Chapter 8

Cointegration Testing Using an
Outlier Robust Wald Test

This chapter considers the same problem as Chapter 7, namely that of mul-
tivariate unit root testing or cointegration testing. There are two important
differences between the present and the previous chapter. First, both chap-
ters use a different testing principle. In Chapter 7, a robust alternative for
the Gaussian pseudo likelihood ratio test of Johansen (1988) was developed,
whereas an outlier robust Wald test is considered in the present chapter. A
second important difference concerns the presence of deterministic drift terms
in both the data generating process and the regression model. The effect of
such terms was only briefly touched upon in Section 7.7. In this chapter much
more emphasis is placed upon the consequences of drift terms and deterministic
regressors.

As in Chapter 7, the asymptotic distribution of the cointegration test is
derived. Moreover, some of the finite sample properties of the test are studied
by means of a Monte-Carlo simulation experiment.

As already mentioned in Section 7.7, nonzero drift terms in the data gen-
erating process complicate the derivation of the asymptotic distributions of
cointegration tests. The relevance of this statement will become apparent in
the present chapter. The notation is sometimes cumbersome, while the sepa-
rate treatment of all different possibilities for the data generating process and
the regression models gives the material a messy appearance. This, however,
seems to be unavoidable.

The chapter is set up as follows. In Section 8.1, the model and the testing
procedure of Kleibergen and van Dijk (1994) are introduced (see also Kleiber-
gen (1994)). An obvious obvious modification of the original testing procedure
is discussed, which makes the test resistant to outliers. Moreover, the different
sets of interesting null hypotheses are introduced, and attention is devoted to
the importance of the deterministic components in the model. Section 8.2 pro-
vides the test statistics for each of the hypotheses put forward in Section 8.1.
In Section 8.3, the asymptotic distribution of these test statistics is derived.
In Section 8.4, the properties of the outlier robust Wald test are evaluated
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by means of simulations. In Section 8.5, some brief comments can be found
on the importance of the ordering of the variables for the Wald test. Some
possibilities for solving the sensitivity of the Wald test with respect to this or-
dering are proposed. Finally, Section 8.6 concludes this chapter and presents
some interesting lines for future research. The appendix contains the proofs of
the theorems from the main text. The notational conventions adopted in this
chapter were explained in Subsection 1.4.4.

8.1 The Model, the Testing Procedure, and
the Hypotheses

This section describes the Wald cointegration test put forward by Kleibergen
and van Dijk (1994). It is shown how this test can be generalized in order
to yield an outlier robust cointegration test. Finally, the different interesting
hypothesis are discussed. Throughout this section, it must be kept in mind
that there are two classes of interesting hypotheses. First, one is interested in
the number of cointegrating relationships. Second, one is interested in how the
deterministic components of the model, like the constant term and the linear
time trend, enter the cointegrating relationships. Considering both types of
hypotheses leads to a wide variety of test statistics.

8.1.1 The Model

The model used throughout this chapter is similar to (7.10). The only differ-
ence is that a linear time trend is added to the specification. More general
polynomials in ¢ can also be dealt with, but at the cost of additional complex-
ity and cumbersome notation. Moreover, quadratic and cubic trend functions
are often deemed unrealistic from an economic perspective. Therefore, only
the case of a linear time trend is considered in this chapter. Assume the data
generating process is

Ayt = Hyt—l + \Ileyt—l +...+ \I/pAyt_p + v+ ot + Et, (81)
with y, € R¥, and
(1 —2)Ip —2Il —2(1 —2)¥) —... = 2P(1 = 2)¥, 4| =0 (8.2)

implying either |z| > 1 or z = 1. Moreover, assume that the elements of y,; are
at most integrated of order one. The vector y,; is observed for t = —p,..., T
and all inference procedures are conducted conditional on the values of y_,
through .

As was explained in Section 7.1, the rank of the matrix II in (8.1) cor-
responds to the number of cointegrating relationships. Under the hypothesis
that rank(Il) = r, the matrix II can be decomposed as Il = ABT, with A and
B two (k x r) matrices of full column rank. Note that in contrast to Chapter
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7, BTy, now no longer needs to be stationary in the sense that the mean of
BTy, does not depend upon t. This is a consequence of the presence of the
linear trend in the data generating process (8.1).

The interpretation of the deterministic components in the model, i.e., the
constant and the trend, heavily depend upon the rank of the matrix II. Con-
sider the two extreme cases of I having full rank and II being equal to zero. If
IT has full rank, then y, is stationary around a linear time trend. In contrast,
if IT = 0, then (8.1) indicates that Ay, is stationary around a linear trend, im-
plying that ¥, is the sum of a random walk process and a quadratic time trend.
The different interpretations of the deterministic part of the model under the
null hypothesis of no cointegration and under the alternative of stationarity
should be kept in mind when discussing the different test statistics. If one
wants the deterministic part of the model to have the same interpretation un-
der the null and under the alternative hypothesis, additional restrictions must
be imposed on the coefficients of the trend function (see the discussion of the
test statistics in Subsection 8.1.3, below). These restrictions can also be tested.
More on the interpretation of deterministic components in models like (8.1)
can be found in Johansen (1994).

8.1.2 The Testing Procedure

In order to test for the number of cointegrating relationships, Kleibergen and
van Dijk (1994) consider the LU-decomposition of the matrix II. Under the
hypothesis that rank(IT) = r, they set

H:aﬂT _ < a0 > < I, —ﬁzT > _ < a1 —olelﬁZT >, (8.3)
Qi1 (g2 0 Iiy Qo1 —a910y + Qg

with By a ((k — r) X r) matrix, aq; an (r X r) matrix of full rank, ay a
((k —r) x r) matrix, and gy a ((k —r) x (k —r)) matrix. Note the similarity
between the decomposition in (8.3) and the one used in the proof of Theorem
7.1 in Appendix 7.A. The total number of parameters in a1, a1, oo, and
B> equals the number of elements in the matrix II. A nice feature of the
decomposition in (8.3) is that it allows for an explicit parameterization of
the hypotheses of interest (see also further below in this subsection). Using
(8.3), the cointegration hypothesis can be tested using linear restrictions and
ordinary regression techniques.

A decomposition of the type (8.3) is not always possible. First, the nonsin-
gularity assumption for ary; may require a reordering of the elements of y;. The
nonsingularity of aq; plays a crucial role in the derivation of the asymptotic
distribution of the Wald test for cointegration. This is undesirable, as one
would, in general, like a testing procedure to be invariant under such simple
transformations as reordering the variables. The case |aq;| = 0 is discussed in
more detail in Section 8.5.

A second problem with the decomposition in (8.3) is the presence of the
identity matrix [, in the matrix #. The normalization of the upper-left block
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of 3 to be the unit matrix, may be invalid. As a simple example, consider the
case where £k =2, r =1, and

<Aylt>:<0 _0-5><yl,t—1>+<51t>
Ayoy 0 —0.5 Ya,t—1 g )

An LU-decomposition of the form (8.3) is now impossible, as such a decom-
position would have to satisfy a;; = 0 and a3 = 0.5. This defect can again
be taken care of by reordering the elements of y;.

Using the decomposition in (8.3) and the assumption that || # 0, rank
deficiency of the matrix IT corresponds to a rank deficiency of as,. In par-
ticular, rank(IT) = r if and only if ag = 0. For ag, = 0, the cointegrating
vectors are given by the columns of (I.,—3,)". Therefore, one can test for
the existence of r linearly independent cointegrating relationships by testing
whether ag, = 0. This idea underlies the testing procedure of Kleibergen and
van Dijk (1994).

Kleibergen and van Dijk propose the following two-step procedure. Define
I = (\Ijl, .. .,\I/p), ZtT = (AXtTfh .. .,AXt—Ep), and let Fl, Y1, Hl, Y1, (51, and
£1¢ denote the first r rows of I, v, II, v, 0, and &, respectively. Analoguously,
I’y denotes the last (kK — r) rows of I'. Similar definitions hold for the other
quantities. Using these definitions and the decomposition presented in (8.3),
(8.1) can be split into the two parts, namely

Ayy = DiZi+yi+ot +Ihy 1 +cp
= DiZ+an(BTy + ap'y + oy oit) + ey

= INZ + 0411(BTZ/t71 — Y — 51?5) + €1t (8.4)
and
Ayy = ToZi+vo + 0ot + Iy, 1 + €y
= I'vZ;+ az1(BTyt_1 + o (v +01t)) + Q22Y2,1—1 +
AL (v +0t) + ey
= TuwZ,+an(B yi1 — %1 — 0it) + Q2241 +
Yo + 02t + £, (8.5)
with 4, = —aﬁl%, 5 = —aﬁlél, Yo = Alv, 5y = AlS, AT = (af;,aq,),

Al = (~agiay!, I—,), B" = (I,,—f3;)), and B] = (B, I;_,). Note that
BB = A] A = 0. Estimators of all these quantities are denoted by putting a "
above the parameter one is estimating, for example, 4; for —a;'41. Kleibergen
and van Dijk propose to start computing the test for ayy, = 0 by estimating
(8.4). In this way, one obtains an estimate of the cointegrating relationships,

say (BTy,—1 — 4, — 01), with 3] = —II3}'II;. This estimate can then be used
as a regressor in (8.5) instead of the unobserved quantity (B'y,_; — 5 — :1).
After estimating (8.5) with the generated regressor (B'y_; — 7, — 01), the

hypothesis s, = 0 can be tested using a Wald type test. This procedure has
the attractive property that only simple regression techniques are needed.
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There are two problems with the approach of Kleibergen and van Dijk
(1994). First, the use of a generated regressor in estimating (8.5) creates an
errors-in-variables problem. This complicates the derivation of the asymptotic
distribution of the test statistics. The effect of this errors-in-variables problem
does not vanish for 7" — oo. Second, Kleibergen and van Dijk use the OLS
estimator for estimating (8.4) and (8.5). As mentioned in previous chapters,
the OLS estimator is sensitive to outliers and other departures from the nor-
mality assumption. Therefore, it is suggested in this chapter to use the class
of M estimators to obtain estimates of the parameters in (8.4) and (8.5). As
in the univariate case, these estimators have better robustness properties for
a variety of data generating processes. The precise formulations of the test
statistics based on M estimators are presented in the next section.

8.1.3 The Hypotheses of Interest

Now turn to the different hypotheses that are of interest when testing for the
existence of cointegrating relations. The type and number of deterministic
components in both the data generating process and in the chosen regression
model are extremely important. Therefore, the following five data generating
processes are distinguished:

1. no deterministic regressors in either (8.4) or (8.5) (1 =0, %2 = 0, o =0,

2. an intercept in (8.4), which enters the cointegrating relationship; no ad-
ditional intercept in (8.5) (52 = 0, 0; = 0, 62 = 0);

3. an intercept in (8.4), which enters the cointegrating relationship; an ad-
ditional intercept in (8.5) (d; = 0, dy = 0);

4. a linear time trend in (8.4), which enters the cointegrating relationship;

an intercept in (8.5) (42 = 0);

5. a linear time trend in (8.4), which enters the cointegrating relationship;
an additional linear time trend in (8.5).

Similarly, one can distinguish five different specifications for the regression
model when estimating (8.4) and (8.5). This leads to a total of 25 combinations
of regression models and data generating processes. The number of possibilities
is reduced by focusing on situations where the regression model is correctly
specified or over-specified. This leaves 15 combinations of data generating
processes and regression models.

By testing whether ags = 0, one tests whether the number of cointegrating
relationships is at most r. This immediately produces the first set of relevant
hypotheses, namely H®* : aqgy = 0, where H®*® denotes the null hypothesis
of rank(IT) < r under data generating process a, a = 1,...,5, and regression
model b, b = a,...,5. The alternative hypothesis is taken to be H®. In or-
der to determine the rank of Il exactly, a sequential testing procedure can be
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devised. Starting from r = 0, one tests whether H? is rejected. If it is not
rejected, one concludes that one cannot reject the hypothesis of no cointegra-
tion. Otherwise, r is increased by one and the whole procedure is repeated
again. Finally, if one rejects H’, one concludes that all the elements of y;
are stationary. This sequential testing procedure follows a different sequence
of hypotheses than the procedure proposed by Kleibergen and van Dijk (1994).
Kleibergen and van Dijk start with » = £ and reduce r by one each time the
hypothesis H%? is not rejected. The sequence proposed here follows the one
that is usually employed for the Johansen likelihood ratio test for cointegration
(see Johansen (1988, 1991, 1994)).

As mentioned at the beginning of this section, it is also interesting to know
how the deterimistic components enter the model. For example, if 6, = 0, the
linear trend is only present in (8.4) and not in (8.5). Alternatively, if 0y # 0,
a linear trend is also present in (8.5), implying a quadratic trend in the levels
of y;, at least if ags = 0. Therefore, it is also interesting to consider joint
hypotheses on the elements of sy, 72, and d;. For example, if one suspects
that the constant term only enters the cointegrating relationship, one would
like to test H**3 : agp = 0 A 7, = 0, for a = 1 of 2. Similarly, a joint
hypothesis can be devised for the number of cointegrating relationships and
the presence of a trend outside these relationships, H*® : g =0 A & =0,
fora=1,...,4.

In total one now has 21 hypothesis of interest for each value of . In the next
section, the appropriate test statistics are defined for each of these hypotheses.
The asymptotic distributions of these statistics are derived in Section 8.3.

8.2 Construction of the Test Statistics

In this section, the test statistics are specified that correspond to the hypothe-
ses H%" and H**® presented in Subsection 8.1.3. As was mentioned previously,
one first has to obtain estimates of the parameters in (8.4). In this chapter,
the class of M estimators is used for obtaining the estimates. The first prob-
lem that has to be dealt with is to extend the definition of M estimators to
the multivariate setting. This turns out to be reasonably straightforward in
the present context. Both (8.4) and (8.5) can be viewed as sets of seemingly
unrelated regressions (SUR) (see, e.g., Judge et al. (1988)). Each equation
of (8.4) has the same set of regressors. The same holds for (8.5). Therefore,
following Koenker and Portnoy (1990), the parameters of (8.4) and (8.5) can
be estimated by computing the M estimator for each equation separately. No
efficiency is lost by ignoring the cross-correlations between the error terms of
the different equations.

In order to simplify the notation later on, define the matrices of parameters,
O} and O, and the vectors of regressors, FP, Y{,, and Y}, for the different
regression models. The following definitions hold for the matrices containing
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the coefficients:
o1 = (I,,Ty), O7=0]=(01,m), ©]=06;=(674),
and
05 = 03 = (a2, 02, T2), O3 =05 = (03,7), ©3=(63,0).
The regressors of the first step regression are given by
V=@ Z)', Yi=Yy=(Vi)' 1), Yy=Y;=(¥})0"

In order to define the regressors of the second step regression, an estimate of the
cointegrating relationship is required. Let F} be the cointegrating relationship
for regression model b:

F =y = Byyop, F=F =F -5, F =F=F -t
The second step regressors are now given by
Y21t = ((F ) y2t 1:ZT) ) Y22t = ((FtQ)Tay;,tqaZ;)Ta

)/2%‘, = ((Ft3) 7y2,t—17 Zt—ra l)Ta YVZ% = ((Ft4)T7 y;,t—la ZtTa l)Ta

and
)/25t = ((Ft5)T7y;:t—17 Zt—ra lat)T'

If the parameters in the definition of F? are replaced by their estimates, F} is
replaced by Fb Similarly, if F in the definition of Y, is replaced by ﬁ’tb, Y3
is replaced by YZ’;

Let ¢n(-), n = 1,...,k, be a function that is continuously differentiable.
Furthermore, let ¢, be equal to ¢,(¢%,,), with &0, the nth row of &}, =
Ay, — 8 Yf’t Then the M estimator of the parameters in (8.4) solves

Z ¢, =0, n=1,...,r, (8.6)

with respect to é’{ The parameter estimates of the first set of equations can be
used to construct an estimate of the cointegrating relationship, F” Estimators
of the parameters needed to construct Ftb, can be obtained by exploiting the
relations in (8.3). The estimator of 3, equals —1‘[11 ng, with HH and H12 the
first 7, respectively, the last (k — r), columns of the M estimator for IT;. The
estimators for 5, and d; follow from (8.3) and (8.4), namely 7, = —II7;'4; and
51 - —ﬂilgl.

The M estimator for the parameters in (8.5) can be defined similarly to
(8.6). Let 7", denote the (n —r)th row of 7 = Ayy — %YL, The M estimator
of the parameters in (8.5) then solves

T
> Yibn(ih) =0, n=r+1,...k (8.7)
t=1
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with respect to ©F.

The estimates that are obtained by solving (8.7), can be used to test the
hypotheses H** and H***. In addition to the estimates of the unknown pa-
rameters, one needs an estimate of the covariance matrix of (:)g Such an
estimate can be used to construct the Wald test. The standard formula for
the covariance matrix of an M estimator (see Hampel et al. (1986)) cannot
be applied directly to each separate equation of (8.7), because the error terms
of the different equations in (8.5) are cross-correlated. This problem is eas-
ily solved by considering (8.7) for n = r + 1,..., k simultaneously. A second
and more difficult problem concerns the presence of a generated regressor, ﬁ’t”,
in (8.7). As mentioned in Section 8.1, F? is replaced by F? in order to ob-
tain estimates of the parameters in (8.5). Consequently, eq; is replaced by
M = €91 — a1 (EP — FP). The fact that TY/2(n, — £4¢) = O,(1), affects the co-
variance matrix of the M estimator. This phenomenon has already thoroughly
been studied in the context of stationary variables (see, e.g., Pagan (1984) and
Oxley and McAleer (1993)). The results of Kleibergen and van Dijk (1994) and
those in Section 8.3 below, indicate that similar problems arise in the context
of nonstationary variables.

Based on the results of Section 8.3, the following covariance matrix esti-
mator is proposed. Let &, be a diagonal' matrix with diagonal

(¢11 (él,lt)a sy ¢;(ér1t)7 ¢;~+1(ﬁ1t)7 sy ¢;c(ﬁkfr,t))7

with ¢! the first order derivative of ¢,. Define the matrices d=7" ZtT:1 d,,
AT = (—@Qlﬂil,fk_r), and

¢1(€1,1¢) d1(E1ae) \ |
" | G 526
V=T"ATp"! ricrle risrle DA, 8.8
. ; Grs1(71e) Gry1(M1e) * (88)

¢k (ﬁ;ﬁ—?‘,t) ¢k(ﬁ;c—r,t)

Finally, let vec denote the operator that stacks the columns of a matrix
into a vector, and let ® denote the Kronecker product. The appropriate
scaling matrix for vec((©5)T) is then given by T 'V ® (V&) !, with V¥ =
T-'S°7 YA (V)T The fact that there is a generated regressor problem when
estimating the second set of equations, requires a slight modification of the
usual covariance matrix estimator. Normally, one would expect a covariance

IThe diagonality of the matrix ®; follows from the fact that each of the equations in (8.4)
and (8.5) is estimated separately. If, in contrast, an M estimator would be used based on
the assumption that the &; in (8.1) follow some multivariate distribution, e.g., the Student ¢,
then the matrix ®; would no longer be diagonal. This can be compared with the results in
Chapter 7, where the matrix C is nondiagonal in general and has a similar interpretation
as T S0 @,
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estimate of T Wh ® (Vi) "1, with Vi, defined as V in (8.8), only with Al
replaced by (0, I;_,) (see Koenker and Portnoy (1990)). Because of the use
of Ft” instead of F? when performing the second-step estimation, the slightly
different form of the covariance matrix presented in (8.8) is appropriate.

Using the estimates of the parameters and of the scaling matrix, the differ-
ent test statistics can be constructed. Let P’ be a selection matrix such that
P,Y3, = yo4-1. Furthermore, let Py and P; be such that PyY3 = (y,,_,,1)7
and P;Y3, = (y5,,,t)", respectively. The hypothesis H*® can then be tested
using the statistic

th = Tvec(dgy) " (V @ Py (V)" P )~ vec(dy). (8.9)

The asymptotic distribution of this test statistic is derived in Section 8.3 and
can be expressed as a functional of Brownian motions. The asymptotic distri-
bution depends both on the data generating process, a, and on the regression
model, b.

The hypothesis H}** can be tested by means of the statistic

120 = Tvee(PHO5)T)T (V@ PEOR) (B) ) Mvee(P(O4)T).  (8.10)

The asymptotic distribution of this statistic is also presented in Section 8.3
and can again be expressed as a functional of Brownian motions.

8.3 Asymptotic Distribution of the Wald Test

In this section the asymptotic distributions are derived of the test statistics
t® and t*°, presented in (8.9) and (8.10), respectively. It is shown how these
distributions depend upon the data generating mechanism and upon the chosen
regression model. Moreover, the relationship between the cointegration test
based on the OLS estimator and on an M estimator is investigated. The proofs
of all theorems can be found in Appendix 8.A.

Apart from the restrictions on the data generating process that were men-
tioned in Section 8.1, it is assumed throughout this section that the following
conditions are satisfied.

Assumption 8.1 (i) The {e;} process is independently and identically dis-
tributed (i.i.d.) with E(g;) = 0 and 0 < |E(gg])] < oo; (i) for each
n=1,...,k, the function ¢,(-) is differentiable and has a Lipschitz continuous
derivative @, (-); ¢n(+) is not identically equal to zero; (i) ¢, (u)/u is bounded;
(1v) E(pn(ent)) = 0; (v) the decomposition (8.3) is valid with |aq:| # 0.

Part (i) of Assumption 8.1 is needed for the application of a functional
central limit theorem. Both the ‘identically’ and the ‘independently’ part of
the i.i.d. assumption can be relaxed at the cost of additional complexity. Part
(ii) imposes some common smoothness conditions on the functions ¢,. These
conditions are also found in Knight (1989, 1991) and Chapters 5 and 6. The
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asymptotic theory continues to hold for non-smooth versions of ¢,, if the density
of the innovations exists and is smooth enough (compare the remarks below
Assumption 7.3). Part (iii) restricts the attention to M estimators that are
at most as sensitive to outlying observations as the OLS estimator. Part (iv)
imposes a second centering condition on the innovations. A sufficient condition
for this restriction to be satisfied is that the density of the innovations is
symmetric and that the functions ¢, are odd. The final part of Assumption
8.1 requires that the parametric decomposition of the matrix II is valid. The
condition that |ay;| # 0 is crucial, as was mentioned in Section 8.1. The
asymptotic results are changed dramatically if this condition is violated, as is
showed by Kleibergen and van Dijk (1994). Some results for the case |ay;]| = 0
can be found in Section 8.5.

As a first step towards establishing the asymptotic distribution of the rele-
vant test statistics, I decompose the {y;} process into a deterministic compo-
nent, a stationary component, and a nonstationary component. The following
theorem presents the decomposition.

Theorem 8.1 Let (8.1) be the data generating process and define W = I +
IT— f;ll ;. If Assumption 8.1 is satisfied and if rank(II) = r, then

t
ye=1yo+CY e+ Cyt+SL)dt+Cot(t+1)/2+ S(L)(er —20), (8.11)

=1

with C = B (A]WB,)"'A], and S(L) a polynomial in the lag operator L,
Ly; = y—1, such that S(L)(e; — €9) is a stationary process.

Theorem 8.1 facilitates the derivation of the asymptotic distribution of
the test statistics. It presents a decomposition of 3, into a linear time trend, a
quadratic time trend, a stationary process yo+S(L)(e,—<¢), and a random walk
process, C Zle g;. The decomposition in (8.11) also clearly demonstrates that
a linear time trend in (8.1) can result in a quadratic drift for y;. The presence
of a quadratic drift in y; is absent if § is restricted to 6 = Ady, with dy some
column vector of length . Note that this is equivalent to restricting d to be
zero in (8.5). Similar results hold for the constant term -y, which can transform
into a linear time trend (compare Johansen (1994) for further details).

The asymptotic distributions of both t* and ¢** can be expressed as func-
tionals of Brownian motions. The next theorem states the result for 7 .

Theorem 8.2 Given Assumption 8.1, rank(Il) = r, and é’{t — 5’{t = 0,(1) and
n? —n = o0,(1) uniformly in t, then

= tr ([ BEdB]) ([BEBE) ) ([BedB))) . (812)
with By and By two standard Brownian motions such that

E(B,(5)By(s)") = sR"!,
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with R*' a diagonal matriz containing the absolute canonical correlations be-
tween Ale, and ATP ™ ¢(e1), dler) = (d1(Erne)s - - Or(Er—r2r) T

By'(s) = Bils)

By*(s) = By'(s)

By®(s) = By'(s)— [By"

By'(s) = By’(s)

Bi*(s) = Bi'(s) = (4=6s)[B" — (125 = 6) [sBy"
By'(s) = By(s)

BY*(s) = (s—0.5,(F"(s) = [F)")"

BY'(s) = B’(s)

B"(s) = By’(s)

Bi'(s) = (s—05,(F(s) = [F)")"

By®(s) = By’(s)

BY?(s) = F?(s) = (4= 65) [F)* — (125 — 6) [sF7”,

for 5 = 2,3,4,5, and F*' for i = 3,4,5 standard Brownian motions such
that E(F"(s)By(s)") = sR“, with R* a diagonal matriz®> containing the
absolute canonical correlations between A]®~'¢(g;) and ¢, B] Cey, ¢, B] Cey,
and (| B! Cey, for i = 3,4, and 5, respectively. The matrices (11, (31, and
Ca1 are defined in Appendiz 8.A (pages 207 and 211).

Corollary 8.1 If ¢(g;) = &, then the diagonal elements of R*® are equal to
unity and (8.12) reduces to the expressions found in Kleibergen and van Dijk

(1994).

Kleibergen and van Dijk (1994) derive the limiting distribution of ¢ for
the OLS estimator. Theorem 8.2 presents the generalization of their results for
the class of M estimators. The main difference between (8.12) and the result
for the OLS estimator is that the Brownian motion By no longer coincides
with the Brownian motion B;. These two Brownian motions are, in general,
imperfectly correlated. As in Chapter 7, the correlation depends upon the
canonical correlations between certain linear combinations of the errors £; and
certain linear combinations of the pseudo score ¢(e;).

The results in Theorem 8.2 differ in one important respect from the results
in Theorem 7.1 of Section 7.3. Under the null hypothesis, it appears from The-
orem 8.2 that the only nuisance parameters entering the limiting distribution
of the Wald test are the canonical correlations between A]®~1¢(g,) and A]e,.
In contrast, the likelihood ratio test also suffers from the effects of misspecifica-
tion of the likelihood function. The asymptotic distributions of the likelihood
ratio test and the Wald test only coincide if the likelihood is correctly specified

ZNote that the R%%’s are not square matrices for i # 1. The diagonal of these matrices
has to be interpreted as the set of elements for which the row and column indices coincide.
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(see Corollary 7.2) or if the OLS estimator is used (see Corollary 7.1). Similar
findings were already established in the stationary setting by White (1982).

In order to perform inference with the statistic t° | critical values are needed.
As in Chapter 7, one can think of several strategies. First, one can ignore the
imperfect correlation between By and B®* and just use the critical values of the
OLS-based test. These are tabulated in, e.g., Osterwald-Lenum (1992). This
strategy is only useful if £, and ¢(g,) are sufficiently close, or, stated differently,
if the diagonal elements of R%" are sufficiently close to unity. Second, one can
develop a similar strategy as in Section 7.5 and construct a corrected test that
has the same mean as the OLS-based test. In order to develop such a test, one
can replace B, by the sum of two stochastic processes, one of which is a linear
transformation of the stochastic process in B*, while the other is orthogonal
to the stochastic process in B’ (compare Theorem 7.2). Third, one can
approximate the distribution of the expression in (8.12) by means of simulation.
Using the estimated values of the parameters, one can construct an estimate of
R®’. This estimate can then be used to approximate the stochastic integrals
in (8.12) by drawing appropriately correlated and standardized random walks
and replacing the integrals in (8.12) by averages. This process can be repeated
a large number of times in order to obtain accurate approximations to the
critical values of the test.

To conclude this section, the asymptotic distributions of the alternative
test statistic £*? are presented.

Theorem 8.3 Given the conditions of Theorem 8.2,
t;kub = tr ((fBika.deZT)T(fBika.b(Bika.b)T)—l(fBTa.de;')) 7
with

B"(s) = ((Br'()". 1"
B?(s) = ((Bi*(s)),s—0.5)",

forio=1,2andj=1,...,4.

Again, one can see that by choosing ¢(¢;) = &4, one obtains the results of
Johansen (1991, Theorem 2.2) and Kleibergen and van Dijk (1994, Theorem
4.ii). For ¢(ey) # &4, the two Brownian motions in the limiting expressions for
t*0 are imperfectly correlated, giving rise to (k —r) nuisance parameters in the
asymptotic distribution of the test statistic.

As in Johansen (1991), it is probably straightforward to show that condi-
tional on the number of unit roots in the system, test statistics for conducting
inference on the elements of «;; and (, have standard limiting distributions.
An explicit proof of this statement is not provided, but it follows rather directly
by using Lemma 8.9 from Appendix 8.A and the condition that ass = 0.
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8.4 Simulation Results

In this section,the performance of the outlier robust Wald test for cointegration
is discussed using a small simulation experiment. Subsection 8.4.1 discusses
the results for the level of the test. Subsection 8.4.2 presents some results
concerning the power of the test. Both subsections consider data generating
process one (a = 1) and regression model five (b = 5). So there are no drift
terms in the data generating process, while a linear trend is fitted in both (8.4)
and (8.5). This departs from the simulation setup presented in Section 7.6,
where no deterministic regressors were used.

8.4.1 Level

The level simulations are standard. For several values of k — r, a (k — r)-
dimensional random walk process is generated as y; = y;_1 + &4, with {&;} and
i.i.d. process and yo, = 0. The number of observations is T'. For each of these
simulated time series, the Wald test statistic corresponding to the hypothesis
H}? is computed for several M estimators (see below). These statistics are
stored over N replications. In order to estimate the a-quantile, the a/Nth order
statistic is used. The length of the time series and the number of Monte-Carlo
replications used in this subsection, are 7' = 100 and N = 1, 000, respectively.
Note that rank(IT) = r = 0 if H} is tested.

In order to illustrate the effects of outliers on the Wald test, I consider two
distributions for the error process. The first distribution is the multivariate
standard normal, while the second distribution is the truncated Cauchy, which
was also used in Section 7.6.

As mentioned in Section 8.2, the parameters in (8.4) and (8.5) can be esti-
mated equation by equation. Therefore, only a specification for the functions
On(),n=1,...,k—r,in (8.6) and (8.7) is needed. In order to illustrate the
properties of the outlier robust Wald test, I use the Student ¢ score function

for ¢,(+), so
on(e) = (v +1e/(v +€?),

for e € R. Note that this does not coincide with the specification used in
Chapter 7. In Chapter 7 a pseudo maximum likelihood estimator was used
based on the multivariate Student ¢ distribution. In this chapter, the pseudo
likelihood is a product of univariate Student ¢ densities. The M estimator is
made scale invariant by setting e equal to the residual of the nth equation,
divided by the median absolute deviation of the residuals of the nth equation.
The median absolute deviation is again standardized such that it is a consistent
estimator of the standard deviation of the Gaussian distribution (see (2.32) and
below). The Student t score function depends upon the tuning constant or
degrees of freedom parameter v. The values considered, are v = o0, 5, 1, with
v = oo corresponding to the OLS-based Wald testing procedure of Kleibergen
and van Dijk (1994). The results are presented in Table 8.1 and Figure 8.1.
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Figure 8.1.— Distributions of the cointegration Wald test for normal (N) and

truncated Cauchy (TC) innovations
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TABLE 8.1
Quantiles for the Cointegration Wald Test
quantile
k—r v 0.5 0.8 0.9 0.95  0.975 0.99
Gaussian

4593 8120 10.125 11.984 13.987 17.809
4490 7.661 10.287 12.446 14.032 18.066
3.511  7.505 10.131 12461 14.576 17.443
14973 19.976 22.900 26.126 27.873 31.097
14.432 19.669 23.098 25.403 28.063 29.820
13.493 19.266 23.087 26.548 29.957 32.612
29.106 37.634 41.781 46.223 49.385 53.102
28.527 36.907 41.792 46.483 49.280 53.466
27.877 38507 45355 51.148 55484 63.874

W WWN NN
~ o8 =8 = 8

Truncated Cauchy

1 oo 4897 7929 9.864 12.296 14.030 17.746
1 5 3148 6419 8449 10422 13418 16.627
1 1 1.947 4757 7356  9.466 13.072 15.404
2 oo 14322 20.050 23.546 27.240 29.477 32.102
2 5 11.023 16.451 19.325 23.177 26.129 32.155
2 1 8188 13.701 17.752 21.164 26.104 33.746
3 oo 29548 37.205 41.207 45.341 50.324 54.613
3 5 23422 31.729 39.110 43.663 49.230 55.756
3 1 19.865 29.851 37.541 44.364 48.951 58.561

The table contains the aNth order statistics from N = 1,000 Monte-
Carlo simulations of the Wald cointegration test. k& — r denotes
the dimension of the time series. Gaussian means that the inno-
vations were drawn from the standard multivariate normal distri-
bution. Truncated Cauchy means that the innovations were drawn
from the truncated Cauchy distribution (see Section 7.6). The pa-
rameter v is the tuning constant of the M estimator. The robustness
of the estimator decreases for increasing v.

Both Table 8.1 and the left panels of Figure 8.1 indicate that for Gaussian
innovations the c.d.f. of the test statistic for low values of v lies to the left of
the c.d.f. for v = oo, at least for the lower quantiles. The ordering is reversed
if the higher quantiles of the distribution are considered. Especially for higher
values of k — r, the 5% critical value of the test for v = 1 lies to the right of
that for v = oco. Similar findings were noted in the previous chapters. Also
note that the c.d.f.’s of all cointegration tests lie to the right of the c.d.f. of
the x? distribution with k? degrees of freedom. This phenomenon is already
well known in the literature (compare Fuller (1976)).

If one considers the case of truncated Cauchy innovations, one again obtains
that the c.d.f.’s of the Wald tests for cointegration lie to the right of the
appropriate x? distribution. The c.d.f. for v = 1, however, now clearly lies to
the left of that for v = 5, which in turn lies to the left of that for v = oo.
This result was also noted in Section 7.6, where the actual size of the pseudo
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likelihood ratio test appeared to be below the nominal level if the innovations
were truncated Cauchy.

In order to answer the question whether the c.d.f. of the test for v = 1
should be to the left of that for ¥ = oo or whether they should intersect, I
conducted the following experiment. Instead of directly simulating the dis-
tribution of the Wald test, one can also try to approximate the asymptotic
distribution of the Wald test by means of simulation. This can be done by
replacing the stochastic processes in Theorem 8.2 by discrete realizations and
by replacing the integrals by averages. Note that the asymptotic distribution
in Theorem 8.2 depends upon the canonical correlations between Bj(s) and
By(s). Assume for simplicity that (k —7) = 1 and that R in Theorem
8.2 is equal to p, with 0 < p < 1. Moreover, let £, and 7, denote two in-
dependent standard normal random variables. Let Byr(t/T) = T='/23!_ &,
t=1,...,T. and Byp(t/T) = T-/>3'_, n;, while B].(t/T) contains the OLS
residuals of a regression of BIT on a constant and a trend. Then a drawing from
the asymptotic distribution presented in Theorem 8.2 can be approximated by
tr(CCyr Ci7), with

Cir = ZB )/T)(Byr(t/T) = Ber((t = 1)/T)",

Cor = T- ZB 1)/T)Biy((t — 1)/T)7,

and Byr(s) = pBir(s) + (1 — p?)Y/2Bsr(s). Using N = 1,000 Monte-Carlo
simulations with random walks of length 7" = 50, an approximation to the
asymptotic distribution function is constructed. Using larger values of 1" or
higher values of (k — r), yielded qualitatively similar results. The left panel of
Figure 8.2 presents the critical values corresponding to several quantiles and
several values of the correlation parameter p.

The left panel of Figure 8.2 indicates that the critical values corresponding
to the a-quantile are increasing functions of p for a > 0.8. In order to get
some feeling for this result, consider the two extreme cases p = 1 and p = 0.
For p = 1, the asymptotic distribution of the Wald test is just a multivariate
generalization of the Dickey-Fuller distribution, yielding critical values that
are above the standard x? critical values (compare, e.g., Fuller (1976)). For
p = 0, in contrast, the asymptotic distribution of the Wald test is just a x? dis-
tribution with (k —r)? degrees of freedom. This follows from the independence
of By and B, for p = 0.

In order to study the relation between the critical values of the test and
the value of the tuning constant v, a relation between v and the correlation
parameter p is needed. The relation between v and p can be easily visualized
if the half-line v > oo is mapped onto the unit interval. Therefore, define the

function )
v/2 for0<rv <1
flv) = { 1—(2v)t for 1 <v ' (8.13)
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Figure 8.2.— Critical Values for Different Correlations between the M Estima-
tor and the OLS Score (left panel) and the Correlation as a Function of f(v),
defined in (8.13) (right panel).

Note that 0 < f(v) < 1for 0 < v < oo and that f(-) : Rt — (0, 1] is increasing
and bijective. For each value of v, the correlation between B; and B, can
be computed. The right panel of Figure 8.2 displays the relation between
the correlation p and f(v). It appears that the correlation is an increasing
function of f(v) and, therefore, an increasing function of the degrees of freedom
parameter v. Therefore, one would expect the critical values of the Wald test
for v =1 to lie to the left of those for ¥ = oo. This contrasts with the results
presented in Table 8.1 and the left panels of Figure 8.1. My conjecture is
that this discrepancy is due to the finite sample properties of the test. The
Wald test based on M estimators needs larger samples to reach its asymptotic
distribution that its OLS-based counterpart. This is clearly illustrated by the
simulations in Chapter 6, in particular Table 6.1. For T" = 100, the 1% critical
value of the Wald test (M. for i = 0,1,2) based on OLS lies closer to zero
than the critical value for v = 3. For T = 5,000 the ordering is reversed, as is
expected from the asymptotic theory.

Concluding, one can say that the critical values of the Wald cointegration
test based on M estimators have as yet to be obtained by means of extensive
simulations. The asymptotic distribution theory appears to provide a poor
approximation to the finite sample distribution of the test. The accuracy of
the approximation to the finite sample distribution by means of the asymp-
totic distribution seems to worsen if the dimension of the system is increased.
Therefore, it seems a useful topic for future research to generalize the results
of Abadir and Larson (1994) to non-OLS estimators. If this can be done, valid
finite sample critical values can perhaps be calculated without resorting to
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time consuming simulations.

8.4.2 Power

As in Chapter 7, the focus is not so much on the absolute power of the Wald
cointegration test, but rather on the relative power of the Wald test based on
M estimators versus the power of the OLS-based Wald test. Apart from the
model presented in this subsection, other experiments were performed using
alternative regression models and other dimensions of the system (k—r). These
experiments resulted in qualitatively similar conclusions. Therefore, they are
not reported.
The data generating mechanism used in this subsection is

—¢/T 0 0
Ay, = 0 —¢/(27) 0 Y1+, (8.14)
0 0 —c/(37)

with y; a 3-dimensional vector, T'= 100, and ¢ = 0, 1,5, 10,20. As in Subsec-
tion 8.4.1, £, again follows either a standard Gaussian distribution or a trun-
cated Cauchy distribution (see Section 7.6). The fitted regression model con-
tains an unrestricted linear trend. Therefore, the critical values can be found
in Table 8.1. Model (8.14) generates a time series with nearly-nonstationary
behavior (compare Section 7.2). If ¢ = 0, then (8.14) presents a system of
independent random walks. For 0 < ¢ < T, however, there are three cointe-
grating relations with loading factors that decrease to zero as the sample size
increases. This also appears by looking at the roots of the system, which are
(1—¢/T) Y, (1 =¢/(27))7Y, and (1 — ¢/(3T)) !, respectively. So the coin-
tegrating relation corresponding to the smaller roots should be more difficult
to detect than the relations corresponding to the larger roots. The innovation
process was again either standard Gaussian or truncated Cauchy.

Using (8.14), one can calculate the Wald cointegration test for the values of
v used in Subsection 8.4.1. These can be compared with the critical values from
Table 8.1. Table 8.2 presents the number of rejections of the null hypothesis
H!® for r = 0,1, 2 at a nominal significance level of 5%.

First, consider the results for Gaussian innovations. The power of the test
appears to be very low. Even if the roots of the system are as small as 0.8,
the rejection frequencies are at most 28% for v = oo and v = 5 and at most
19% for v = 1. This corresponds to the univariate results presented in Section
6.4. The tests seem unable to detect the third cointegrating relationship: the
rejection frequency for H,?® barely exceeds the nominal level of 5%. Finally,
the cointegration tests for ¥ = oo and v = 5 perform equally well. In contrast,
the test for v = 1 appears to have a much lower power than the test for
v = oo. This can be expected from the optimality result in Section 7.4:
for Gaussian innovations, the OLS estimator usually performs best from a
minimum expected mean squared error perspective.
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TABLE 8.2
Rejection Frequencies for the Cointegration Wald Test
Gaussian Truncated Cauchy
v c r=20 r=1 r=2 r=0 r=1 r=2
0 0.028 0.015 0.007 0.058 0.015 0.025
1 0.048 0.028 0.013 0.045 0.033 0.025
00 5 0.048 0.018 0.022 0.072 0.035 0.007
10 0.075 0.060 0.022 0.077 0.050 0.033
20 0.280 0.110 0.058 0.307 0.120 0.075
0 0.037 0.013 0.007 0.022 0.007 0.003
1 0.037 0.033 0.013 0.030 0.010 0.010
5 5 0.058 0.028 0.010 0.090 0.070 0.010
10 0.090 0.072 0.018 0.338 0.165 0.063
20 0.285 0.150 0.052 0.925 0.623 0.253

0 0.040 0.018 0.010 0.003 0.007 0.005

1 0.028 0.033 0.013 0.010 0.013 0.005

1 5 0.060 0.037 0.013 0.077 0.058 0.020
10 0.085 0.072 0.015 0.340 0.168 0.070

20 0.185 0.120 0.070 0.920 0.667 0.313

The table contains the rejection frequencies of the hypothesis
H!® for different values of r and different estimators. The
nominal size of the test is 5% and the entries are based on
400 Monte-Carlo simulations. The left three columns present
the results for model (8.14) and standard Gaussian innova-
tions. The right three columns present the result for truncated
Cauchy innovations (see Section 7.6). The M estimators are
explained in Subsection 8.4.1.

Now consider the results for the truncated Cauchy innovations. The re-
jection frequencies of the test for v = oo seem to have increased marginally
compared to the case with Gaussian innovations. The overall picture, however,
remains the same: the power is low and the third cointegrating relationship
is barely detected. For the non-OLS estimators, the rejection frequencies are
below the nominal level (compare Section 7.6). For ¢ > 5 the power of the tests
for v = 5 and v = 1 exceeds the power of the OLS-based test. The test for
v = 1 appears to have a somewhat higher power against distant alternatives
than the test for v = 5, but the difference is very small. The power of both
these tests is quite high. For ¢ = 20, the tests based on ¥ =5 and v =1 find
at least one cointegrating relationship in more that 90% of the simulations.
Even the third cointegrating relation is detected with a frequency exceeding
25%, a number that almost matches the 28% for ¢ = 20, r = 0, and Gaussian
innovations.

Based on the power simulations of the Wald cointegration test, it seems
best to use an M estimator that is reasonably efficient for Gaussian innova-
tions and that, at the same time, possesses some robustness properties. In
the simulations, the best candidate meeting these criteria appeared to be the
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estimator based on ¥ = 5. For Gaussian innovations, the performance of the
Wald test based on this estimator was approximately the same as that of the
OLS-based Wald test. For truncated Cauchy innovations, the test for v = 5
performed much better than the test for v = co. Moreover, the test for v =5
did not perform much worse than the more robust test based on v = 1.

8.5 Ordering of the Variables

In Sections 8.3 and 8.4, the asymptotic and finite sample properties of the
Wald cointegration test were considered for the case |ag;| # 0, where a;; was
introduced in (8.3). In the present section, the properties of the Wald test are
studied for the case |aq;| = 0. First, the effect of |«y1| = 0 on the asymptotic
distribution of the Wald test is discussed. This is done in Subsection 8.5.1.
Then, several possibilities for solving the problems caused by the singularity
of ay; are reviewed. This is done in Subsections 8.5.2 and 8.5.3. Finally,
Subsection 8.5.4 presents the results of a small simulation experiment similar
to the one presented in Section 8.4, only with «y; = 0 instead of |aq;| # 0.

8.5.1 Asymptotic Distribution Theory for |a1;| =0

If oy is singular, the asymptotic properties of the estimator for (3, change
quite dramatically. As stated below (8.5), 3 is estimated by —II7'II;5. From
(8.3) and Lemma 8.4 it follows that I, converges to aq;. Therefore, if ayq; is
singular, one can expect a change in the convergence behavior of Bg. It turns
out that 32 is still a consistent estimator for (5, only the rate at which the
estimator converges to its limiting value is lower than for the case |aq;| # 0,
namely 7"/2 instead of T". This result is presented in Lemma 8.11 in Appendix
8.A.

The slower convergence rate of B, also affects the convergence behavior of
the estimators for the parameters of the second-step regression. In general, the
rate of convergence of these estimators drops by 1/2 if 1| = 0. This is most
easily seen in the last formula in the proof of Lemma 8.9, where TV/2I1y; is
now O, (1) rather than O,(T"/?). Also the limiting distributions of the second-
step estimators change dramatically. Consequently, the distribution of the
cointegration Wald test is also changed and is no longer given by the result
in Theorem 8.2. For the OLS estimator, the limiting distribution of the test
for regression model 3, data generating process 3, and «;; = 0, is given in
Theorem 5 of Kleibergen and van Dijk (1995). In this chapter, I refrain from
deriving the asymptotic distribution of the Wald test for the case |a;;| = 0,
because the expressions would be very complicated without providing valuable
new insights into the properties of the test. It is more important to note that
the assumption |aq1| # 0 is crucial for the validity of asymptotic distributions
presented in Theorem 8.2. Therefore, one has to make sure that the condition
is met when the test is applied to empirical data. Some problems and solutions
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associated with checking whether |aq;| # 0 or not, are discussed in the next
subsection.

8.5.2 A Pretest for |aj1| =0

As was mentioned in Section 8.1, the singularity of «;; can often be undone
by reordering the variables in the system. In this subsection, a pretesting
procedure is discussed for determining whether a4, is singular or not. It turns
out that this pretest cannot be applied if one does not know the number of unit
roots (or the number of cointegrating relations) in the system. As the number
of unit roots is exactly the unknown parameter one is trying to determine, it
is obvious that the pretest does not provide a solution to the problems caused
by the singularity of a;;. In the next subsection I discuss some alternative
cointegration testing procedures that do not depend on the true value of ay;.

Before concluding that pretesting is infeasible in the present context, one
must first construct a sensible pretesting procedure. Given this procedure, one
can then investigate its properties and show why the test fails if the number
of unit roots in unknown.

From Lemma 8.4 in Appendix 8.A it follows that under the hypothesis
that the number of cointegrating relationships is r, TV/2I1;; is asymptotically
normally distributed. This fact can be exploited for constructing a pretesting
procedure. Conditional on the result of the pretesting procedure, one proceeds
by either reordering the variables or by testing whether asy = 0. The most
simple pretesting procedure tests whether |aq:] is significantly different from
zero. If one cannot reject the hypothesis that |aq;| = 0, the variables must be
reordered. Otherwise, one can proceed with the cointegration testing proce-
dure described in Sections 8.1 and 8.2. If there is no ordering of the variables
for which one can reject the hypothesis |a;;| = 0, then one cannot proceed
with the cointegration test. Note that some care has to be taken if one wants
to conclude that the number of cointegrating relations is smaller than the pos-
tulated r, given that |ay;] = 0 cannot be rejected for all possible orderings of
the variables. This is due to the fact that if the rank of the matrix II is smaller
than 7, a test for |ag;| = 0 has a nonstandard limiting distribution (see the
discussion below).?

If one uses the pretesting procedure described above, it becomes important
what sequence of tests is used for determining the number of cointegrating
relations. This chapter suggests to start with the hypothesis r = 0 and then
to increase the number of cointegrating relations by one at each rejection of the
null hypothesis. Kleibergen and van Dijk (1994), instead, suggest to start with
the hypothesis r = k — 1 and then to decrease the number of cointegrating

3 Also note the following. Consider the testing sequence proposed in this chapter, namely
the one that starts from the hypothesis r = 0 and proceeds by increasing r at each rejection of
the null hypothesis. Then concluding that r must be decreased if one cannot reject |a11| =0
for any ordering of the variables, implies that one has to go back to a null hypothesis that
one has already rejected in an earlier stage of the testing sequence.
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relations by one at each faillure to reject the null. It is argued here that
the first testing sequence is more suitable when combined with the pretesting
procedure for aq;. Assume that the number of cointegrating relations is equal
tok—1 > rq > 0. Using the sequence of tests proposed in this chapter, one then
starts with Hy : r = 0. If small sample effects are ignored, this hypothesis is
rejected. Next, one considers a test for the hypothesis H; : r < 1. Given that
k—1 > ry > 0, there always exist an ordering for which |ay;| # 0. This holds
for all hypotheses H, with r < ry. Therefore, all hypotheses H, for r < ry are
rejected in large enough samples, while H, is not rejected with a probability
of, say, 95%. In contrast, the testing sequence suggested by Kleibergen and
van Dijk (1994) starts with Hy_y : r = k — 1. Given the true number of
cointegrating relations ry < k£ — 1, there exists no ordering of the variables
for which |ay;| = 0. Moreover, a test based on |ay;| = 0 has a nonstandard
limiting distribution, which makes it difficult (if not impossible) to construct
a feasible inference procedure.

Although one can prove that a;; is asymptotically normally distributed,
this is not sufficient for constructing a test statistic to test whether |ay;| = 0.
In addition, a consistent estimator for the asymptotic variance of T"/?|ay;| is
needed. A suitable test statistic is presented in the next theorem. This test
statistic has a standard limiting distribution.

Theorem 8.4 Let the conditions of Theorem 8.2 be satisfied and let rank(IT) =
r. Further assume that one is performing the pretesting procedure described
above for the hypothesis H*® or H**". If ay; = 0, then

LNy
T (6(() 1V Vo) ) 52,

d e
where — denotes convergence in distribution,

T
Ve = T7'Y (a1 = B yo) (Wim1 — B3 yo01)
t=1
R R T
T ¢1(51,1t) ¢1(51,1t)
Vo = 17 Z o f : o,
t=1 ¢r(ér1t) QSr(érlt)

d11 the upper-left (r x r) block of ®, defined above (8.8), and B the estimator
for the parameters in the regression model

Yie = 5;y2t + U1y,

where this regression model is augmented with a constant for the cases a.2 and
a.3 and with a trend for the cases a.4 and a.5 (a =1,...,5).

Note that the parameters from the cointegrating relations () are esti-
mated somewhat differently in Theorem 8.4 than in Section 8.1. As explained



5. ORDERING OF THE VARIABLES 199
in Subsection 8.5.1, the estimator for 3, from Section 8.1 is 7"~ /?-consistent
rather than 7~ '-consistent if |a;1| = 0. As a result, the asymptotic variance
of |G41| cannot be consistently estimated with this estimator. In contrast, the
estimator 3, is still 7~ '-consistent even if |aq;| = 0. The only important con-
dition for (3, to be T -consistent is the validity of the restriction of the leading
(r x r) submatrix of B to be the unit matrix, where B was defined below (8.5).

Theorem 8.4 reveals that a pretest statistic can be constructed that has a
standard limiting distribution if the postulated number of unit roots is correct.
Determining the number of unit roots, however, is a sequential process. It is
therefore interesting to now what the properties of the test are if rank(II) is
in fact greater than r. Disappointingly, the test statistic from Theorem 8.4
no longer has a standard limiting distribution if rank(IT) > r, thus leading
to either too few or too many rejections relative to the nominal significance
level of the test. To illustrate this point, consider the case where the true
number of cointegrating relations is r +1, so one more than the number that is
tested. In that case, 3» will, in general, only be T'/2-consistent instead of T-
consistent. As a result, the matrix Vg will converge to a random variate with a
nondegenerate distribution.* This contrasts with the situation in Theorem 8.4,
where V§ converges to a matrix of constants. Moreover, even if V§ converges to
a matrix of constants, for example if the true number of cointegrating relations
is k, then the test statistic in Theorem 8.4 is based on the wrong estimate of
the variance of v/T|ax|.

Concluding this subsection, it seems as yet infeasible to design a pretest for
the hypothesis that |a;| = 0. The procedure of Kleibergen and van Dijk (1994)
starts at the wrong hypothesis, namely H2?, instead of H&?. As a result, if the
true number of cointegrating relations is small, the Kleibergen and van Dijk
procedure almost automatically violates one of the main assumptions used for
deriving the limiting distribution of the Wald test, namely |a1| # 0. The
sequence of tests proposed in this subsection does not suffer from this defect.
However, no useful pretesting procedure could be constructed for testing the
assumption |aq1| # 0. This was due to the fact that no proper estimate of the
variance of |«y1| was available if the true number of cointegrating relations was
allowed to exceed the postulated number.

8.5.3 Testing Procedures that are Independent of a;;

Instead of testing whether a4, is singular, one can follow a different route and
try to remove the dependence of the cointegration test on the true value of

4This is due to the fact that one of the components of ‘75, namely

T
T (Bo = B2)" Y w2ac1yg 4 1 (B — Ba),
t=1

generally has a nondegenerate limiting distribution if 35 — 8a is O,(T~'/?) rather than
O,(T7h).
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a11- As noted in Subsection 8.5.1, the singularity of «y; mainly affects the
limiting distribution of the Wald test through its effect on 32- Therefore, an
obvious way to remove the dependence of the Wald test on «;; is to remove
the dependence of Bg on «q;. This can be achieved by using an alternative
estimator for (. Kleibergen (1994) proposes to estimate (3o by running the
regressions

Y1t = 5;y2t + Uiy, (8.15)

(compare Theorem 8.4). The problem with this approach is that the limiting
distribution of (3, will be different from the one suggested in Section 8.1 due
to the fact that the uy; process will be non-i.i.d. in general. A result of the
temporal dependence of the uy; process is that additional nuisance parameters
enter the limiting distribution. These nuisance parameters can be estimated
using nonparametric methods as in, e.g., Phillips (1987). Eliminating the
effect of these nuisance parameters on the limiting distribution of the Wald
cointegration test, however, might prove a non-trivial task.

Instead of fixing the defects of the Wald test, one can use different testing
principles, like tests based on the likelihood ratio (LR) or on the Lagrange
multiplier principle. The LR test was thoroughly discussed in Chapter 7. This
testing procedure did not suffer from a dependence on the true value of ay;.
The LR test, however, depended in a complicated way on nuisance parameters
that could not easily be eliminated. Alternatively, one could try to construct
an LM test. This can be done as follows. Consider the simple case of a
VAR model of order one, data generating process a = 1, and regression model
b= 1. LM tests for the more complicated models can be derived analogously.
Under the hypothesis H!'!' : age = 0, (8.4) and (8.5) can be jointly written as
y, = ABTy,_+¢,. Let Aand BT = (I,, —3;] ) denote the parameter estimates
under the null hypothesis and let £; denote the corresponding residuals. Next,
define

(A B) = ATL(AB) TS g  6(=0))
L(A,B) = AL(Li(A,B)) 'Lo(4, B)(Li(4,B)7) A,

T
Li(A,B) = T7? Z Yo 1Yz, 1 © Py,
t=1

T
Ly(A,B) = T7? Z Yoi1Yas 1 ® Ger)p(er) T

t=1

with e, = y, — ABTy, 1 and AI such that AIA = 0. Note that AI need not
be equal to (a1, Ir ) due to the possible singularity of a;;. The following
theorem now follows directly along the lines of the proof of Theorem 7.1.

Theorem 8.5 Let the assumptions of Theorem 8.2 be satisfied, save the re-
quirement that |aq,] # 0. Then

LM, = ((A,B)T(L(A,B) (A, B)



8.5. ORDERING OF THE VARIABLES 201

= tr(([BudBy) (/BB ) ([BidB,)),
with By and By as defined in Theorem 8.2.

Theorem 8.5 reveals that the LM test has the same limiting distribution as
the one presented in Theorem 8.2 and, moreover, does not depend on whether
|a11] = 0 or not. An LM test based on a robust estimator, therefore, seems
the most promising for application purposes. The only complication of the
LM test as opposed to the Wald test is that estimation becomes more difficult.
This is due to the cross-equations restrictions between (8.4) and (8.5) under
the null hypothesis of no-cointegration.

8.5.4 Simulation Results for |a31| =0

In this subsection, the results of three simulation experiments are presented,
illustrating the size and power behavior of the cointegration Wald test for the
case |aq1| = 0. The setup of the simulations is the same as in Subsection 8.4.2,
only the data generating mechanisms differ.

In the first experiment, the data generating process is given by

Ayt = (0707C/T)(17_17_1)Tyt—1 +5t; (816)

with 3, € R* T = 100, and ¢ taking the values mentioned in Subsection
8.4.2. The roots corresponding to this system are 1, 1, and (1 — ¢/T")~!. For
¢ # 0, (8.16) contains one cointegrating relationship. Moreover, ay; is singular
when testing H!®> and H}-5. The rejection frequencies of the Wald test for the
different M estimators discussed in Subsection 8.4.1 are presented in Table 8.3.
These frequencies are based on 400 Monte-Carlo replications using standard
Gaussian &;’s.

It appears from the left three columns of Table 8.3 that the Wald test
is able to detect at least one cointegrating relationship if sufficiently distant
alternatives are considered. Moreover, there appears to be no evidence for
the presence of two or more cointegrating relationships. For the test of the
hypothesis » < 1, the rejection frequencies apear to increase somewhat with
¢, but it seems that this effect is only due to sampling variability. Unreported
results show that for ¢ = 100 the rejection frequencies over 400 Monte-Carlo
simulations are again about 6%.

In the second experiment, the joint failure of |ay;| # 0 and BT = (I, —f3, )
was investigated. The two-dimensional data generating process considered, is

given by
Ay > < 0 0 > ( Y1p-1 > < 1t >
= ’ + , 8.17
< Ay 0 —C/T Y2,t—1 €2t ( )

while the relevant hypothesis to be tested is H{®. Note that AT = (0, —c/T)
and BT = (0,1). So there are now two defects. First, ay; is singular, which
results in a discrepancy between the asymptotic distribution of the test and
the asymptotic distribution presented in Theorem 8.2. Second, the leading
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TABLE 8.3
Power Simulations for |a;;| =0
Experiment 1 Experiment 2
Gaussian T. Cauchy
v c r=20 r=1 r=2 r=20 r=1 r=20 r=1
0 0.052 0.033 0.018 0.052 0.013 0.055 0.040
1 0.025 0.010 0.007 0.085 0.037 0.060 0.030
00 5 0.080 0.025 0.003 0.085 0.050 0.052 0.035
10 0.240 0.063 0.010 0.120 0.122 0.128 0.110
20 0.785 0.113 0.005 0.318 0.380 0.343 0.398
0 0.055 0.033 0.013 0.065 0.013 0.050 0.015
1 0.037 0.010 0.003 0.083 0.033 0.072 0.010
) 5 0.065 0.030 0.000 0.095 0.028 0.085 0.085
10 0.198 0.070 0.007 0.117 0.105 0.383 0.365
20 0.725 0.120 0.003 0.330 0.295 0.922 0.715
0 0.050 0.030 0.007 0.043 0.020 0.028 0.010
1 0.060 0.020 0.010 0.058 0.028 0.043 0.010
1 5 0.055 0.030 0.007 0.070 0.030 0.090 0.080
10 0.138 0.055 0.005 0.098 0.080 0.380 0.335
20 0.475 0.092 0.005 0.225 0.195 0.905 0.642

The columns under the heading Experiment 1 contain the rejection frequen-
cies of the Wald cointegration test for the M estimators described in Section
8.4 and data generating process (8.16). The columns under the heading Ex-
periment 2 contain the results for the same estimators and data generating
process (8.17). Gaussian means that the disturbances in the model were
generated from the multivariate standard normal, while T. Cauchy means
that they were generated from a truncated Cauchy distribution (see Section
7.6).

number in B' cannot be normalized to unity. The rejection frequencies of the
Wald test for Gaussian and truncated Cauchy ¢; are presented in the right four
columns of Table 8.3.

The most important feature that emerges from the right columns of Table
8.3 is that the rejection frequencies of the hypothesis H{® : r < 1 strongly
increase with the parameter ¢. This means that the Wald test detects too
much cointegration. In fact, there is only one cointegrating relation in (8.17),
while the Wald test rejects the hypothesis H|- for a considerable number of
simulations if ¢ = 20. Therefore, it appears to be very important to check
whether the assumption B" = (I,, —(3;)) is satisfied when applying the test
to empirical data. Alternatively, one could try to circumvent the problem of
a singular leading submatrix in B" by choosing a different parameterization
(or normalization). This can be done by imposing the following restrictions.
First, the (r x r) matrix §; and the ((k — r) x r) matrix (» must be chosen
such that BTB = I,, with B = (], 3]). Second, &;; must be chosen as a
symmetric matrix. Note that for an arbitrary matrix IT; = (IIy, ITy5), one can
always find matrices satisfying the above criteria and II; = auBT. EUSVT
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denotes the singular value decomposition of I;, then one can set &, = USU "
and B = VUT. Therefore, the parameterization described above provides an
alternative for the parameterization in (8.3). Using this parameterization of
(8.17), additional simulations revealed that the Wald test still rejected the
hypothesis H]- in a large number of cases.

In the third experiment, the following model was used:

Ay =e1; Yo = 10%1e + €. (8.18)

Note that there is one cointegrating relationship, namely 10°;; — yo;. The
number of rejections of the (true) hypothesis H{® over 1,000 simulations is
plotted in Figure 8.3 for different values of c. The number of rejections should
equal approximately 5%. This number is approximately obtained for ¢ < 0
if the variables are ordered as (yo, y1;)" (see the dashed line). For the same
ordering of the variables and ¢ > 0, the test appears to be undersized. Now
consider the reverse ordering of the variables, (yi;,%2)', such that |ay| =
0. Then the number of rejections is a decreasing function of ¢. For ¢ > 0,
the test is clearly undersized. For negative values of ¢, however, the number
of rejections increases dramatically. This result explains the two previous
findings. If the stochastic trend is strongly present in both components of
the time series, i.e., ¢ is large and positive, then the Wald test is undersized
(compare the first experiment). If one of the components is almost stationary
and the variables are incorrectly ordered, i.e., c is large and negative, then the
Wald test is heavily oversized (compare the second experiment).

(vt yze)

— — (yor.yae)
: 57

rejections

Figure 8.3.— Rejection Frequencies of the Wald Test for Different Orderings
of the Variables for the Model Ay, = £1; and yo; = 10y, + €94
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8.6 Concluding Remarks

This chapter discussed the properties of an outlier robust cointegration test
based on the Wald principle. The idea of the Wald test was taken from Kleiber-
gen and van Dijk (1994). It turned out that the Wald test can be computed by
performing robust single equation regressions. This is an advantage compared
to the pseudo likelihood ratio test discussed in Chapter 7. Another advantage
of the Wald test compared to the pseudo likelihood ratio test, is that less nui-
sance parameters are present in the limiting distribution of the test statistic.
It was also discussed how the asymptotic distribution of the test is affected by
the presence of deterministic components in either the data generating process
or the fitted regression model.

The main disadvantage of the Wald test is that the ordering of the variables
can be extremely important for the asymptotic distribution of the test. If the
variables are not properly ordered, the Wald test can either underreject or
overreject. No pretest procedure could be developed for testing whether the
chosen ordering is correct. As an alternative, a robust Lagrange Multiplier
(LM) cointegration test was discussed. The LM test has two advantages. First,
its asymptotic distribution does not depend upon the ordering of the variables.
Second, the limiting distribution of the LM test depends on the same number of
nuisance parameters as the limiting distribution of the Wald test. This number
of nuisance parameters is smaller than or equal to the number of nuisance
parameters that enter the limiting distribution of the (pseudo) likelihood ratio
test discussed in Chapter 7. Therefore, the LM cointegration test seems to
be the best test at the moment for constructing outlier robust cointegration
testing procedures that depend upon a small set of nuisance parameters.

The properties of the Wald cointegration test were illustrated by means of
a small simulation experiment. As in Chapter 7, for Gaussian innovations the
OLS-based test had the highest power. For fat-tailed innovations, however,
tests based a Student t M estimator distribution performed best. Especially
the estimator based upon the Student ¢ likelihood with five degrees of freedom
performed well, both for Gaussian innovations and truncated Cauchy innova-
tions.

Another conclusion that emerged from the simulations, is that the asymp-
totic distribution provides a poor approximation to the finite sample distri-
bution of the robust cointegration tests. It would, therefore, be a valuable
contribution to the econometric literature if one could extend the finite sam-
ple results of Abadir and Larson (1994) for the OLS estimator to cointegration
tests based on M estimators.

8.A Proofs

In this appendix, the theorems of Sections 8.3 and 8.5 are proved. First, the repre-
sentation Theorem 8.1 is proved. Next, an elaborate proof of Theorem 8.2 follows.
This latter proof directly follows the two-step procedure of Kleibergen and van Dijk
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(1994). Therefore, it has to take account of the errors-in-variables problem in the
second-step regression. An alternative proof using a systems approach rather than
the two-step procedure can also be constructed based on the methods used in Ap-
pendix 7.A.

Proof of Theorem 8.1.  The proof mimics that of Johansen (1991, Theorem
4). Using his techniques, one can easily derive that

(2", Y,")" = AL) (A AL (er + 7 + dt),
with . .
AL) = ~ATAB"B+ AT (L)B(1-L) ATU(L)BL.
- ATUW(L)B(1—-L) Al¥(L)B, )’
U(L) = (I + 10— P w17, Z, = (BTB)"'BTy;, and V; = (B] B,)"'B] Ay,.
Define ~
C(L) = (AB,B1)A(L) (4, A1)",

and S(L) = (C(L) — C(1))/(1 — L). Note that C(1) = C and Ay; = B, Y; + BAZ;.
Therefore,

Ay = C(L)(er +y+dt)

(C+ S(L)A)(ey + v+ 6t)

Cer+ Cy+ Cot + S(L)(Agy +9)
Cer+Cy+ S(1)d + Cot + S(L)Aey.

(8.11) now follows easily from the fact that y; = yo + Ay + ... + Ay,. O
Corollary 8.2

E(BTy) = C(1)y + S(1)6 + C(1)dt,
with C(1) = —(ATA)~'AT(I — (), and
S(1) = —=C(1)(UB, V' (1)BL)A(1) (4, A1) ".

Moreover, C(1) = BTS(1).
Proof. Define C(L) = (B'B,0)A(L) Y(4,A,)" and S(L) = (C(L)-C(1))/(1—

L). Using the notation of the proof of Theorem 8.1, one obtains
E(B'y) = E
= F
= F
= C

C(L) (et +y + 6t))
C(1) + S(L)A)(y + 6t))
)y + S(1) + C(1)dt.

The final part of the corollary follows by noting that B'S(1) = —B'9C(z)/0z|,=1
and
T 9C(2)

—B
0z

= (B'B,0)A(1)"}(4,4)" =C().

z=1

|

In the remainder of this appendix, the order of the VAR polynomial in (8.1),
p+ 1, is set equal to 1. The asymptotic distributions of the test statistics are not
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changed if p > 0. Moreover, it is continually assumed that the conditions of Theorem
8.2 are satisfied.
In order to prove Theorem 8.2, some additional definitions are needed. Let

b(et) = (Pres- - bre)

with ¢,; denoting ¢, () evaluated at the nth row of e;. Let ¢1.(e1;) and ¢o (e9¢)
denote the first » and last k — r rows of ¢(&;), respectively. Define ®; analogously
to Cﬁt, with é’{t and 7 in the definition of ﬁ)t replaced by e1; and €9, respectively.
Moreover, let ® be a (k x k) diagonal matrix with the nth diagonal element equal to
E(¢! (e} 1)), where e, is the nth column of Iy. ®;; denotes the upper-left (r x r)-
block of ®. Furthermore, ®25, ®11; and P92 are defined in the obvious way.

Let u% = E(B'y,) for a = 1,2,3, and p% + 7%t = E(B'y;) for a = 4,5. For
completeness, 7 = 0 for a = 1,2,3. The quantities ¢ and 7¢ are used to correct
for the mean or trend in the cointegrating relationships. From the second part of
Corollary 8.2 it follows that 74 = 75 = BTS(1)4.

Let diag(aj,a2) denote a block-diagonal matrix with blocks a; and ag. The
following matrices K%'b are needed in order to standardize the y; process for the
various data generating processes a and regression models b.

K%.l _ (B’Tfl/QBL)T
B'  —pup
K]lj.? — T—I/ZBI 0
0 1
K%.3 — K%'Q
Kp' = diag(K7%,1/T)
KE = K%‘l
BT
K%'g = TIIQCITBLT 0
T-2¢ BT 0
0 1
BT —pd 0
x4 _ | TTVPBL 0 -T7V?BICy
T 0 1 0
0 0 71
K%E) — K%4
BT —ud —BTS(1)6
a4 _ | TTPBL 0 —TPBIG
T 0 1 0
0 0 71
K¥ = KA

1
ot
Il
=
=
N
&
'__|
Sy
=—
O = O O
|
N
L
~
[\
&
'__|
Sy
=
Y
N
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with

(1 = B[Cy/(y'CTBLB[Cy)
G (Cy + S(1)0)
(3 = 2B[C6/(6"CTBLB]CY).

K%Z to K%'E’ are equal to K%'Z to K%'E’, with pl replaced by p?-.
The following lemma follows directly from Phillips and Durlauf (1986).

Lemma 8.1
[sT| W( ) e
% (e ) 2w = (wiy )= ()
2 o0 )7V = L )= Lw
with W (s) a vector Brownian motion with covariance matrix

M1 e )
Q= :
< Qo1 Qo2
and |z| denoting the integer part of z. Q and Q1 are (k? x k%) and (k x k)-matrices,
respectively.

The following results are now easily established.

Lemma 8.2 diag(O,Ik_r+i)K%‘bY1b,LsTJ = g% withi =0 forb=1,i=1 for
b=2,3,1=2 for b=4,5, and

2.1 _ (W1 (S)TCTBL)T,

g

gi.2 — (Wl(S)TCTBL, 1)T,

gz' 3 _ gi.2’

gj'4 = (Wl(S)TCTBL,l,S)T,

gj.5 — gj.4,

g = (s, Wi(s) " CTBLGL )T,
g = (s, Wi(s) ' CTBL(s,1,9)T,

fori=1,2 and j =1,2,3,4.

Proof. All of these results follow rather easily from the decomposition derived in
Theorem 8.1, the weak convergence of the partial sum process in Lemma 8.1, and
the continuous mapping theorem (see Billingsley (1968)). O

Lemma 8.3 71 /) Kabyb (Kebyph)T = Gob, with
i _ (= 0
= (5 g )

Gi.? —
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G = g2,
=1 0 0 0
Gj'4 _ 0 lej/T/lT le fSWl
o Jw" 1 5 )
0 fsWi' 5 3
Gis = @it
=1 0 0 0
B33 — 0 3 fsl/vifu 3
0 CLIS 1 CLIWIWJCIL ClTwal ’
0 3 Wi ¢ 1
=1 0 0 0 0
0 L [s2W, ¢ : :
G = 0 ¢y [Wr (L WAW TG ¢ W ¢y [sW |,
0 3 Wi G 1 :
0 i JsWiTGst 3 3

fori=1,2 and j = 1,2,3,4, with W, = BICWI. =1 equals the variance of the
cointegrating relationships,’

[1]

1= B{(By —ug =18t (By—pg — 1)

Proof. All of these results follow directly from Theorem 8.1, Lemma 8.1, and the

continuous mapping theorem (see Billingsley (1968)). O
The results of Lemmas 8.2 and 8.3 can be used to derive the asymtotic distribu-

tion of (©% — ©%). This is done in the following lemma.

Lemma 8.4 Let &%, — ey, = 0y(1) uniformly fort =1,...,T. Then, if rank(I) = r,
7L ® (KE)T) ec((680 - 0)) > (@18 6o ([ awm e 5 )

with Wa1(s) denoting the first r rows of Wa(s) and [(dWa1) ® (d&1) denoting a

normally distributed random variate.

Proof. The M estimator is given by the set of parameter values that solves

T
t=1

The r different equations in (8.19) can be stacked into the system of equations
Zthl $1.(82) ® Y{, = 0. Taking a first order Taylor expansion of this system around
the true parameter values, one obtains

T T
0=T"1> ¢ulen) @ K'Y+ (171 ) @00 @ KFYH(KEV])T):
t=1 t=1

5Note that Z; does not depend on the data generating process nor on the regression
model.
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(I, ® (K%") T) "tvec((©% — 09 T) + R%Y, (8.20)

with R%® denoting the remainder term. The Lipschitz continuity of ¢} (-) and the
fact that (&%, — e1;) = 0,(1) uniformly for t = 1,..., T, together imply that

RF* = 0p(1) - (I ® (K£") 1) " 'vec((0) —OF) 1)
(compare Appendix 6.A). Therefore,
T2 (1, @ (K§2) )~ vec((0F — ©))T) =

T

T
(173 B0, @ KEVH(EEYE) T +0,(1) ™ (0723 . (1) © KUY, (8.21)
t=1 t=1

Using Lemma 8.2 and Theorem 3.2 of Hansen (1992), one obtains

T
T @1 ® KEPYH(KEYS) T = @1 0 GO°.
t=1

From Theorem 2.1 of Hansen (1992), it follows that
T e
T2 (o) ® K'Y, = /dW21 ® ( ga}; > :
t=1

with f(dW21 ® (d&1)) denoting limy_, T-1/2 ZZ;I o1.(e1t) - (BTyt,l — pd —T18).
This proves the theorem. O

Lemma, 8.4 reveals that certain linear combinations of the parameters from the
first step regression are T""/2-consistent, while other combinations are T-consistent.
Therefore, the elements of II; are only Tl/ 2_consistent in general Despite this fact,
the following lemma shows that ,82 —H12H11 =02+ O0p(T~ .

Lemma 8.5 Given the assumptions of Lemma 8.4,
Tvec(fy — f2) = Op(1).

Proof. Define A’ as the set of parameters in the cointegrating relationship of
regression model b, e.g., A* = (35,71, 61) Moreover, let \> = —II;;A. Tt is easily
checked that

(Ab—Ab) — _(ﬂ—llj\b_ 1—11>\b)T

—I (" + (A = X%) = [+ (I — )]
= I (A = N = (Il = )T A)
= I (I = I)A + (X = A))
= -~ et -eh)h,n'.
Note that the upper-left (k x (k —r)) block of ((A’)T,I)T equals B . Therefore,

vee((A” = A")T) = (~ILy' ® ((A") T, D)vec((©F — O T).

The lemma now follows immediately from Lemma 8.4 by noting that the first (k—r)
rows of T'/2((A%) T, I)(K%b)T are O(1) for all considered combinations of a and b.
O
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Remark 8.1 For some combinations (a.b), there exist linear combinations of T’ (Bg—
f2) that are o,(1). For example, for combination 3.3 a vector v exists, such that

v (B2 — Bo) = O, (T7%/2).

Lemma 8.4 presents the asymptotic distribution of the estimators that are used
in the first step regression, while Lemma 8.5 presents the results for the estimators
of the parameters that enter the cointegrating relationship. In order to derive the
asymptotic distribution of the estimators that are used in the second step regression,
define the matrices Ly, such that Y}, = L,Y},. For example,

IAJQZ I _BZT _%1 .
0 I, O

Note that the matrices L, need not be square. The matrices L are defined similarly,
Yth = LbYlbt. The relation between L, and Lj; is presented in the following lemma.

Lemma 8.6
- I s 1A Ab
b-ty=-( ¢ )miet-eb () o,
where the column dimension of zero block in the final matriz (0,1) is equal to r.

Proof. It is easily checked that either

- I —AY X I —AY
Lb—<0 I >, or Lb—(o (I,O))

Therefore, Ly—Ly = —(I1,0) T (A —A%)(0, ). The result now follows by using Lemma,
8.5. O

The following matrices are needed to normalize the vector process {Y,}.

Ir 0 '?1_/1’2'
K33 — 0  T'¢/(B[B.) 0
r 0 T-Y%2¢/ (B]B)) 0 ’
0 0 1
R—%zx _ R’%'?’,
I; 0 A1 — p 0
s _ | 0 TTVABIBY) 0 -T7V’BICy
r 0 0 1 0 ’
0 0 0 !
Ir 0 '?l_lfcl'
ad 0 ¢ 0
r 0 T-Y%2¢] (B]B)) 0 ’
0 0 1
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I, 0 1 — g 0
A 0 TV*B[By) 0 T VAB[BL)(0,I)¢
r = 0 0 1 0 ’
0 0 0 7!
I. BB, qi—p b -7
. 0 T7%](B]B)) 0 0
Kp® = | 0o TV (B[By) 0 =TV (B[B)(0,1x ) |-
0 0 1 0
0 0 0 71
with

G = (BIBU(0, L) G/ | BLO, Ik—r)Ca|*.
For the remaining combinations, define the matrices
Ki' = diag(L,, T "*(BB.)),
iz il
T - T »

i3 = diag(I,, T~ /*(B] B1),1),

1.4 i3
T - KT?

and B
Ki® = diag(I,, T"Y*(B] B.),1,T).

Using Lemma 8.5, the following two lemmas can be established by tedious, but
straightforward algebraic manipulations.

Lemma 8.7 Under the conditions of Lemma 8.4,

lim Kg((A) T, 1) W () — Mg = o,
T—o0

with
M = (Og—r)xr> Te—r),
]\412 = (0(k7r+1)><r7-[k:—r+1)7
M = Mf,
M{L = (O(kfr+2)><rajk77‘+2)a
MY = MY,
and
wgt = (O Iko )
—Tr
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07 xcr 0 5’1 - Ng' T(Sl - Tca.)

~ 0 I, 0 ma.

Ma.4 — k—r 2T

2r 0 0 1 0 ’
0 0 0 1

Myp = Mg

mgp =0 for a <5, and
myp = T'2¢ (8201 — (BIBL)Ba(BTB) "B ().
Proof. As mentioned, the proofs are straightforward. Only note that for case 4.4

it follows from Corollary 8.2 that o = BT(,. This fact is needed to prove that
m%‘T =0. O

Lemma 8.8 Under the conditions of Lemma 8.4,

plzm R’%.bﬁb(K%.b)fl — Na.b,

T—o00

with
N'' =1, N2 = (It 0,), N3=1I,

N'* = (Iyg1,0041,1), N5 = Iy,

I, 0 00
0 0 01

34 _

NT= 0 ¢, 00 ]’
0 0 10
I, 0 00
0 0 01

N4 ’
0 ¢, 00
0 0 10

fori=1,2,7=1,23, and k=1,...,5.

Proof. As mentioned before, the statements follow from straightforward algebraic
manipulations. However, the computations are simplified considerably by noting
that for (a.b) # (5.5), it suffices to check the statements for K&°L,(K%?)~!, rather
than for K&°Ly(K%")~!. This can be seen as follows. By Lemma 8.6 and the
definition of K%®,

5 R R R b
Ryl - (s = (¢ )@t -eb () .0
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From Lemma 8.4, it follows that
I151(6] - ON(KE") ™ = 0y(1),
while from Lemma 8.7, it follows that
K (AT, D10, 1) (K¢~ = 0(1),

for (a.b) # 5.5. This proves the statement. O

The result from Lemma 8.8 is that K “'bYZ‘i'b and Neb Kby, weakly converge
to the same limiting process. Because N®? is often of a simple form, this simplifies
the derivations of the asymptotic distribution of @g below.

Lemma 8.9 Under the assumptions of Lemma 8./,
T(I ® (K§:) 7)™ vec((04 — ©8) 7)—
((1)22 ® ]Va.bGa.b(]Va.b)T)—l((I)22 ® Na.bGa.b)(_a21a1—11 ® (MZajf))T)

@ o6 ([ aWe o @] (")) =
((1)22 ® Na.bGa.b(Na.b)T)l(/ dW22 ® Na.b(dng’ (ga.b)T)T). (822)

Remark 8.2 The notation in (8.22) is nonstandard. Usually, the second term on
the left-hand side of the weak convergence symbol would appear on the right-hand
side. This can be done for all combinations (a.b) # (5.5). For this last case, however,

the matrix ]\Zf25T5 diverges, as follows from Lemma 8.7. Therefore, the notation as in
(8.22) is used.

Proof of Lemma 8.9. The M estimator for the second step regression solves
T

D o) ® Vg, = 0. (8.23)
t=1

The proof mimics that of Lemma 8.4. The remainder terms of the Taylor expansion
have the same properties as the remainder term in the proof of Lemma 8.4. There-
fore, they can be neglected. Taking a first order Taylor expansion of (8.23) around
the disturbance e9; and using Lemmas 8.7 and 8.8, one obtains

T T
0 = (T_1 Z $2.(€2t) ® }A/th> + (T_l Z Qoo ® Yth> (73 — c21) + Ry <
=1

t=1

T T
0 = (Tl Z ¢2.(62t) &® K%'bf/bylbt> + (Tl Z @227t X K{ﬁ"’f/be}> .
t=1 t=1
vec((ﬁgt - ngt + ngt - 52t)T) + Rr

T
_ (T—l S (o) KL(K)Ky> N
t=1
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T
(Tl Z Pt ® K%'bﬁb(K%b)lK%bY1bt> :
=1
vee(—(Yy) (05 —©5) T + (Vi) T (M?) T (A” = A") Tagy) + R

T

t=1
T
(Tl Z (1)22,t ® Na'bK%'bylbt (Na'bK%'bYIbt)T> .

t=1
(I ® (K§") ")~ vec((03 - ©5) ) +

T
(T‘l > 0y ® Na-”K%-byﬁ(K%bm)T) -
t=1

(a1 ® ((K£*) ") M (MY) Tvec((A* = A") ) + 0p(1)

T
= (Tl > $a(ea) @ N“-bK%-”YIz) -
t=1

T
(Tl Z (1)22,t ® Na'bK%'bylbt (Na'bK%'bYIbt)T> .
t=1

(I ® (K§") ") vec((03 - ©5) ) +

T
(T‘l > 0y ® Na-”K%-byﬁ(K%bm)T) -
t=1

(—aanllyt © (M) ") (I ® (K ")~ tvee((0F = ©)T) + 0,(1)
with Ry and Ry remainder terms. By applying Lemmas 8.2, 8.3, 8.4, and Theorems
2.1 and 3.3 of Hansen (1992), the lemma is established. O

Under the present assumptions, it is easily checked that
VB AT E(p(e)p(e) DAL,
and o
K%.bv}?(K%.b)T = Na'bGa'bNa'b,
with V and Vﬁ as defined in Section 8.2. This results in the following lemma.
Lemma 8.10
KR (B (W) ' P Ry(KE") T = BI(P(G*") 'R R,

Proof. Ouly case (5.5) is proved. The other cases follow rather easily. First note
that for data generating process 5, it follows from Lemma 8.5 that (G2 — (2) =
O,(T71) and

T%¢ (BIBL)™ (B — Ba) = O,(T7'/?).

The result now follows by noting that

T ) AT P
( et G ) (BTBL) Py (R =
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(Bo— )T (BTBL) 1\ |
T )T G
= P .
( TY2(¢ G > CM/OT 5 + op(1)
0

a

Using all the intermediate results derived above, one can now prove Theorem
8.2.

Proof of Theorem 8.2. First, the result is proved for regression model 1
and data generating process 1. From Lemma 8.9, it follows that

T(I® (B]B) " Yvec(dg,) =TI @ PL((KF) ) vec(@y —0,)T) =

(—azia @} @ (PLGH P Y ([dWy @ ¢'Y)  +
(95, ® (PGP~ de ®g't) =
(ATo Lo (fWiW") ) ([dW, ® W7).
Define the normalization matrices
Tt = (B[co,Cc"B)V?B]C,
Ty = (A0 'Qpd'4,) Y24]0
Then it follows from lemma 8.9 and 8.10, that
th = Tvec(agy) T (V @ Py(V2) 1P ) " tvec(agy)
= (JdAI'Wo @ Wh) T (I_r @ (JW W, )7 -

(A]® ‘1922@‘1& (W) -
(Ik r® fW1W1 fdAT 1W2®W1)

= ([dTaWe® Y1'W1) T (I ,®fT11W1 THW) )T ([dTeWe ® Y1)
=t (WA W) )T TH WA (T W) T ) S WA W) 7))
(8.24)

Note that T%'lWl and YToWs are two correlated, standard Brownian motions. Now
let Y3Y4Y] denote the singular value decomposition of E(T1 W7 (1)Wa(1)Y5 ).
Then the limiting distribution of 2, is left unaltered if Y1-'W; is replaced by Bi'* =
T;—T%'IWI and YToWs is replaced by By = T;TZWQ. This proves case 1.1. The other
cases are proved similarly, although the computations are more involved. Therefore,
I also present the proof of case 3.4, which turns out to be tedious, but straightfor-
ward.
Define Wi = ¢/, W;. Now note that N34G3*4(N34)T = G33, and

P4 (N3.4G3.4(N3.4)T)71N3.4G3.4(M23ji1)T(G3.4)71(d£1T, (93.4)T)T —

<f(f(s—0.5)2 f(s—05)( )IT)T> (01 0 —[s )

s —05) (W)  [(W{)(W} 00 I —[W;
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I, 0 0 0 = 0 0 0
0 0 1 0 0 [Wwiw [sWy [W;
0 ¢, 00 0 fszT [s*  [s
0 0 0 1 o (W fs 1
- ( JWETE)T f(s—0-5)VV{‘>_1( W >_
’“*0’"“ f(s—05)( T [(s—0.5)2 s—05 )

( [(s=05)2  [(s—0.5)(W ")T>1( 0 1)_
[(s —05)(Wly [T G0

(f(le WiHT (s —0.5)W! )

BYWE)T  [(s—0.5)
( f(le WIHT  [(s—05)W} )‘1< 148 >:

s—05)(WHT  [(s—0.5) s—0.5

( J(s=0.5)? f(8—05)(W“ )1(3—0.5>’

[(s— 05) (W) [T (W) i

with W{‘ =W, — i W. W{‘ is defined analogously. The remainder of the proof
follows the proof of case 1.1. O

Proof of Corollary 8.1. For ¢(g;) = €, ®; = Iy. Therefore, R'"' = I.
Moreover, the absolute values of the canonical correlations between CZ-]_AIEt and

AIet for i = 1,3,4, are equal to the square roots of the eigenvalues of the matrix
(Rzz)(Rzz)T’ with

RY = (¢LATQuA G VG ATQn A (ATQnA) V2

The result now follows by observing that (R**)(R*)" = 1. O

Proof of Theorem 8.3. The proof is similar to that of Theorem 8.2 and
follows rather directly from Lemma 8.9. For example, consider case 4.5. From
Corollary 8.2 it follows that 7 = C(1)6. Moreover, because the fourth data gen-
erating process is considered, § can be written as Ad for some vector & of length r.
Considering the first r rows of J, one obtains

(51 = a115 = —051151 = a115 -~ S = —51.

So § = —ASL. Substituting this into the expression for 72, it follows from the
definition of C(1) in Corollary 8.2, that

i =C(1)5 = (ATA)TTAT(I — ¥C)Ad; = 4.

As a result, Méli,:r’ = diag(0pxr, Ir_r42). Moreover, as N*5 = I; o, the result now
follows directly from Lemma 8.9. O

Lemma 8.11 Given the assumptions stated in Lemma 8.4, only with |aj1| = 0
instead of |a11| # 0, R
T'vec(fBy — (2) = Op(1).
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Proof. Following the proof of Lemma 8.5 and the result from Lemma 8.4, one
needs that the appropriate rows of

(I ® (AT, D(KF") )

are O(1). As (A")T,)(K&")T = O(T~'/?), it is therefore sufficient that T"/TI;;
has a nondegenerate limiting distribution. This follows from Lemma, 8.4. O

Proof of Theorem 8.4. From Lemma 8.4 it follows that
VTvec(Il];) = (91} ® El)(/ AW ® d&)) = N(0,V,, @ = 1),

with Vy, = &' E(¢1.(e1)p1.(e1) )@ and N(0,V) denoting a Gaussian random
vector with mean zero and variance-covariance matrix V. Note that &1 = II1; and

VT|an| = VT|af,| = VTvec(|a], |ag) Tvec(ay)).

Further, |(341T1|641_11 is the matrix of cofactors of &];, which converges in probability
to the matrix of cofactors of o, say . Therefore,

~ 1 d —
VT|éii| = N0, tr((ef) "E " af1 V).
It is obvious that V¢1 2 Vg, . Moreover,
. . -1 . . -1

T (tr((@f) Ve 6 Von) = Tlanl? (b((65) TV 65, Vn) ) (8.25)
with &}, = |d11|&1_11. The result is established if one can show that the denominator
in (8.25) converges to (af;)"E7'at,Vy,. Therefore, one needs to show that Vg
converges to =. This follows from the fact that under the present assumptions it is

straightforward to show that (G2 — fB2) = 0,(T~/?) (compare Engle and Granger
(1987) and Johansen (1991)). O
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