Initial exercise E0

Charles S. Bos

August, 2012

1 Introduction

In mid-August you will be following the course on *Advanced Programming in Quantitative Economics*. In order to get a bit of a headstart, you’ll find attached a first complete program, written in the Ox Doornik (2009) programming language.

During the course, we will study the concepts in detail. In order to streamline the discussions, you are asked to prepare for yourself.

2 Preparation

Section 3 contains the listing of the program. Read this program through, don’t use a computer at all at this stage (maybe use a pocket calculator if you really want to).

Ask yourself e.g. the following questions:

1. Where would execution of the program start?

2. What lines are comments, which are code?

3. What is the system in the naming of the variables?

4. After line 171, the value of \(mC \) is

\[
 mC = \begin{pmatrix}
 10 & -7 & -4 & 28 \\
 -7 & 59 & 18 & -145 \\
 -4 & 18 & 58 & 56
 \end{pmatrix}
\]

What would its value be after line 176? And what would be the value of \(vX \) in the end?

5. Matrices are indexed throughout the program. How does this work? Where does the index start?

6. The program prints some final solution. In standard econometrics, what is the problem that is solved? What would you have written on line 5?
7. This same program could have been written in some 40 lines of code (of which roughly half initialisation of \(vY \) and \(mX \)). What would be possible advantages of the present, rather extensive program, using 185 lines instead?

Think about these questions before the first class; you are not supposed to answer them all precisely and correctly, that should be easy at the end of the course. You could write for yourself some basic answers, or list your doubt where you don’t see the answer. During the course, tick-off the doubts that are solved, or raise the questions with the instructors.

3 Program e0_elim.ox

```c
/*
** e0_elim.ox
** Purpose:
** ???
** Date:
** 23/7/09
** Author:
** Charles Bos
*/
#include <oxstd.h>

/*
** TransRow(const amC, const i, const j)
** Purpose:
** Clean row j of element in column i
** Inputs:
** amC address of existing iK x iM matrix
** i integer, number of pivot element
** j integer, number of row to sweep
** Output:
** amC address of iK x iM matrix, with a zero at location j,i
** as a result of the sweeping
** Return value:
** ir TRUE if all well
*/
TransRow(const amC, const i, const j)
{
  decl dF;
  if (amC[0][i][i] == 0)
    return FALSE;
  // Find factor multiplying row i
  dF= amC[0][j][i] / amC[0][i][i];
  // Subtract dF times row i from row j
```
amC[0][j][i:] -= dF * amC[0][i][i:];

return TRUE;

} // ElimColumn(const amC, const i)

ElimColumn(const amC, const i)

Purpose:
Eliminate the elements of column i, below the pivot

Inputs:
amC address of existing iK x iM matrix
i integer, number of pivot element

Output:
amC address of iK x iM matrix, with zeros below location i,i
as a result of the sweeping

Return value:
ir TRUE if all well

ElimGauss(const amC)

Purpose:
Eliminate the lower diagonal of the matrix

Inputs:
amC address of existing iK x iM matrix

Output:
amC address of iK x iM matrix, with zero at lower diagonal,
as a result of the sweeping

Return value:
ir TRUE if all well

ElimGauss(const amC)
100 { println ("Starting iteration ", i);
101 ir= ir && ElimColumn(amC, i);
102 println ("resulting in ", amC[0]);
103 }
104
105 return ir;
106 }

109 */
110 ** BackSubst(const mU, const vC)
111 ** Purpose:
112 ** Substitute back, given a upper diagonal matrix and a right-hand
113 ** side. This solves mU vX = vC for vX.
114 **
115 ** Inputs:
116 ** mU iK x iK upper diagonal matrix
117 ** vC iK x 1 right-hand side
118 **
119 ** Return value:
120 ** vX iK x 1 solution
121 */
122 BackSubst(const mU, const vC)
123 {
124 decl vX, j, k, iN;
125 iN= sizec(vC);
126
127 // Start with solution set at zero
128 // Old solution, using slower loops
129 // vX= zeros(vC);
130 // for (k= iN-1; k >= 0; --k)
131 // {
132 // vX[k]= vC[k];
133 // for (j= k+1; j < iN; ++j)
134 // vX[k]-= mU[k][j] * vX[j];
135 // vX[k]/= mU[k][k];
136 // }
137
138 // Start with solution set at zero
139 vX= zeros(vC);
140 vX[iN-1]= vC[iN-1]/mU[iN-1][iN-1];
141 for (k= iN-2; k >= 0; --k)
142 vX[k]= (vC[k] - mU[k][k+1:] * vX[k+1:])/mU[k][k];
143
144 return vX;
145 }

151 { decl mX, vY, mA, vB, mC, ir, iN, vX;
152 // Inputs
153 mX< < 1, 1, 3;
// Transform inputs
mA = mX' mX;

vB = mX' vY;

mC = mA vB;

// Eliminate the mC matrix, resulting in [mU | vC]
ir = ElimGauss(mC);
println("ElimGauss returns ", ir ? "TRUE" : "FALSE",
 " with mC = ", mC);

// Find the solution
iN = rows(mC);
vX = BackSubst(mC[][iN - 1], mC[][iN]);

print("Solution: ", "%e", {"Elim+Subst"}, vX);

References