let �̂t be a diagonal

1 matrix with diagonal

(�01("̂1;1t); . . . ; �
0

r("̂r1t); �
0

r+1(�̂1t); . . . ; �
0

k(�̂k�r;t));

with �0n the �rst order derivative of �n. De�ne the matrices �̂ = T�1
PT

t=1 �̂t,

Â>? = (��̂21�̂
�1
11 ; Ik�r), and

V̂ = T�1Â>?�̂
�1

TX
t=1

0
BBBBBBB@

�1("̂1;1t)
...

�r("̂r1t)
�r+1(�̂1t)

...
�k(�̂k�r;t)

1
CCCCCCCA

0
BBBBBBB@

�1("̂1;1t)
...

�r("̂r1t)
�r+1(�̂1t)

...
�k(�̂k�r;t)

1
CCCCCCCA

>

�̂�1Â?: (8:8)

Finally, let vec denote the operator that stacks the columns of a matrix
into a vector, and let 
 denote the Kronecker product. The appropriate
scaling matrix for vec((�b

2)
>) is then given by T�1V̂ 
 (V̂ b

Y )
�1, with V̂ b

Y =
T�1

PT
t=1 Ŷ

b
2t(Ŷ

b
2t)

>. The fact that there is a generated regressor problem when
estimating the second set of equations, requires a slight modi�cation of the
usual covariance matrix estimator. Normally, one would expect a covariance

1The diagonality of the matrix �̂t follows from the fact that each of the equations in (8.4)
and (8.5) is estimated separately. If, in contrast, an M estimator would be used based on
the assumption that the "t in (8.1) follow some multivariate distribution, e.g., the Student t,
then the matrix �t would no longer be diagonal. This can be compared with the results in
Chapter 7, where the matrix C1 is nondiagonal in general and has a similar interpretation
as T�1

PT
t=1 �̂t.
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estimate of T�1V̂22 
 (V̂ b
Y )

�1, with V̂22 de�ned as V̂ in (8.8), only with Â>
?

replaced by (0; Ik�r) (see Koenker and Portnoy (1990)). Because of the use
of F̂ b

t instead of F b
t when performing the second-step estimation, the slightly

di�erent form of the covariance matrix presented in (8.8) is appropriate.
Using the estimates of the parameters and of the scaling matrix, the di�er-

ent test statistics can be constructed. Let P b be a selection matrix such that
PbY

b
2t = y2;t�1. Furthermore, let P

�
3 and P �

5 be such that P �
3 Y

3
2t = (y>2;t�1; 1)

>

and P �
5 Y

5
2t = (y>2;t�1; t)

>, respectively. The hypothesis Ha:b
r can then be tested

using the statistic

tbw = Tvec(�̂>22)
>(V̂ 
 Pb(V

b
Y )

�1P>

b )
�1vec(�̂>22): (8:9)

The asymptotic distribution of this test statistic is derived in Section 8.3 and
can be expressed as a functional of Brownian motions. The asymptotic distri-
bution depends both on the data generating process, a, and on the regression
model, b.

The hypothesis H�a:b
r can be tested by means of the statistic

t�bw = Tvec(P �

b (�̂
b
2)
>)>(V̂ 
 P �

b (V
b
Y )

�1(P �

b )
>)�1vec(P �

b (�̂
b
2)
>): (8:10)

The asymptotic distribution of this statistic is also presented in Section 8.3
and can again be expressed as a functional of Brownian motions.

8.3 Asymptotic Distribution of theWald Test

In this section the asymptotic distributions are derived of the test statistics
tbw and t�bw , presented in (8.9) and (8.10), respectively. It is shown how these
distributions depend upon the data generating mechanism and upon the chosen
regression model. Moreover, the relationship between the cointegration test
based on the OLS estimator and on an M estimator is investigated. The proofs
of all theorems can be found in Appendix 8.A.

Apart from the restrictions on the data generating process that were men-
tioned in Section 8.1, it is assumed throughout this section that the following
conditions are satis�ed.

Assumption 8.1 (i) The f"tg process is independently and identically dis-

tributed (i.i.d.) with E("t) = 0 and 0 < jE("t"
>
t )j < 1; (ii) for each

n = 1; . . . ; k, the function �n(�) is di�erentiable and has a Lipschitz continuous

derivative �0n(�); �n(�) is not identically equal to zero; (iii) �n(u)=u is bounded;

(iv) E(�n("nt)) = 0; (v) the decomposition (8.3) is valid with j�11j 6= 0.

Part (i) of Assumption 8.1 is needed for the application of a functional
central limit theorem. Both the `identically' and the `independently' part of
the i.i.d. assumption can be relaxed at the cost of additional complexity. Part
(ii) imposes some common smoothness conditions on the functions �n. These
conditions are also found in Knight (1989, 1991) and Chapters 5 and 6. The
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asymptotic theory continues to hold for non-smooth versions of �n if the density
of the innovations exists and is smooth enough (compare the remarks below
Assumption 7.3). Part (iii) restricts the attention to M estimators that are
at most as sensitive to outlying observations as the OLS estimator. Part (iv)
imposes a second centering condition on the innovations. A su�cient condition
for this restriction to be satis�ed is that the density of the innovations is
symmetric and that the functions �n are odd. The �nal part of Assumption
8.1 requires that the parametric decomposition of the matrix � is valid. The
condition that j�11j 6= 0 is crucial, as was mentioned in Section 8.1. The
asymptotic results are changed dramatically if this condition is violated, as is
showed by Kleibergen and van Dijk (1994). Some results for the case j�11j = 0
can be found in Section 8.5.

As a �rst step towards establishing the asymptotic distribution of the rele-
vant test statistics, I decompose the fytg process into a deterministic compo-
nent, a stationary component, and a nonstationary component. The following
theorem presents the decomposition.

Theorem 8.1 Let (8.1) be the data generating process and de�ne 	 = I +
��

Pp�1
i=1 	i. If Assumption 8.1 is satis�ed and if rank(�) = r, then

yt = y0 + C

tX
i=1

"i + Ct+ S(1)�t+ C�t(t+ 1)=2 + S(L)("t � "0); (8:11)

with C = B?(A
>
?
	B?)

�1A>
?
, and S(L) a polynomial in the lag operator L,

Lyt = yt�1, such that S(L)("t � "0) is a stationary process.

Theorem 8.1 facilitates the derivation of the asymptotic distribution of
the test statistics. It presents a decomposition of yt into a linear time trend, a
quadratic time trend, a stationary process y0+S(L)("t�"0), and a random walk
process, C

Pt
i=1 "i. The decomposition in (8.11) also clearly demonstrates that

a linear time trend in (8.1) can result in a quadratic drift for yt. The presence
of a quadratic drift in yt is absent if � is restricted to � = A�0, with �0 some
column vector of length r. Note that this is equivalent to restricting ~�2 to be
zero in (8.5). Similar results hold for the constant term , which can transform
into a linear time trend (compare Johansen (1994) for further details).

The asymptotic distributions of both tbw and t�bw can be expressed as func-
tionals of Brownian motions. The next theorem states the result for tbw.

Theorem 8.2 Given Assumption 8.1, rank(�) = r, and "̂b1t� "b1t = op(1) and
�̂bt � �bt = op(1) uniformly in t, then

tbw ) tr
�
(
R
Ba:b

1 dB>

2 )
>(
R
Ba:b

1 (Ba:b
1 )>)�1(

R
Ba:b

1 dB>

2 )
�
; (8:12)

with B1 and B2 two standard Brownian motions such that

E(B1(s)B2(s)
>) = sR1:1;
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with R1:1 a diagonal matrix containing the absolute canonical correlations be-

tween A>
?
"t and A>

?
��1�("t), �("t) = (�1("1;1t); . . . ; �k("k�r;2t))

>,

B1:1
1 (s) = B1(s)

B1:2
1 (s) = B1:1

1 (s)

B1:3
1 (s) = B1:1

1 (s)�
R
B1:1

1

B1:4
1 (s) = B1:3

1 (s)

B1:5
1 (s) = B1:1

1 (s)� (4� 6s)
R
B1:1

1 � (12s� 6)
R
sB1:1

1

B
2:j
1 (s) = B

1:j
1 (s)

B3:3
1 (s) = (s� 0:5; (F 3:3

1 (s)�
R
F 3:3
1 )>)>

B3:4
1 (s) = B3:3

1 (s)

B3:5
1 (s) = B1:5

1 (s)

B4:4
1 (s) = (s� 0:5; (F 4:4

1 (s)�
R
F 4:4
1 )>)>

B4:5
1 (s) = B1:5

1 (s)

B5:5
1 (s) = F 5:5

1 (s)� (4� 6s)
R
F 5:5
1 � (12s� 6)

R
sF 5:5

1 ;

for j = 2; 3; 4; 5, and F i:i for i = 3; 4; 5 standard Brownian motions such

that E(F i:i(s)B2(s)
>) = sRi:i, with Ri:i a diagonal matrix2 containing the

absolute canonical correlations between A>
?
��1�("t) and �

>
1?B

>
?
C"t, �

>
4?B

>
?
C"t,

and �>3?B
>
?
C"t, for i = 3; 4; and 5, respectively. The matrices �1?, �3?, and

�4? are de�ned in Appendix 8.A (pages 207 and 211).

Corollary 8.1 If �("t) = "t, then the diagonal elements of Ra:b are equal to

unity and (8.12) reduces to the expressions found in Kleibergen and van Dijk

(1994).

Kleibergen and van Dijk (1994) derive the limiting distribution of tbw for
the OLS estimator. Theorem 8.2 presents the generalization of their results for
the class of M estimators. The main di�erence between (8.12) and the result
for the OLS estimator is that the Brownian motion B2 no longer coincides
with the Brownian motion B1. These two Brownian motions are, in general,
imperfectly correlated. As in Chapter 7, the correlation depends upon the
canonical correlations between certain linear combinations of the errors "t and
certain linear combinations of the pseudo score �("t).

The results in Theorem 8.2 di�er in one important respect from the results
in Theorem 7.1 of Section 7.3. Under the null hypothesis, it appears from The-
orem 8.2 that the only nuisance parameters entering the limiting distribution
of the Wald test are the canonical correlations between A>

?
��1�("t) and A

>
?
"t.

In contrast, the likelihood ratio test also su�ers from the e�ects of misspeci�ca-
tion of the likelihood function. The asymptotic distributions of the likelihood
ratio test and the Wald test only coincide if the likelihood is correctly speci�ed

2Note that the Ri:i's are not square matrices for i 6= 1. The diagonal of these matrices
has to be interpreted as the set of elements for which the row and column indices coincide.
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(see Corollary 7.2) or if the OLS estimator is used (see Corollary 7.1). Similar
�ndings were already established in the stationary setting by White (1982).

In order to perform inference with the statistic tbw, critical values are needed.
As in Chapter 7, one can think of several strategies. First, one can ignore the
imperfect correlation between B2 and B

a:b
1 and just use the critical values of the

OLS-based test. These are tabulated in, e.g., Osterwald-Lenum (1992). This
strategy is only useful if "t and �("t) are su�ciently close, or, stated di�erently,
if the diagonal elements of Ra:b are su�ciently close to unity. Second, one can
develop a similar strategy as in Section 7.5 and construct a corrected test that
has the same mean as the OLS-based test. In order to develop such a test, one
can replace B2 by the sum of two stochastic processes, one of which is a linear
transformation of the stochastic process in Ba:b

1 , while the other is orthogonal
to the stochastic process in Ba:b

1 (compare Theorem 7.2). Third, one can
approximate the distribution of the expression in (8.12) by means of simulation.
Using the estimated values of the parameters, one can construct an estimate of
Ra:b. This estimate can then be used to approximate the stochastic integrals
in (8.12) by drawing appropriately correlated and standardized random walks
and replacing the integrals in (8.12) by averages. This process can be repeated
a large number of times in order to obtain accurate approximations to the
critical values of the test.

To conclude this section, the asymptotic distributions of the alternative
test statistic t�bw are presented.

Theorem 8.3 Given the conditions of Theorem 8.2,

t�bw ) tr
�
(
R
B�a:b

1 dB>

2 )
>(
R
B�a:b

1 (B�a:b
1 )>)�1(

R
B�a:b

1 dB>

2 )
�
;

with

B�i:3
1 (s) = ((B1:1

1 (s))>; 1)>

B
�j:5
1 (s) = ((B1:3

1 (s))>; s� 0:5)>;

for i = 1; 2 and j = 1; . . . ; 4.

Again, one can see that by choosing �("t) = "t, one obtains the results of
Johansen (1991, Theorem 2.2) and Kleibergen and van Dijk (1994, Theorem
4.ii). For �("t) 6= "t, the two Brownian motions in the limiting expressions for
t�bw are imperfectly correlated, giving rise to (k� r) nuisance parameters in the
asymptotic distribution of the test statistic.

As in Johansen (1991), it is probably straightforward to show that condi-
tional on the number of unit roots in the system, test statistics for conducting
inference on the elements of �ij and �2 have standard limiting distributions.
An explicit proof of this statement is not provided, but it follows rather directly
by using Lemma 8.9 from Appendix 8.A and the condition that �22 = 0.
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8.4 Simulation Results

In this section,the performance of the outlier robust Wald test for cointegration
is discussed using a small simulation experiment. Subsection 8.4.1 discusses
the results for the level of the test. Subsection 8.4.2 presents some results
concerning the power of the test. Both subsections consider data generating
process one (a = 1) and regression model �ve (b = 5). So there are no drift
terms in the data generating process, while a linear trend is �tted in both (8.4)
and (8.5). This departs from the simulation setup presented in Section 7.6,
where no deterministic regressors were used.

8.4.1 Level

The level simulations are standard. For several values of k � r, a (k � r)-
dimensional random walk process is generated as yt = yt�1+ "t, with f"tg and
i.i.d. process and y0 = 0. The number of observations is T . For each of these
simulated time series, the Wald test statistic corresponding to the hypothesis
H1:5

0 is computed for several M estimators (see below). These statistics are
stored over N replications. In order to estimate the �-quantile, the �Nth order
statistic is used. The length of the time series and the number of Monte-Carlo
replications used in this subsection, are T = 100 and N = 1; 000, respectively.
Note that rank(�) = r = 0 if H1:5

0 is tested.

In order to illustrate the e�ects of outliers on the Wald test, I consider two
distributions for the error process. The �rst distribution is the multivariate
standard normal, while the second distribution is the truncated Cauchy, which
was also used in Section 7.6.

As mentioned in Section 8.2, the parameters in (8.4) and (8.5) can be esti-
mated equation by equation. Therefore, only a speci�cation for the functions
�n(�), n = 1; . . . ; k � r, in (8.6) and (8.7) is needed. In order to illustrate the
properties of the outlier robust Wald test, I use the Student t score function
for �n(�), so

�n(e) = (� + 1)e=(� + e2);

for e 2 IR. Note that this does not coincide with the speci�cation used in
Chapter 7. In Chapter 7 a pseudo maximum likelihood estimator was used
based on the multivariate Student t distribution. In this chapter, the pseudo
likelihood is a product of univariate Student t densities. The M estimator is
made scale invariant by setting e equal to the residual of the nth equation,
divided by the median absolute deviation of the residuals of the nth equation.
The median absolute deviation is again standardized such that it is a consistent
estimator of the standard deviation of the Gaussian distribution (see (2.32) and
below). The Student t score function depends upon the tuning constant or
degrees of freedom parameter �. The values considered, are � =1; 5; 1, with
� =1 corresponding to the OLS-based Wald testing procedure of Kleibergen
and van Dijk (1994). The results are presented in Table 8.1 and Figure 8.1.
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Figure 8.1.| Distributions of the cointegration Wald test for normal (N) and
truncated Cauchy (TC) innovations
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TABLE 8.1
Quantiles for the Cointegration Wald Test

quantile

k � r � 0.5 0.8 0.9 0.95 0.975 0.99

Gaussian
1 1 4.593 8.120 10.125 11.984 13.987 17.809
1 5 4.490 7.661 10.287 12.446 14.032 18.066
1 1 3.511 7.505 10.131 12.461 14.576 17.443
2 1 14.973 19.976 22.900 26.126 27.873 31.097
2 5 14.432 19.669 23.098 25.403 28.063 29.820
2 1 13.493 19.266 23.087 26.548 29.957 32.612
3 1 29.106 37.634 41.781 46.223 49.385 53.102
3 5 28.527 36.907 41.792 46.483 49.280 53.466
3 1 27.877 38.507 45.355 51.148 55.484 63.874

Truncated Cauchy
1 1 4.897 7.929 9.864 12.296 14.030 17.746
1 5 3.148 6.419 8.449 10.422 13.418 16.627
1 1 1.947 4.757 7.356 9.466 13.072 15.404
2 1 14.322 20.050 23.546 27.240 29.477 32.102
2 5 11.023 16.451 19.325 23.177 26.129 32.155
2 1 8.188 13.701 17.752 21.164 26.104 33.746
3 1 29.548 37.205 41.207 45.341 50.324 54.613
3 5 23.422 31.729 39.110 43.663 49.230 55.756
3 1 19.865 29.851 37.541 44.364 48.951 58.561

The table contains the �Nth order statistics fromN = 1; 000 Monte-
Carlo simulations of the Wald cointegration test. k � r denotes
the dimension of the time series. Gaussian means that the inno-
vations were drawn from the standard multivariate normal distri-
bution. Truncated Cauchy means that the innovations were drawn
from the truncated Cauchy distribution (see Section 7.6). The pa-
rameter � is the tuning constant of the M estimator. The robustness
of the estimator decreases for increasing �.

Both Table 8.1 and the left panels of Figure 8.1 indicate that for Gaussian
innovations the c.d.f. of the test statistic for low values of � lies to the left of
the c.d.f. for � =1, at least for the lower quantiles. The ordering is reversed
if the higher quantiles of the distribution are considered. Especially for higher
values of k � r, the 5% critical value of the test for � = 1 lies to the right of
that for � = 1. Similar �ndings were noted in the previous chapters. Also
note that the c.d.f.'s of all cointegration tests lie to the right of the c.d.f. of
the �2 distribution with k2 degrees of freedom. This phenomenon is already
well known in the literature (compare Fuller (1976)).

If one considers the case of truncated Cauchy innovations, one again obtains
that the c.d.f.'s of the Wald tests for cointegration lie to the right of the
appropriate �2 distribution. The c.d.f. for � = 1, however, now clearly lies to
the left of that for � = 5, which in turn lies to the left of that for � = 1.
This result was also noted in Section 7.6, where the actual size of the pseudo
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likelihood ratio test appeared to be below the nominal level if the innovations
were truncated Cauchy.

In order to answer the question whether the c.d.f. of the test for � = 1
should be to the left of that for � = 1 or whether they should intersect, I
conducted the following experiment. Instead of directly simulating the dis-
tribution of the Wald test, one can also try to approximate the asymptotic
distribution of the Wald test by means of simulation. This can be done by
replacing the stochastic processes in Theorem 8.2 by discrete realizations and
by replacing the integrals by averages. Note that the asymptotic distribution
in Theorem 8.2 depends upon the canonical correlations between B1(s) and
B2(s). Assume for simplicity that (k � r) = 1 and that R1:5 in Theorem
8.2 is equal to �, with 0 � � � 1. Moreover, let "t and �t denote two in-
dependent standard normal random variables. Let B1T (t=T ) = T�1=2

Pt
i=1 "i,

t = 1; . . . ; T . and B3T (t=T ) = T�1=2
Pt

i=1 �i, while B
�
1T (t=T ) contains the OLS

residuals of a regression of B1T on a constant and a trend. Then a drawing from
the asymptotic distribution presented in Theorem 8.2 can be approximated by
tr(C>

1TC
�1
2T C1T ), with

C1T =
TX
t=1

B�
1T ((t� 1)=T )(B2T (t=T )� B2T ((t� 1)=T )>;

C2T = T�1
TX
t=1

B�
1T ((t� 1)=T )B�

1T ((t� 1)=T )>;

and B2T (s) = �B1T (s) + (1 � �2)1=2B3T (s). Using N = 1; 000 Monte-Carlo
simulations with random walks of length T = 50, an approximation to the
asymptotic distribution function is constructed. Using larger values of T or
higher values of (k� r), yielded qualitatively similar results. The left panel of
Figure 8.2 presents the critical values corresponding to several quantiles and
several values of the correlation parameter �.

The left panel of Figure 8.2 indicates that the critical values corresponding
to the �-quantile are increasing functions of � for � � 0:8. In order to get
some feeling for this result, consider the two extreme cases � = 1 and � = 0.
For � = 1, the asymptotic distribution of the Wald test is just a multivariate
generalization of the Dickey-Fuller distribution, yielding critical values that
are above the standard �2 critical values (compare, e.g., Fuller (1976)). For
� = 0, in contrast, the asymptotic distribution of the Wald test is just a �2 dis-
tribution with (k�r)2 degrees of freedom. This follows from the independence
of B1 and B2 for � = 0.

In order to study the relation between the critical values of the test and
the value of the tuning constant �, a relation between � and the correlation
parameter � is needed. The relation between � and � can be easily visualized
if the half-line � >1 is mapped onto the unit interval. Therefore, de�ne the
function

f(�) =

�
�=2 for 0 < � � 1
1� (2�)�1 for 1 < �

: (8:13)



8.4. SIMULATION RESULTS 193

Figure 8.2.| Critical Values for Di�erent Correlations between the M Estima-
tor and the OLS Score (left panel) and the Correlation as a Function of f(�),
de�ned in (8.13) (right panel).

Note that 0 < f(�) � 1 for 0 < � � 1 and that f(�) : IR+ ! (0; 1] is increasing
and bijective. For each value of �, the correlation between B1 and B2 can
be computed. The right panel of Figure 8.2 displays the relation between
the correlation � and f(�). It appears that the correlation is an increasing
function of f(�) and, therefore, an increasing function of the degrees of freedom
parameter �. Therefore, one would expect the critical values of the Wald test
for � = 1 to lie to the left of those for � =1. This contrasts with the results
presented in Table 8.1 and the left panels of Figure 8.1. My conjecture is
that this discrepancy is due to the �nite sample properties of the test. The
Wald test based on M estimators needs larger samples to reach its asymptotic
distribution that its OLS-based counterpart. This is clearly illustrated by the
simulations in Chapter 6, in particular Table 6.1. For T = 100, the 1% critical
value of the Wald test (M i

2 for i = 0; 1; 2) based on OLS lies closer to zero
than the critical value for � = 3. For T = 5; 000 the ordering is reversed, as is
expected from the asymptotic theory.

Concluding, one can say that the critical values of the Wald cointegration
test based on M estimators have as yet to be obtained by means of extensive
simulations. The asymptotic distribution theory appears to provide a poor
approximation to the �nite sample distribution of the test. The accuracy of
the approximation to the �nite sample distribution by means of the asymp-
totic distribution seems to worsen if the dimension of the system is increased.
Therefore, it seems a useful topic for future research to generalize the results
of Abadir and Larson (1994) to non-OLS estimators. If this can be done, valid
�nite sample critical values can perhaps be calculated without resorting to
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time consuming simulations.

8.4.2 Power

As in Chapter 7, the focus is not so much on the absolute power of the Wald
cointegration test, but rather on the relative power of the Wald test based on
M estimators versus the power of the OLS-based Wald test. Apart from the
model presented in this subsection, other experiments were performed using
alternative regression models and other dimensions of the system (k�r). These
experiments resulted in qualitatively similar conclusions. Therefore, they are
not reported.

The data generating mechanism used in this subsection is

�yt =

0
@ �c=T 0 0

0 �c=(2T ) 0
0 0 �c=(3T )

1
A yt�1 + "t; (8:14)

with yt a 3-dimensional vector, T = 100, and c = 0; 1; 5; 10; 20. As in Subsec-
tion 8.4.1, "t again follows either a standard Gaussian distribution or a trun-
cated Cauchy distribution (see Section 7.6). The �tted regression model con-
tains an unrestricted linear trend. Therefore, the critical values can be found
in Table 8.1. Model (8.14) generates a time series with nearly-nonstationary
behavior (compare Section 7.2). If c = 0, then (8.14) presents a system of
independent random walks. For 0 < c < T , however, there are three cointe-
grating relations with loading factors that decrease to zero as the sample size
increases. This also appears by looking at the roots of the system, which are
(1 � c=T )�1, (1 � c=(2T ))�1, and (1 � c=(3T ))�1, respectively. So the coin-
tegrating relation corresponding to the smaller roots should be more di�cult
to detect than the relations corresponding to the larger roots. The innovation
process was again either standard Gaussian or truncated Cauchy.

Using (8.14), one can calculate the Wald cointegration test for the values of
� used in Subsection 8.4.1. These can be compared with the critical values from
Table 8.1. Table 8.2 presents the number of rejections of the null hypothesis
H1:5

r for r = 0; 1; 2 at a nominal signi�cance level of 5%.

First, consider the results for Gaussian innovations. The power of the test
appears to be very low. Even if the roots of the system are as small as 0.8,
the rejection frequencies are at most 28% for � = 1 and � = 5 and at most
19% for � = 1. This corresponds to the univariate results presented in Section
6.4. The tests seem unable to detect the third cointegrating relationship: the
rejection frequency for H1:5

2 barely exceeds the nominal level of 5%. Finally,
the cointegration tests for � =1 and � = 5 perform equally well. In contrast,
the test for � = 1 appears to have a much lower power than the test for
� = 1. This can be expected from the optimality result in Section 7.4:
for Gaussian innovations, the OLS estimator usually performs best from a
minimum expected mean squared error perspective.
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TABLE 8.2
Rejection Frequencies for the Cointegration Wald Test

Gaussian Truncated Cauchy
� c r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

0 0.028 0.015 0.007 0.058 0.015 0.025
1 0.048 0.028 0.013 0.045 0.033 0.025

1 5 0.048 0.018 0.022 0.072 0.035 0.007
10 0.075 0.060 0.022 0.077 0.050 0.033
20 0.280 0.110 0.058 0.307 0.120 0.075

0 0.037 0.013 0.007 0.022 0.007 0.003
1 0.037 0.033 0.013 0.030 0.010 0.010

5 5 0.058 0.028 0.010 0.090 0.070 0.010
10 0.090 0.072 0.018 0.338 0.165 0.063
20 0.285 0.150 0.052 0.925 0.623 0.253

0 0.040 0.018 0.010 0.003 0.007 0.005
1 0.028 0.033 0.013 0.010 0.013 0.005

1 5 0.050 0.037 0.013 0.077 0.058 0.020
10 0.085 0.072 0.015 0.340 0.168 0.070
20 0.185 0.120 0.070 0.920 0.667 0.313

The table contains the rejection frequencies of the hypothesis
H1:5

r for di�erent values of r and di�erent estimators. The
nominal size of the test is 5% and the entries are based on
400 Monte-Carlo simulations. The left three columns present
the results for model (8.14) and standard Gaussian innova-
tions. The right three columns present the result for truncated
Cauchy innovations (see Section 7.6). The M estimators are
explained in Subsection 8.4.1.

Now consider the results for the truncated Cauchy innovations. The re-
jection frequencies of the test for � = 1 seem to have increased marginally
compared to the case with Gaussian innovations. The overall picture, however,
remains the same: the power is low and the third cointegrating relationship
is barely detected. For the non-OLS estimators, the rejection frequencies are
below the nominal level (compare Section 7.6). For c � 5 the power of the tests
for � = 5 and � = 1 exceeds the power of the OLS-based test. The test for
� = 1 appears to have a somewhat higher power against distant alternatives
than the test for � = 5, but the di�erence is very small. The power of both
these tests is quite high. For c = 20, the tests based on � = 5 and � = 1 �nd
at least one cointegrating relationship in more that 90% of the simulations.
Even the third cointegrating relation is detected with a frequency exceeding
25%, a number that almost matches the 28% for c = 20, r = 0, and Gaussian
innovations.

Based on the power simulations of the Wald cointegration test, it seems
best to use an M estimator that is reasonably e�cient for Gaussian innova-
tions and that, at the same time, possesses some robustness properties. In
the simulations, the best candidate meeting these criteria appeared to be the
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estimator based on � = 5. For Gaussian innovations, the performance of the
Wald test based on this estimator was approximately the same as that of the
OLS-based Wald test. For truncated Cauchy innovations, the test for � = 5
performed much better than the test for � =1. Moreover, the test for � = 5
did not perform much worse than the more robust test based on � = 1.

8.5 Ordering of the Variables

In Sections 8.3 and 8.4, the asymptotic and �nite sample properties of the
Wald cointegration test were considered for the case j�11j 6= 0, where �11 was
introduced in (8.3). In the present section, the properties of the Wald test are
studied for the case j�11j = 0. First, the e�ect of j�11j = 0 on the asymptotic
distribution of the Wald test is discussed. This is done in Subsection 8.5.1.
Then, several possibilities for solving the problems caused by the singularity
of �11 are reviewed. This is done in Subsections 8.5.2 and 8.5.3. Finally,
Subsection 8.5.4 presents the results of a small simulation experiment similar
to the one presented in Section 8.4, only with �11 = 0 instead of j�11j 6= 0.

8.5.1 Asymptotic Distribution Theory for j�11j = 0

If �11 is singular, the asymptotic properties of the estimator for �2 change
quite dramatically. As stated below (8.5), �>2 is estimated by ��̂�111 �̂12. From
(8.3) and Lemma 8.4 it follows that �̂11 converges to �11. Therefore, if �11 is
singular, one can expect a change in the convergence behavior of �̂2. It turns
out that �̂2 is still a consistent estimator for �2, only the rate at which the
estimator converges to its limiting value is lower than for the case j�11j 6= 0,
namely T 1=2 instead of T . This result is presented in Lemma 8.11 in Appendix
8.A.

The slower convergence rate of �̂2 also a�ects the convergence behavior of
the estimators for the parameters of the second-step regression. In general, the
rate of convergence of these estimators drops by 1=2 if j�11j = 0. This is most
easily seen in the last formula in the proof of Lemma 8.9, where T 1=2�̂11 is
now Op(1) rather than Op(T

1=2). Also the limiting distributions of the second-
step estimators change dramatically. Consequently, the distribution of the
cointegration Wald test is also changed and is no longer given by the result
in Theorem 8.2. For the OLS estimator, the limiting distribution of the test
for regression model 3, data generating process 3, and �11 = 0, is given in
Theorem 5 of Kleibergen and van Dijk (1995). In this chapter, I refrain from
deriving the asymptotic distribution of the Wald test for the case j�11j = 0,
because the expressions would be very complicated without providing valuable
new insights into the properties of the test. It is more important to note that
the assumption j�11j 6= 0 is crucial for the validity of asymptotic distributions
presented in Theorem 8.2. Therefore, one has to make sure that the condition
is met when the test is applied to empirical data. Some problems and solutions
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associated with checking whether j�11j 6= 0 or not, are discussed in the next
subsection.

8.5.2 A Pretest for j�11j = 0

As was mentioned in Section 8.1, the singularity of �11 can often be undone
by reordering the variables in the system. In this subsection, a pretesting
procedure is discussed for determining whether �11 is singular or not. It turns
out that this pretest cannot be applied if one does not know the number of unit
roots (or the number of cointegrating relations) in the system. As the number
of unit roots is exactly the unknown parameter one is trying to determine, it
is obvious that the pretest does not provide a solution to the problems caused
by the singularity of �11. In the next subsection I discuss some alternative
cointegration testing procedures that do not depend on the true value of �11.

Before concluding that pretesting is infeasible in the present context, one
must �rst construct a sensible pretesting procedure. Given this procedure, one
can then investigate its properties and show why the test fails if the number
of unit roots in unknown.

From Lemma 8.4 in Appendix 8.A it follows that under the hypothesis
that the number of cointegrating relationships is r, T 1=2�̂11 is asymptotically
normally distributed. This fact can be exploited for constructing a pretesting
procedure. Conditional on the result of the pretesting procedure, one proceeds
by either reordering the variables or by testing whether �22 = 0. The most
simple pretesting procedure tests whether j�11j is signi�cantly di�erent from
zero. If one cannot reject the hypothesis that j�11j = 0, the variables must be
reordered. Otherwise, one can proceed with the cointegration testing proce-
dure described in Sections 8.1 and 8.2. If there is no ordering of the variables
for which one can reject the hypothesis j�11j = 0, then one cannot proceed
with the cointegration test. Note that some care has to be taken if one wants
to conclude that the number of cointegrating relations is smaller than the pos-
tulated r, given that j�11j = 0 cannot be rejected for all possible orderings of
the variables. This is due to the fact that if the rank of the matrix � is smaller
than r, a test for j�11j = 0 has a nonstandard limiting distribution (see the
discussion below).3

If one uses the pretesting procedure described above, it becomes important
what sequence of tests is used for determining the number of cointegrating
relations. This chapter suggests to start with the hypothesis r = 0 and then
to increase the number of cointegrating relations by one at each rejection of the
null hypothesis. Kleibergen and van Dijk (1994), instead, suggest to start with
the hypothesis r = k � 1 and then to decrease the number of cointegrating

3Also note the following. Consider the testing sequence proposed in this chapter, namely
the one that starts from the hypothesis r = 0 and proceeds by increasing r at each rejection of
the null hypothesis. Then concluding that r must be decreased if one cannot reject j�11j = 0
for any ordering of the variables, implies that one has to go back to a null hypothesis that
one has already rejected in an earlier stage of the testing sequence.
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relations by one at each faillure to reject the null. It is argued here that
the �rst testing sequence is more suitable when combined with the pretesting
procedure for �11. Assume that the number of cointegrating relations is equal
to k�1 > r0 > 0. Using the sequence of tests proposed in this chapter, one then
starts with H0 : r = 0. If small sample e�ects are ignored, this hypothesis is
rejected. Next, one considers a test for the hypothesis H1 : r � 1. Given that
k � 1 > r0 > 0, there always exist an ordering for which j�11j 6= 0. This holds
for all hypotheses Hr with r � r0. Therefore, all hypotheses Hr for r < r0 are
rejected in large enough samples, while Hr0 is not rejected with a probability
of, say, 95%. In contrast, the testing sequence suggested by Kleibergen and
van Dijk (1994) starts with Hk�1 : r = k � 1. Given the true number of
cointegrating relations r0 < k � 1, there exists no ordering of the variables
for which j�11j = 0. Moreover, a test based on j�11j = 0 has a nonstandard
limiting distribution, which makes it di�cult (if not impossible) to construct
a feasible inference procedure.

Although one can prove that �̂11 is asymptotically normally distributed,
this is not su�cient for constructing a test statistic to test whether j�11j = 0.
In addition, a consistent estimator for the asymptotic variance of T 1=2j�11j is
needed. A suitable test statistic is presented in the next theorem. This test
statistic has a standard limiting distribution.

Theorem 8.4 Let the conditions of Theorem 8.2 be satis�ed and let rank(�) =
r. Further assume that one is performing the pretesting procedure described

above for the hypothesis Ha:b
r or H�a:b

r . If �11 = 0, then

T
�
tr((�̂>11)

�1V̂ �1
� �̂�111 V̂�1)

��1
d
! �2(1);

where
d
! denotes convergence in distribution,

V̂� = T�1
TX
t=1

(y1;t�1 � ~�>2 y2;t�1)(y1;t�1 �
~�>2 y2;t�1)

>;

V̂�1 = T�1
TX
t=1

�̂�111

0
B@

�1("̂1;1t)
...

�r("̂r1t)

1
CA
0
B@

�1("̂1;1t)
...

�r("̂r1t)

1
CA
>

�̂�111 ;

�̂11 the upper-left (r� r) block of �̂, de�ned above (8.8), and ~�2 the estimator

for the parameters in the regression model

y1t = �>2 y2t + u1t;

where this regression model is augmented with a constant for the cases a:2 and

a:3 and with a trend for the cases a:4 and a:5 (a = 1; . . . ; 5).

Note that the parameters from the cointegrating relations (�2) are esti-
mated somewhat di�erently in Theorem 8.4 than in Section 8.1. As explained
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in Subsection 8.5.1, the estimator for �2 from Section 8.1 is T�1=2-consistent
rather than T�1-consistent if j�11j = 0. As a result, the asymptotic variance
of j�̂11j cannot be consistently estimated with this estimator. In contrast, the
estimator ~�2 is still T

�1-consistent even if j�11j = 0. The only important con-
dition for ~�2 to be T

�1-consistent is the validity of the restriction of the leading
(r�r) submatrix of B to be the unit matrix, where B was de�ned below (8.5).

Theorem 8.4 reveals that a pretest statistic can be constructed that has a
standard limiting distribution if the postulated number of unit roots is correct.
Determining the number of unit roots, however, is a sequential process. It is
therefore interesting to now what the properties of the test are if rank(�) is
in fact greater than r. Disappointingly, the test statistic from Theorem 8.4
no longer has a standard limiting distribution if rank(�) > r, thus leading
to either too few or too many rejections relative to the nominal signi�cance
level of the test. To illustrate this point, consider the case where the true
number of cointegrating relations is r+1, so one more than the number that is
tested. In that case, ~�2 will, in general, only be T 1=2-consistent instead of T -
consistent. As a result, the matrix V̂� will converge to a random variate with a
nondegenerate distribution.4 This contrasts with the situation in Theorem 8.4,
where V̂� converges to a matrix of constants. Moreover, even if V̂� converges to
a matrix of constants, for example if the true number of cointegrating relations
is k, then the test statistic in Theorem 8.4 is based on the wrong estimate of
the variance of

p
T j�11j.

Concluding this subsection, it seems as yet infeasible to design a pretest for
the hypothesis that j�11j = 0. The procedure of Kleibergen and van Dijk (1994)
starts at the wrong hypothesis, namely Ha:b

k�1 instead of H
a:b
0 . As a result, if the

true number of cointegrating relations is small, the Kleibergen and van Dijk
procedure almost automatically violates one of the main assumptions used for
deriving the limiting distribution of the Wald test, namely j�11j 6= 0. The
sequence of tests proposed in this subsection does not su�er from this defect.
However, no useful pretesting procedure could be constructed for testing the
assumption j�11j 6= 0. This was due to the fact that no proper estimate of the
variance of j�11j was available if the true number of cointegrating relations was
allowed to exceed the postulated number.

8.5.3 Testing Procedures that are Independent of �11

Instead of testing whether �11 is singular, one can follow a di�erent route and
try to remove the dependence of the cointegration test on the true value of

4This is due to the fact that one of the components of V̂�, namely

T�1( ~�2 � �2)
>

TX

t=1

y2;t�1y
>

2�t�1(
~�2 � �2);

generally has a nondegenerate limiting distribution if ~�2 � �2 is Op(T
�1=2) rather than

Op(T
�1).
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�11. As noted in Subsection 8.5.1, the singularity of �11 mainly a�ects the
limiting distribution of the Wald test through its e�ect on �̂2. Therefore, an
obvious way to remove the dependence of the Wald test on �11 is to remove
the dependence of �̂2 on �11. This can be achieved by using an alternative
estimator for �2. Kleibergen (1994) proposes to estimate �2 by running the
regressions

y1t = �>2 y2t + u1t; (8:15)

(compare Theorem 8.4). The problem with this approach is that the limiting
distribution of �̂2 will be di�erent from the one suggested in Section 8.1 due
to the fact that the u1t process will be non-i.i.d. in general. A result of the
temporal dependence of the u1t process is that additional nuisance parameters
enter the limiting distribution. These nuisance parameters can be estimated
using nonparametric methods as in, e.g., Phillips (1987). Eliminating the
e�ect of these nuisance parameters on the limiting distribution of the Wald
cointegration test, however, might prove a non-trivial task.

Instead of �xing the defects of the Wald test, one can use di�erent testing
principles, like tests based on the likelihood ratio (LR) or on the Lagrange
multiplier principle. The LR test was thoroughly discussed in Chapter 7. This
testing procedure did not su�er from a dependence on the true value of �11.
The LR test, however, depended in a complicated way on nuisance parameters
that could not easily be eliminated. Alternatively, one could try to construct
an LM test. This can be done as follows. Consider the simple case of a
VAR model of order one, data generating process a = 1, and regression model
b = 1. LM tests for the more complicated models can be derived analogously.
Under the hypothesis H1:1

r : �22 = 0, (8.4) and (8.5) can be jointly written as
yt = AB>yt�1+"t. Let ~A and ~B> = (Ir;�~�>2 ) denote the parameter estimates
under the null hypothesis and let ~"t denote the corresponding residuals. Next,
de�ne

`(A;B) = A>?(L1(A;B))
�1(T�1

TX
t=1

y2;t�1 
 �("t));

L(A;B) = A>?(L1(A;B))
�1L2(A;B)(L1(A;B)

>)�1A?;

L1(A;B) = T�2
TX
t=1

y2;t�1y
>

2;t�1 
 �t;

L2(A;B) = T�2
TX
t=1

y2;t�1y
>

2;t�1 
 �("t)�("t)
>;

with "t = yt � AB>yt�1 and A>
?
such that A>

?
A = 0. Note that A>

?
need not

be equal to (�21�
�1
11 ; Ik�r) due to the possible singularity of �11. The following

theorem now follows directly along the lines of the proof of Theorem 7.1.

Theorem 8.5 Let the assumptions of Theorem 8.2 be satis�ed, save the re-

quirement that j�11j 6= 0. Then

LMr = `( ~A; ~B)>(L( ~A; ~B))�1`( ~A; ~B)
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) tr
�
(
R
B1dB

>

2 )
>(
R
B1B

>

1 )
�1(
R
B1dB

>

2 )
�
;

with B1 and B2 as de�ned in Theorem 8.2.

Theorem 8.5 reveals that the LM test has the same limiting distribution as
the one presented in Theorem 8.2 and, moreover, does not depend on whether
j�11j = 0 or not. An LM test based on a robust estimator, therefore, seems
the most promising for application purposes. The only complication of the
LM test as opposed to the Wald test is that estimation becomes more di�cult.
This is due to the cross-equations restrictions between (8.4) and (8.5) under
the null hypothesis of no-cointegration.

8.5.4 Simulation Results for j�11j = 0

In this subsection, the results of three simulation experiments are presented,
illustrating the size and power behavior of the cointegration Wald test for the
case j�11j = 0. The setup of the simulations is the same as in Subsection 8.4.2,
only the data generating mechanisms di�er.

In the �rst experiment, the data generating process is given by

�yt = (0; 0; c=T )(1;�1;�1)>yt�1 + "t; (8:16)

with yt 2 IR3, T = 100, and c taking the values mentioned in Subsection
8.4.2. The roots corresponding to this system are 1, 1, and (1 � c=T )�1. For
c 6= 0, (8.16) contains one cointegrating relationship. Moreover, �11 is singular
when testing H1:5

1 and H1:5
2 . The rejection frequencies of the Wald test for the

di�erent M estimators discussed in Subsection 8.4.1 are presented in Table 8.3.
These frequencies are based on 400 Monte-Carlo replications using standard
Gaussian "t's.

It appears from the left three columns of Table 8.3 that the Wald test
is able to detect at least one cointegrating relationship if su�ciently distant
alternatives are considered. Moreover, there appears to be no evidence for
the presence of two or more cointegrating relationships. For the test of the
hypothesis r � 1, the rejection frequencies apear to increase somewhat with
c, but it seems that this e�ect is only due to sampling variability. Unreported
results show that for c = 100 the rejection frequencies over 400 Monte-Carlo
simulations are again about 6%.

In the second experiment, the joint failure of j�11j 6= 0 and B> = (I;��>2 )
was investigated. The two-dimensional data generating process considered, is
given by �

�y1t
�y2t

�
=

�
0 0
0 �c=T

��
y1;t�1
y2;t�1

�
+

�
"1t
"2t

�
; (8:17)

while the relevant hypothesis to be tested is H1:5
1 . Note that A> = (0;�c=T )

and B> = (0; 1). So there are now two defects. First, �11 is singular, which
results in a discrepancy between the asymptotic distribution of the test and
the asymptotic distribution presented in Theorem 8.2. Second, the leading
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TABLE 8.3
Power Simulations for j�11j = 0

Experiment 1 Experiment 2

Gaussian T. Cauchy

� c r = 0 r = 1 r = 2 r = 0 r = 1 r = 0 r = 1

0 0.052 0.033 0.018 0.052 0.013 0.055 0.040
1 0.025 0.010 0.007 0.085 0.037 0.060 0.030

1 5 0.080 0.025 0.003 0.085 0.050 0.052 0.035
10 0.240 0.063 0.010 0.120 0.122 0.128 0.110
20 0.785 0.113 0.005 0.318 0.380 0.343 0.398

0 0.055 0.033 0.013 0.065 0.013 0.050 0.015
1 0.037 0.010 0.003 0.083 0.033 0.072 0.010

5 5 0.065 0.030 0.000 0.095 0.028 0.085 0.085
10 0.198 0.070 0.007 0.117 0.105 0.383 0.365
20 0.725 0.120 0.003 0.330 0.295 0.922 0.715

0 0.050 0.030 0.007 0.043 0.020 0.028 0.010
1 0.060 0.020 0.010 0.058 0.028 0.043 0.010

1 5 0.055 0.030 0.007 0.070 0.030 0.090 0.080
10 0.138 0.055 0.005 0.098 0.080 0.380 0.335
20 0.475 0.092 0.005 0.225 0.195 0.905 0.642

The columns under the heading Experiment 1 contain the rejection frequen-
cies of the Wald cointegration test for the M estimators described in Section
8.4 and data generating process (8.16). The columns under the heading Ex-
periment 2 contain the results for the same estimators and data generating
process (8.17). Gaussian means that the disturbances in the model were
generated from the multivariate standard normal, while T. Cauchy means
that they were generated from a truncated Cauchy distribution (see Section
7.6).

number in B> cannot be normalized to unity. The rejection frequencies of the
Wald test for Gaussian and truncated Cauchy "t are presented in the right four
columns of Table 8.3.

The most important feature that emerges from the right columns of Table
8.3 is that the rejection frequencies of the hypothesis H1:5

1 : r � 1 strongly
increase with the parameter c. This means that the Wald test detects too
much cointegration. In fact, there is only one cointegrating relation in (8.17),
while the Wald test rejects the hypothesis H1:5

1 for a considerable number of
simulations if c = 20. Therefore, it appears to be very important to check
whether the assumption B> = (Ir;��

>
2 ) is satis�ed when applying the test

to empirical data. Alternatively, one could try to circumvent the problem of
a singular leading submatrix in B> by choosing a di�erent parameterization
(or normalization). This can be done by imposing the following restrictions.
First, the (r � r) matrix ~�1 and the ((k � r) � r) matrix ~�2 must be chosen
such that ~B> ~B = Ir, with ~B = (~�>1 ;

~�>2 ). Second, ~�11 must be chosen as a
symmetric matrix. Note that for an arbitrary matrix �1 = (�11;�12), one can
always �nd matrices satisfying the above criteria and �1 = ~�11

~B>. If U�V >



8.6. CONCLUDING REMARKS 203

denotes the singular value decomposition of �1, then one can set ~�11 = U�U>

and ~B = V U>. Therefore, the parameterization described above provides an
alternative for the parameterization in (8.3). Using this parameterization of
(8.17), additional simulations revealed that the Wald test still rejected the
hypothesis H1:5

1 in a large number of cases.
In the third experiment, the following model was used:

�y1t = "1t; y2t = 10cy1t + "2t: (8:18)

Note that there is one cointegrating relationship, namely 10cy1t � y2t. The
number of rejections of the (true) hypothesis H1:5

1 over 1,000 simulations is
plotted in Figure 8.3 for di�erent values of c. The number of rejections should
equal approximately 5%. This number is approximately obtained for c � 0
if the variables are ordered as (y2t; y1t)

> (see the dashed line). For the same
ordering of the variables and c > 0, the test appears to be undersized. Now
consider the reverse ordering of the variables, (y1t; y2t)

>, such that j�11j =
0. Then the number of rejections is a decreasing function of c. For c > 0,
the test is clearly undersized. For negative values of c, however, the number
of rejections increases dramatically. This result explains the two previous
�ndings. If the stochastic trend is strongly present in both components of
the time series, i.e., c is large and positive, then the Wald test is undersized
(compare the �rst experiment). If one of the components is almost stationary
and the variables are incorrectly ordered, i.e., c is large and negative, then the
Wald test is heavily oversized (compare the second experiment).

Figure 8.3.| Rejection Frequencies of the Wald Test for Di�erent Orderings
of the Variables for the Model �y1t = "1t and y2t = 10cy1t + "2t
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8.6 Concluding Remarks

This chapter discussed the properties of an outlier robust cointegration test
based on the Wald principle. The idea of the Wald test was taken from Kleiber-
gen and van Dijk (1994). It turned out that the Wald test can be computed by
performing robust single equation regressions. This is an advantage compared
to the pseudo likelihood ratio test discussed in Chapter 7. Another advantage
of the Wald test compared to the pseudo likelihood ratio test, is that less nui-
sance parameters are present in the limiting distribution of the test statistic.
It was also discussed how the asymptotic distribution of the test is a�ected by
the presence of deterministic components in either the data generating process
or the �tted regression model.

The main disadvantage of the Wald test is that the ordering of the variables
can be extremely important for the asymptotic distribution of the test. If the
variables are not properly ordered, the Wald test can either underreject or
overreject. No pretest procedure could be developed for testing whether the
chosen ordering is correct. As an alternative, a robust Lagrange Multiplier
(LM) cointegration test was discussed. The LM test has two advantages. First,
its asymptotic distribution does not depend upon the ordering of the variables.
Second, the limiting distribution of the LM test depends on the same number of
nuisance parameters as the limiting distribution of the Wald test. This number
of nuisance parameters is smaller than or equal to the number of nuisance
parameters that enter the limiting distribution of the (pseudo) likelihood ratio
test discussed in Chapter 7. Therefore, the LM cointegration test seems to
be the best test at the moment for constructing outlier robust cointegration
testing procedures that depend upon a small set of nuisance parameters.

The properties of the Wald cointegration test were illustrated by means of
a small simulation experiment. As in Chapter 7, for Gaussian innovations the
OLS-based test had the highest power. For fat-tailed innovations, however,
tests based a Student t M estimator distribution performed best. Especially
the estimator based upon the Student t likelihood with �ve degrees of freedom
performed well, both for Gaussian innovations and truncated Cauchy innova-
tions.

Another conclusion that emerged from the simulations, is that the asymp-
totic distribution provides a poor approximation to the �nite sample distri-
bution of the robust cointegration tests. It would, therefore, be a valuable
contribution to the econometric literature if one could extend the �nite sam-
ple results of Abadir and Larson (1994) for the OLS estimator to cointegration
tests based on M estimators.

8.A Proofs

In this appendix, the theorems of Sections 8.3 and 8.5 are proved. First, the repre-

sentation Theorem 8.1 is proved. Next, an elaborate proof of Theorem 8.2 follows.

This latter proof directly follows the two-step procedure of Kleibergen and van Dijk
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(1994). Therefore, it has to take account of the errors-in-variables problem in the

second-step regression. An alternative proof using a systems approach rather than

the two-step procedure can also be constructed based on the methods used in Ap-

pendix 7.A.

Proof of Theorem 8.1. The proof mimics that of Johansen (1991, Theorem

4). Using his techniques, one can easily derive that

( ~Z>t ;
~Y >t )> = ~A(L)�1(A;A?)

>("t +  + �t);

with

~A(L) =

�
�A>AB>B +A> ~	(L)B(1� L) A> ~	(L)B?

A>
?
~	(L)B(1� L) A>

?
~	(L)B?

�
;

~	(L) = (I + � �
Pp�1

i=1 	iL
i), ~Zt = (B>B)�1B>yt, and ~Yt = (B>

?
B?)

�1B>
?
�yt.

De�ne

C(L) = (�B;B?) ~A(L)
�1(A;A?)

>;

and S(L) = (C(L)�C(1))=(1�L). Note that C(1) = C and �yt = B? ~Yt +B�~Zt.

Therefore,

�yt = C(L)("t +  + �t)

= (C + S(L)�)("t +  + �t)

= C"t + C + C�t+ S(L)(�"t + �)

= C"t + C + S(1)� +C�t+ S(L)�"t:

(8.11) now follows easily from the fact that yt = y0 +�y1 + . . . + �yt. 2

Corollary 8.2

E(B>yt) = ~C(1) + ~S(1)� + ~C(1)�t;

with ~C(1) = �(A>A)�1A>(I �	C), and

~S(1) = � ~C(1)(	B;�	0(1)B?) ~A(1)
�1(A;A?)

>:

Moreover, ~C(1) = B>S(1).

Proof. De�ne ~C(L) = (B>B; 0) ~A(L)�1(A;A?)
> and ~S(L) = ( ~C(L)� ~C(1))=(1�

L). Using the notation of the proof of Theorem 8.1, one obtains

E(B>yt) = E(B>B ~Zt)

= E( ~C(L)("t +  + �t))

= E(( ~C(1) + ~S(L)�)( + �t))

= ~C(1) + ~S(1)� + ~C(1)�t:

The �nal part of the corollary follows by noting that B>S(1) = �B>@C(z)=@zjz=1
and

�B> @C(z)

@z

����
z=1

= (B>B; 0) ~A(1)�1(A;A?)
> = ~C(1):

2

In the remainder of this appendix, the order of the VAR polynomial in (8.1),

p + 1, is set equal to 1. The asymptotic distributions of the test statistics are not
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changed if p > 0. Moreover, it is continually assumed that the conditions of Theorem

8.2 are satis�ed.

In order to prove Theorem 8.2, some additional de�nitions are needed. Let

�("t) = (�1t; . . . ; �kt)
>

with �nt denoting �n(�) evaluated at the nth row of "t. Let �1:("1t) and �2:("2t)

denote the �rst r and last k � r rows of �("t), respectively. De�ne �t analogously

to �̂t, with "̂b1t and �̂t in the de�nition of �̂t replaced by "1t and "2t, respectively.

Moreover, let � be a (k�k) diagonal matrix with the nth diagonal element equal to

E(�0n(e
>
n "t)), where en is the nth column of Ik. �11 denotes the upper-left (r � r)-

block of �. Furthermore, �22, �11;t and �22;t are de�ned in the obvious way.

Let �a:c = E(B>yt) for a = 1; 2; 3, and �a:c + �a:c t = E(B>yt) for a = 4; 5. For

completeness, �a:c = 0 for a = 1; 2; 3. The quantities �a:c and �a:c are used to correct

for the mean or trend in the cointegrating relationships. From the second part of

Corollary 8.2 it follows that �4:c = �5:c = B>S(1)�.

Let diag(a1; a2) denote a block-diagonal matrix with blocks a1 and a2. The

following matrices Ka:b
T are needed in order to standardize the yt process for the

various data generating processes a and regression models b.

K1:1
T = (B;T�1=2B?)

>

K1:2
T =

0
@ B> ��1:c

T�1=2B>
?

0

0 1

1
A

K1:3
T = K1:2

T

K1:4
T = diag(K1:2

T ; 1=T )

K1:5
T = K1:4

T

K3:3
T =

0
BB@

B> ��3:c
T�1�>1 B

>
?

0

T�1=2�>1?B
>
?

0

0 1

1
CCA

K3:4
T =

0
BB@

B> ��3:c 0

T�1=2B>
?

0 �T�1=2B>
?
C

0 1 0

0 0 T�1

1
CCA

K3:5
T = K3:4

T

K4:4
T =

0
BB@

B> ��4:c �B>S(1)�

T�1=2B>
?

0 �T�1=2B>
?
�2

0 1 0

0 0 T�1

1
CCA

K4:5
T = K4:4

T

K5:5
T =

0
BBBB@

B> ��5:c �B>S(1)�

T�2�>3 B
>
?

0 0

T�1=2�>3?B
>
?

0 �T�1=2�>3?B
>
?
�2

0 1 0

0 0 T�1

1
CCCCA ;
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with

�1 = B>
?C=(

>C>B?B
>
?C)

�2 = (C + S(1)�)

�3 = 2B>
?C�=(�

>C>B?B
>
?C�):

K2:2
T to K2:5

T are equal to K1:2
T to K1:5

T , with �1:c replaced by �2:c .

The following lemma follows directly from Phillips and Durlauf (1986).

Lemma 8.1

T�1=2
bsT cX
t=1

�
"t

�("t)

�
)W (s) =

�
W1(s)

W2(s)

�
=

�
W1

W2

�
;

with W (s) a vector Brownian motion with covariance matrix


 =

�

11 
12


21 
22

�
;

and bxc denoting the integer part of x. 
 and 
11 are (k
2�k2) and (k�k)-matrices,

respectively.

The following results are now easily established.

Lemma 8.2 diag(0; Ik�r+i)K
a:b
T Y b

1;bsT c ) ga:b, with i = 0 for b = 1, i = 1 for

b = 2; 3, i = 2 for b = 4; 5, and

gi:1 = (W1(s)
>C>B?)

>;

gi:2 = (W1(s)
>C>B?; 1)

>;

gi:3 = gi:2;

gj:4 = (W1(s)
>C>B?; 1; s)

>;

gj:5 = gj:4;

g3:3 = (s;W1(s)
>C>B?�1?; 1)

>;

g5:5 = (s2;W1(s)
>C>B?�3?; 1; s)

>;

for i = 1; 2 and j = 1; 2; 3; 4.

Proof. All of these results follow rather easily from the decomposition derived in

Theorem 8.1, the weak convergence of the partial sum process in Lemma 8.1, and

the continuous mapping theorem (see Billingsley (1968)). 2

Lemma 8.3 T�1
PbsT c

t=1 Ka:b
T Y b

1t(K
a:b
T Y b

1t)
> ) Ga:b, with

G1:1 =

�
�1 0

0
R
~W1

~W>
1

�
;

Gi:2 =

0
@ �1 0 0

0
R
~W1

~W>
1

R
~W1

0
R
~W>
1 1

1
A ;
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Gi:3 = Gi:2;

Gj:4 =

0
BB@

�1 0 0 0

0
R
~W1

~W>
1

R
~W1

R
s ~W1

0
R
~W>
1 1 1

2

0
R
s ~W>

1
1
2

1
3

1
CCA ;

Gj:5 = Gj:4;

G3:3 =

0
BB@

�1 0 0 0

0 1
3

R
s ~W>

1 �1?
1
2

0 �>1?
R
s ~W1 �>1?

R
~W1

~W>
1 �1? �>1?

R
~W1

0 1
2

R
~W>
1 �1? 1

1
CCA ;

G5:5 =

0
BBBB@

�1 0 0 0 0

0 1
5

R
s2 ~W>

1 �3?
1
3

1
4

0 �>3?
R
s2 ~W1 �>3?

R
~W1

~W>
1 �3? �>3?

R
~W1 �>3?

R
s ~W1

0 1
3

R
~W>
1 �3? 1 1

2

0 1
4

R
s ~W>

1 �3?
1
2

1
3

1
CCCCA ;

for i = 1; 2 and j = 1; 2; 3; 4, with ~W1 = B>
?
CW1. �1 equals the variance of the

cointegrating relationships,5

�1 = Ef(B>yt � �a:c � �a:c t)(B
>yt � �a:c � �a:c t)

>g:

Proof. All of these results follow directly from Theorem 8.1, Lemma 8.1, and the

continuous mapping theorem (see Billingsley (1968)). 2

The results of Lemmas 8.2 and 8.3 can be used to derive the asymtotic distribu-

tion of (�̂b
1 ��b

1). This is done in the following lemma.

Lemma 8.4 Let "̂b1t�"1t = op(1) uniformly for t = 1; . . . ; T . Then, if rank(�) = r,

T 1=2(Ir 
 (Ka:b
T )>)�1vec((�̂a:b

1 ��b
1)
>)) (�11 
Ga:b)�1(

Z
dW21 


�
d�1
ga:b

�
);

with W21(s) denoting the �rst r rows of W2(s) and
R
(dW21) 
 (d�1) denoting a

normally distributed random variate.

Proof. The M estimator is given by the set of parameter values that solves

TX
t=1

Y b
1t�̂

b
nt = 0 (n = 1; . . . ; r): (8:19)

The r di�erent equations in (8.19) can be stacked into the system of equationsPT
t=1 �1:("̂

b
t)
 Y b

1t = 0. Taking a �rst order Taylor expansion of this system around

the true parameter values, one obtains

0 = T�1
TX
t=1

�1:("1t)
Ka:b
T Y b

1t + (T�1
TX
t=1

�11;t 
Ka:b
T Y b

1t(K
a:b
T Y b

1t)
>)�

5Note that �1 does not depend on the data generating process nor on the regression
model.



8.A. PROOFS 209

(Ir 
 (Ka:b
T )>)�1vec((�̂b

1 ��b
1)
>) +Ra:b

T ; (8:20)

with Ra:b
T denoting the remainder term. The Lipschitz continuity of �0n(�) and the

fact that ("̂b1t � "1t) = op(1) uniformly for t = 1; . . . ; T , together imply that

Ra:b
T = op(1) � (Ir 
 (Ka:b

T )>)�1vec((�̂b
1 ��b

1)
>)

(compare Appendix 6.A). Therefore,

T 1=2(Ir 
 (Ka:b
T )>)�1vec((�̂b

1 ��b
1)
>) =

(T�1
TX
t=1

�11;t
Ka:b
T Y b

1t(K
a:b
T Y b

1t)
>+op(1))

�1 � (T�1=2
TX
t=1

�1:("1t)
Ka:b
T Y b

1t): (8:21)

Using Lemma 8.2 and Theorem 3.2 of Hansen (1992), one obtains

T�1
TX
t=1

�11;t 
Ka:b
T Y b

1t(K
a:b
T Y b

1t)
> ) �11 
Ga:b:

From Theorem 2.1 of Hansen (1992), it follows that

T�1=2
TX
t=1

�1:("1t)
Ka:b
T Y b

1t )

Z
dW21 


�
d�1
ga:b

�
;

with
R
(dW21 
 (d�1)) denoting limT!1 T�1=2

PT
t=1 �1:("1t) � (B

>yt�1 � �a:c � �a:c t).

This proves the theorem. 2

Lemma 8.4 reveals that certain linear combinations of the parameters from the

�rst step regression are T 1=2-consistent, while other combinations are T -consistent.

Therefore, the elements of �̂1 are only T
1=2-consistent in general. Despite this fact,

the following lemma shows that �̂2 = ��̂12�̂
�1
11 = �2 +Op(T

�1).

Lemma 8.5 Given the assumptions of Lemma 8.4,

Tvec(�̂2 � �2) = Op(1):

Proof. De�ne �b as the set of parameters in the cointegrating relationship of

regression model b, e.g., �4 = (�>2 ; ~1;
~�1). Moreover, let �b = ��11�

b. It is easily

checked that

(�̂b � �b) = �(�̂�111 �̂
b ���111 �

b)>

= ��̂�111 (�
b + (�̂b � �b)� [�11 + (�̂11 ��11)]�

�1
11 �

b)

= ��̂�111 (�̂
b � �b � (�̂11 ��11)�

�1
11 �

b)

= ��̂�111 ((�̂11 ��11)�
b + (�̂b � �b)I)

= ��̂�111 (�̂
b
1 ��b

1)((�
b)>; I)>:

Note that the upper-left (k � (k � r)) block of ((�b)>; I)> equals B?. Therefore,

vec((�̂b � �b)>) = (��̂�111 
 ((�b)>; I))vec((�̂b
1 ��b

1)
>):

The lemma now follows immediately from Lemma 8.4 by noting that the �rst (k�r)

rows of T 1=2((�b)>; I)(Ka:b
T )> are O(1) for all considered combinations of a and b.

2
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Remark 8.1 For some combinations (a:b), there exist linear combinations of T (�̂2�
�2) that are op(1). For example, for combination 3.3 a vector v exists, such that

v>(�̂2 � �2) = Op(T
�3=2).

Lemma 8.4 presents the asymptotic distribution of the estimators that are used

in the �rst step regression, while Lemma 8.5 presents the results for the estimators

of the parameters that enter the cointegrating relationship. In order to derive the

asymptotic distribution of the estimators that are used in the second step regression,

de�ne the matrices L̂b, such that Ŷ b
2t = L̂bY

b
1t. For example,

L̂2 =

�
Ir ��̂>2 �~̂1
0 Ik�r 0

�
:

Note that the matrices L̂b need not be square. The matrices Lb are de�ned similarly,

Y b
2t = LbY

b
1t. The relation between L̂b and Lb is presented in the following lemma.

Lemma 8.6

L̂b � Lb = �

�
Ir
0

�
�̂�111 (�̂

b
1 ��b

1)

�
�b

I

�
(0; I);

where the column dimension of zero block in the �nal matrix (0; I) is equal to r.

Proof. It is easily checked that either

L̂b =

�
I ��̂b

0 I

�
; or L̂b =

�
I ��̂b

0 (I; 0)

�
:

Therefore, L̂b�Lb = �(I; 0)>(�̂b��b)(0; I). The result now follows by using Lemma

8.5. 2

The following matrices are needed to normalize the vector process fY b
2tg.

~K3:3
T =

0
BB@

Ir 0 ~1 � �3:c
0 T�1�>1 (B

>
?
B?) 0

0 T�1=2�>1?(B
>
?
B?) 0

0 0 1

1
CCA ;

~K3:4
T = ~K3:3

T ;

~K3:5
T =

0
BB@

Ir 0 ~1 � �3:c 0

0 T�1=2(B>
?
B?) 0 �T�1=2B>

?
C

0 0 1 0

0 0 0 T�1

1
CCA ;

~K4:4
T =

0
BB@

Ir 0 ~1 � �4:c
0 T�1�>4 0

0 T�1=2�>4?(B
>
?
B?) 0

0 0 1

1
CCA ;
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~K4:5
T =

0
BB@

Ir 0 ~1 � �4:c 0

0 T�1=2(B>
?
B?) 0 �T�1=2(B>

?
B?)(0; Ik�r)�2

0 0 1 0

0 0 0 T�1

1
CCA ;

~K5:5
T =

0
BBBBB@

Ir �B̂>B? ~1 � �5:c
~̂�1 � �5:c

0 T�2�>3 (B
>
?
B?) 0 0

0 T�1=2�>3?(B
>
?
B?) 0 �T�1=2�>3?(B

>
?
B?)(0; Ik�r)�2

0 0 1 0

0 0 0 T�1

1
CCCCCA ;

with

�4 = (B>
?B?)(0; Ik�r)�2=kB?(0; Ik�r)�2k

2:

For the remaining combinations, de�ne the matrices

~Ki:1
T = diag(Ir; T

�1=2(B>
?B?));

~Ki:2
T = ~Ki:1

T ;

~Ki:3
T = diag(Ir; T

�1=2(B>
?B?); 1);

~Ki:4
T = ~Ki:3

T ;

and
~Ki:5
T = diag(Ir; T

�1=2(B>
?B?); 1; T

�1):

Using Lemma 8.5, the following two lemmas can be established by tedious, but

straightforward algebraic manipulations.

Lemma 8.7 Under the conditions of Lemma 8.4,

lim
T!1

Ka:b
T ((�b)>; I)> ~M b

1(K
a:b
T )�1 � ~Ma:b

2T = 0;

with

~M1
1 = (0(k�r)�r; Ik�r);

~M2
1 = (0(k�r+1)�r; Ik�r+1);

~M3
1 = ~M2

1 ;

~M4
1 = (0(k�r+2)�r; Ik�r+2);

~M5
1 = ~M4

1 ;

and

~Ma:1
2T =

�
0r�r 0

0 Ik�r

�
;

~Ma:2
2T =

0
@ 0r�r 0 ~1 � �a:c

0 Ik�r 0

0 0 1

1
A ;
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~Ma:3
2T = ~Ma:2

2T ;

~Ma:4
2T =

0
BB@

0r�r 0 ~1 � �a:c T (~�1 � �a:c )

0 Ik�r 0 ma:
2T

0 0 1 0

0 0 0 1

1
CCA ;

~Ma:5
2T = ~Ma:4

2T :

ma:
2T = 0 for a < 5, and

m5:
2T = T 1=2�>3?(�2

~�1 � (B>
?B?)�2(B

>B)�1B>�2):

Proof. As mentioned, the proofs are straightforward. Only note that for case 4.4

it follows from Corollary 8.2 that ~�1 = B>�2. This fact is needed to prove that

m4:
2T = 0. 2

Lemma 8.8 Under the conditions of Lemma 8.4,

plim
T!1

~Ka:b
T L̂b(K

a:b
T )�1 = Na:b;

with

N1:1 = Ik; N i:2 = (Ik; 0k;1); N j:3 = Ik+1;

N i:4 = (Ik+1; 0k+1;1); Nk:5 = Ik+2;

N3:4 =

0
BB@

Ir 0 0 0

0 0 0 1

0 �>1? 0 0

0 0 1 0

1
CCA ;

N4:4 =

0
BB@

Ir 0 0 0

0 0 0 1

0 �>4? 0 0

0 0 1 0

1
CCA ;

for i = 1; 2, j = 1; 2; 3, and k = 1; . . . ; 5.

Proof. As mentioned before, the statements follow from straightforward algebraic

manipulations. However, the computations are simpli�ed considerably by noting

that for (a:b) 6= (5:5), it su�ces to check the statements for ~Ka:b
T Lb(K

a:b
T )�1, rather

than for ~Ka:b
T L̂b(K

a:b
T )�1. This can be seen as follows. By Lemma 8.6 and the

de�nition of ~Ka:b
T ,

~Ka:b
T (L̂b � Lb)(K

a:b
T )�1 = �

�
Ir
0

�
�̂�111 (�̂

b
1 ��b

1)

�
�b

I

�
(0; I)(Ka:b

T )�1:
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From Lemma 8.4, it follows that

�̂�111 (�̂
b
1 ��b

1)(K
a:b
T )�1 = op(1);

while from Lemma 8.7, it follows that

Ka:b
T ((�b)>; I)>(0; I)(Ka:b

T )�1 = O(1);

for (a:b) 6= 5:5. This proves the statement. 2

The result from Lemma 8.8 is that ~Ka:bŶ a:b
2t and Na:bKa:bY1t weakly converge

to the same limiting process. Because Na:b is often of a simple form, this simpli�es

the derivations of the asymptotic distribution of �̂b
2 below.

Lemma 8.9 Under the assumptions of Lemma 8.4,

T 1=2(I 
 ( ~Ka:b
T )>)�1vec((�̂b

2 ��b
2)
>)�

(�22 
Na:bGa:b(Na:b)>)�1(�22 
Na:bGa:b)(��21�
�1
11 
 ( ~Ma:b

2T )
>)�

(�11 
Ga:b)�1 � (

Z
dW21 
 (d�>1 ; (g

a:b)>)>))

(�22 
Na:bGa:b(Na:b)>)�1(

Z
dW22 
Na:b(d�>1 ; (g

a:b)>)>): (8:22)

Remark 8.2 The notation in (8.22) is nonstandard. Usually, the second term on

the left-hand side of the weak convergence symbol would appear on the right-hand

side. This can be done for all combinations (a:b) 6= (5:5). For this last case, however,

the matrix ~M5:5
2T diverges, as follows from Lemma 8.7. Therefore, the notation as in

(8.22) is used.

Proof of Lemma 8.9. The M estimator for the second step regression solves

TX
t=1

�2:(�̂
b
2t)
 Ŷ b

2t = 0: (8:23)

The proof mimics that of Lemma 8.4. The remainder terms of the Taylor expansion

have the same properties as the remainder term in the proof of Lemma 8.4. There-

fore, they can be neglected. Taking a �rst order Taylor expansion of (8.23) around

the disturbance "2t and using Lemmas 8.7 and 8.8, one obtains

0 =

 
T�1

TX
t=1

�2:("2t)
 Ŷ b
2t

!
+

 
T�1

TX
t=1

�22;t 
 Ŷ b
2t

!
(�̂b2t � "2t) + ~RT ,

0 =

 
T�1

TX
t=1

�2:("2t)
 ~Ka:b
T L̂bY

b
1t

!
+

 
T�1

TX
t=1

�22;t 
 ~Ka:b
T L̂bY

b
1t

!
�

vec((�̂b2t � �b2t + �b2t � "2t)
>) +RT

=

 
T�1

TX
t=1

�2:("2t)
 ~Ka:b
T L̂b(K

a:b
T )�1Ka:b

T Y b
1t

!
+
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T�1

TX
t=1

�22;t 
 ~Ka:b
T L̂b(K

a:b
T )�1Ka:b

T Y b
1t

!
�

vec(�(Ŷ b
2t)

>(�̂b
2 ��b

2)
> + (Y b

1t)
>( ~M b

1)
>(�̂b � �b)>�>21) +RT

=

 
T�1

TX
t=1

�2:("2t)
Na:bKa:b
T Y b

1t

!
�

 
T�1

TX
t=1

�22;t 
Na:bKa:b
T Y b

1t(N
a:bKa:b

T Y b
1t)

>

!
�

(I 
 ( ~Ka:b
T )>)�1vec((�̂b

2 ��b
2)
>) + 

T�1
TX
t=1

�22;t 
Na:bKa:b
T Y b

1t(K
a:b
T Y b

1t)
>

!
�

(�21 
 ((Ka:b
T )>)�1( ~M b

1)
>)vec((�̂b � �b)>) + op(1)

=

 
T�1

TX
t=1

�2:("2t)
Na:bKa:b
T Y b

1t

!
�

 
T�1

TX
t=1

�22;t 
Na:bKa:b
T Y b

1t(N
a:bKa:b

T Y b
1t)

>

!
�

(I 
 ( ~Ka:b
T )>)�1vec((�̂b

2 ��b
2)
>) + 

T�1
TX
t=1

�22;t 
Na:bKa:b
T Y b

1t(K
a:b
T Y b

1t)
>

!
�

(��21�̂
�1
11 
 (Ma:b

2T )
>)(I 
 (Ka:b

T )>)�1vec((�̂b
1 ��b

1)
>) + op(1)

with ~RT and RT remainder terms. By applying Lemmas 8.2, 8.3, 8.4, and Theorems

2.1 and 3.3 of Hansen (1992), the lemma is established. 2

Under the present assumptions, it is easily checked that

V̂
p
! A>?�

�1E(�("t)�("t)
>)��1A?;

and
~Ka:b
T V̂ b

Y (
~Ka:b
T )> ) Na:bGa:bNa:b;

with V̂ and V̂ b
Y as de�ned in Section 8.2. This results in the following lemma.

Lemma 8.10

~Ka:b
T P>b (Pb(V̂

b
Y )
�1P>b )

�1Pb( ~K
a:b
T )> ) P>b (Pb(G

a:b)�1P>b )
�1Pb:

Proof. Only case (5:5) is proved. The other cases follow rather easily. First note

that for data generating process 5, it follows from Lemma 8.5 that (�̂2 � �2) =

Op(T
�1) and

T 2�>3 (B
>
?B?)

�1(�̂2 � �2) = Op(T
�1=2):

The result now follows by noting that�
T 2(�>3 �3)

�1�>3
T 1=2(�>3?�3?)

�1�>3?

�
(B>

?B?)
�1P5( ~K

5:5
T )> =
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�
T 2(�>3 �3)

�1�>3
T 1=2(�>3?�3?)

�1�>3?

�
0
BBBB@

(�̂2 � �2)
>(B>

?
B?)

�1

�>3 =T
2

�>3?=T
1=2

0

0

1
CCCCA

>

= P5 + op(1):

2

Using all the intermediate results derived above, one can now prove Theorem

8.2.

Proof of Theorem 8.2. First, the result is proved for regression model 1

and data generating process 1. From Lemma 8.9, it follows that

T (I 
 (B>
?B?)

�1)vec(�̂>22) = T 1=2(I 
 P1(( ~K
1:1
T )>)�1)vec(�̂2 ��2)
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De�ne the normalization matrices
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>B?)

�1=2B>
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22�

�1A?)
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Then it follows from lemma 8.9 and 8.10, that
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(8.24)

Note that �1:1
1 W1 and �2W2 are two correlated, standard Brownian motions. Now

let �3�4�
>
5 denote the singular value decomposition of E(�1:1

1 W1(1)W2(1)�
>
2 ).

Then the limiting distribution of tbw is left unaltered if �1:1
1 W1 is replaced by B1:1

1 =

�>3 �
1:1
1 W1 and �2W2 is replaced by B2 = �>5 �2W2. This proves case 1.1. The other

cases are proved similarly, although the computations are more involved. Therefore,

I also present the proof of case 3.4, which turns out to be tedious, but straightfor-

ward.

De�ne �W1 = �>1?
~W1. Now note that N3:4G3:4(N3:4)> = G3:3, and

P4(N
3:4G3:4(N3:4)>)�1N3:4G3:4( ~M3:4
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R
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with �W
�
1 = �W1 �

R
�W1. ~W

�
1 is de�ned analogously. The remainder of the proof

follows the proof of case 1.1. 2

Proof of Corollary 8.1. For �("t) = "t, �t = Ik. Therefore, R1:1 = Ik.

Moreover, the absolute values of the canonical correlations between �>i?A
>
?
"t and

A>
?
"t for i = 1; 3; 4, are equal to the square roots of the eigenvalues of the matrix

( ~Ri:i)( ~Ri:i)>, with

~Ri:i = (�>i?A
>
?
11A?�i?)

�1=2�>i?A
>
?
11A?(A

>
?
11A?)

�1=2:

The result now follows by observing that ( ~Ri:i)( ~Ri:i)> = I. 2

Proof of Theorem 8.3. The proof is similar to that of Theorem 8.2 and

follows rather directly from Lemma 8.9. For example, consider case 4.5. From

Corollary 8.2 it follows that �4:c = ~C(1)�. Moreover, because the fourth data gen-

erating process is considered, � can be written as A�� for some vector �� of length r.

Considering the �rst r rows of �, one obtains

�1 = �11�� , ��11~�1 = �11�� , �� = �~�1:

So � = �A~�1. Substituting this into the expression for �4:c , it follows from the

de�nition of ~C(1) in Corollary 8.2, that

�4:c = ~C(1)� = (A>A)�1A>(I �	C)A~�1 = ~�1:

As a result, ~M4:5
2T = diag(0r�r; Ik�r+2). Moreover, as N4:5 = Ik+2, the result now

follows directly from Lemma 8.9. 2

Lemma 8.11 Given the assumptions stated in Lemma 8.4, only with j�11j = 0

instead of j�11j 6= 0,

T 1=2vec(�̂2 � �2) = Op(1):
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Proof. Following the proof of Lemma 8.5 and the result from Lemma 8.4, one

needs that the appropriate rows of

(�̂�111 
 ((�b)>; I)(Ka:b
T )>)

are O(1). As ((�b)>; I)(Ka:b
T )> = O(T�1=2), it is therefore su�cient that T 1=2�̂11

has a nondegenerate limiting distribution. This follows from Lemma 8.4. 2

Proof of Theorem 8.4. From Lemma 8.4 it follows that

p
Tvec(�̂>11)) (��111 
 ��1)(

Z
dW21 
 d�1) = N(0; V�1 
 ��1);

with V�1 = ��111 E(�1:("t)�1:("t)
>)��111 and N(0; V ) denoting a Gaussian random

vector with mean zero and variance-covariance matrix V . Note that �̂11 = �̂11 and

p
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p
T j�̂>11j =

p
Tvec(j�̂>11j�̂

�1
11 )

>vec(�̂>11):

Further, j�̂>11j�̂
�1
11 is the matrix of cofactors of �̂>11, which converges in probability

to the matrix of cofactors of �>11, say ��11. Therefore,

p
T j�̂11j

d
! N(0; tr((��11)

>��1��11V�1)):

It is obvious that V̂�1
p
! V�1 . Moreover,

T
�
tr((�̂>11)

�1V̂ �1� �̂�111 V̂�1)
��1

= T j�̂11j
2
�
tr((�̂�11)

>V̂ �1� �̂�11V̂�1)
��1

(8:25)

with �̂�11 = j�̂11j�̂
�1
11 . The result is established if one can show that the denominator

in (8.25) converges to (��11)
>��1��11V�1 . Therefore, one needs to show that V̂�

converges to �. This follows from the fact that under the present assumptions it is

straightforward to show that ( ~�2 � �2) = op(T
�1=2) (compare Engle and Granger

(1987) and Johansen (1991)). 2
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