
LECTURE 1 and 2: Flows

1 Max Flow

1.1 Ford-Fulkerson, max-flow min-cut

Chapter 6, Sections 1,2,3 and Chapter 9, Sections 1,2

Max Flow.
Instance: Directed graph N = (V,A), two nodes s, t ∈ V , and capacities
on the arcs c : A → R+. A flow is a set of numbers on the arcs such that
for each node apart from s and t, the sum of the numbers on incoming
arcs is equal to the sum of the numbers on outgoing arcs, and such that
each number on an arc is non-negative and not higher than the capacity
of the arc. The size of an (s, t)-flow is the sum of the numbers on the arcs
leaving s (which is equal to the sum of the numbers on the arcs entering
t).
Question: Find a maximum (s, t)-flow in D.

I assume that all of you have seen the Ford-Fulkerson algorithm, at each
iteration finding a flow-augmenting path. Let me quickly repeat it. Given
a flow f : A→ R+ with fij the flow on the arc (i, j) we construct a resid-
ual digraph R with arc set AR and with capacities cR. We assume that if
(i, j) ∈ A and (j, i) ∈ A then fij = 0 or fji = 0 or both.

– If fij < cij , then the forward arc (i, j) ∈ AR and cRij = cij − fij ;
– If fij > 0, then the backward arc (j, i) ∈ AR and cRji = fij .

(During the lecture I give an example.) An (s, t)-path P in R is a flow-
augmenting path in N . The flow is augmented by adding min(u,v)∈P c

R
uv

to the flow to fij if (i, j) is a forward arc on P , and by distracting
min(u,v)∈P c

R
uv from flow fij if (j, i) is a backward arc on P . It implies

that either the flow on one of the arcs in A reaches its capacity and will
disappear from R in the next iteration, or the flow on some arc (i, j) is
pushed back to 0, by which the reverse arc (j, i) disappears from R in the
next iteration. Adapt R and the capacities of the arcs in AR and reiterate.
This is continued until the auxiliary graph does not have a path from s to
t. In this case a maximum flow has been found.

There is a famous and beautiful duality result related to the max-flow
problem, which proves correct termination of Ford-Fulkerson’s Algorithm

1

if no augmenting path is found: the so-called max flow min cut theorem.

An s-t-cut in a network is a subset S of the nodes V , such that s ∈ S and
t /∈ S. The capacity of cut S is

C(S) =
∑

{(i,j)∈A|i∈S,j /∈S}

cij .

A minimum cut is a cut of minimum total capacity.

Theorem 1 (Max Flow Min Cut Theorem). The value of a maximum
flow is equal to the value of the minimum cut capacity.

Proof. I assume there is a finite maximum flow. Let f be any flow with
value F =

∑
(s,v)∈A fsv. That F ≤ C(S) for every cut S, is evident since

any flow has to cross an arc from S to V \ S.

Given an optimal flow f there does not exist any augmenting path. Thus,
in the residual graph of this flow t is not reachable from s. Consider the
set S of reachable nodes. Then in the residual graph there does not exist
an arc from any i ∈ S to any j /∈ S, otherwise j would have belonged to
S. This means that fij = cij for all {(i, j) ∈ A | i ∈ S, j /∈ S} (the forward
arcs from nodes in S to nodes in V \ S do not exist in the residual graph)
and fij = 0 for all {(i, j) ∈ A | i /∈ S, j ∈ S} (the backward arcs from
nodes not in S to nodes in S do not exist in the residual graph). Thus, all
the flow crossing from S to V \ S does not return to S, hence must exit
through t. Thus F = C(S).
Given that we just proved that for any flow, thus also for the maximum
flow, and any cut, F ≤ C(S) it means that the cut S found in the residual
graph of a maximum flow is a minimum cut. �

In the proof of the Max Flow Min Cut Theorem we have shown that if
Ford-Fulkerson’s Algorithm terminates then it terminates with a maximum
flow.

Theorem 2. A flow f : A→ R+ is a maximum flow if and only if in the
residual graph there does not exist an (s, t)-path.

Let us first become more precise about the running time the Ford Fulker-
son algorithm takes.

For that we first analyse the running time of one iteration of Ford-Fulkerson’s
algorithm and we express running time as a number of elementary com-
puter operations required. Elementary computer operations are e.g. addi-
tion, multiplication and comparison of two numbers, deletion of an item

2

from a list, adding an item to an unordered list.

In an iteration of Ford Fulkerson’s algorithm we start for a search in the
residual network if there is a path from s to t. This is an augmenting path
in the original network. We use Section 9.1 in [PS] to show that this search
can be done in O(|A|) operations. |A| is used to denote the cardinality of
the set A: the number of elements of A. The notation O(g(n)) is used for
a function of n to indicate an upper bound on the rate with which the
function grows with n.

– We write f(n) = O(g(n)) if limn→∞
f(n)
g(n) = c for some constant c ∈ R;

– We write f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0.

Thus, O(|A|) says that the search for a path from s to t takes a number of
operations that is asymptotically bounded from above by a linear function
of the number of edges (arcs) in the graph.

If such a path is not found, the vertices reached from s form a min cut
in the graph, as just proved, and we are done. If a path is found we need
to update the residual graph. Notice that an s-t path does not contain
more than |V | edges. This means that we have to adapt the capacities on
at most 2|V | edges of the residual graph, given the residual graph at the
beginning of the next iteration.

After having constructed the residual graph we enter the next iteration.
Therefore, overall, one iteration of the algorithm takes O(|A| + |V |) =
O(|E|) elementary computer operations (time).

Thus, Ford-Fulkerson’s algorithm takes a total time O(|A|+ |V |) = O(|A|)
times the number of iterations required to terminate. Unfortunately, the
algorithm may not stop, but instead, only converge, and in this case it may
even converge to a non-optimal flow. For those of you who are interested,
read for yourself the example in [PS] Section 6.3. This is a problem that
we do not encounter if all capacities are integer or rational numbers. The
following is a simple example with integer capacities on which the algo-
rithm takes an excessive number of iterations.

Consider the network with 4 nodes, s,u,v and t. We have the following
arcs with their capacities: c(s, u) = c(s, v) = c(u, t) = c(v, t) = M and
c(u, v) = 1 (see for a picture Figure 9-8 in Section 9.2 in [PS]). In the
first iteration the residual network is just the given network and it may be

3

that the path found is (s, u, v, t) on which we can augment the flow by 1:
f(s, u) = f(u, v) = f(v, t) = 1. This gives the residual graph with forward
arcs and capacities c(s, u) = c(v, t) = M − 1, and backward arcs with
capacities c(u, s) = c(t, v) = c(v, u) = 1. In the next iteration in R the
(s, t)-path (s, v, u, t) may be found, again allowing to augment the flow by
1. This continues for 2M iterations until we reach the optimum solution
f(s, u) = f(u, t) = f(s, v) = f(v, t) = M and f(u, v) = 0. Clearly, we
could have found this solution in only 2 augmentation steps, if we would
have been more lucky.

Let me argue why we think that the running time of the algorithm on this
example is considered excessive.

1.2 Polynomial running time

Chapter 8, Sections 1,2,3,4,5.

We propose a mathematically rigorous definition of efficient algorithm,
which we will use later in developing Complexity theory:

Definition. An efficient algorithm for problem Π is an algorithm that
solves every instance of Π in a number of elementary computer operations
that is bounded by a polynomial function of the size of the instance.

Some phrases in this definition are emphasized. The algorithm is to solve
every instance, even the hardest instance. Thus, efficiency is a worst-case
notion.

I hope everyone knows the definition of polynomial function: f is polyno-
mial if there exist a finite k and constants ai, bi, i = 1, . . . , k such that

f(x) =
k∑

i=1

aix
bi .

Non-polynomial functions are exponential functions, like

f(x) = 2x

f(x) = (x log x)x

f(x) = 10−283
√
x

f(x) = x!

We call f(x) = xlog x pseudo-polynomial.

4

The size of an instance is defined as the number of bits that are needed
in a digital computer to store all relevant data of the instance. Most of
the time we can rely on an intuitive definition of the size, like in the TSP
the number of points, or in Max Flow the number of vertices and the
number of arcs of the graph. But let me once show you what the size of a
Max Flow instance is according to the official definition.

The size of an instance is defined as the number of bits that are needed in
a digital computer to store all relevant data of the instance. Most of the
time we can rely on an intuitive definition of the size, like in the TSP the
number of points, or in Max Flow the number of vertices and the number
of arcs of the graph. But let me once show you what the size of a Max
Flow instance is according to the official definition.

For each of n vertices we need log n bits. For each of the m arcs (i, j) we
need 2 log n+3 bits (the 3 extra to separate the pair and show they belong
together). Finally we have to specify the capacities on the edges’ Each
capacities uij is specified in log uij bits (where I assume integer capacities).
Thus the total length of the input is:

N = n log n+m(2 log n+ 3) +
∑

(i,j)∈A

log uij .

Clearly if we have an algorithm with running time bounded by a poly-
nomial function of n then the running time will also be bounded by a
polynomial function of N , and the other way round. Thus, in fact for de-
termining efficiency we could as well take n as size of the input. Sometimes
the input size due to representation of numerical values like weights plays
a crucial role. In that case we should take here N = O(n2(log n+ logU)),
where U = max(i,j)∈A uij .

Why do we draw the line of efficiency between polynomial time and ex-
ponential (non-polynomial) time. We may illustrate this with a table that
shows what technological improvement in computer speed would give us
in terms of problem size that we can handle in one second.

Now 100× faster 1000× faster
n5 N1 2.5N1 4N1

2n N2 N2 + 7 N2 + 10

Of course, some polynomial functions like f(n) = n19 is for moderate val-
ues of n greater than g(n) = 2n. But already for n = 200 g(n) > f(n). For

5

most problems that are solvable by efficient algorithms the running time
is usually not a high power of n; mostly 4 or less and exceptionally 6. Sim-
ilarly, exponential running times of O(3n) hardly occur. Mostly it is O(2n).

We will most often speak of efficient algorithms as polynomial time al-
gorithms. Based on the existence or non-existence of such algorithms we
make a distinction between easy or well-solved problems and hard prob-
lems.

So, why are we not satisfied with Ford-Fulkerson’s algorithm on instances
with integer capacities? Therefore we should realise that to store an in-
teger number a in a digital computer we need dlog ae bits. The input of
the problem is given by 4 numbers representing the vertices. This requires
2 bits per number in a digital computer. The capacity 1 requires 1 bit
only. The capacity M requires logM bits. Thus, the digital size of this
problem is bounded by N = 2 logM for M large enough. But this means
that 2M iterations is O(2N) iterations, and therefore the algorithm runs
in O(2N |A|) time.

1.3 An efficient algorithm for max flow

Chapter 9, Section 4.

We propose now to be more careful in selecting the (s, t)-paths in the
residual graphs. Just simply always select the shortest (s, t)-path, where
with “shortest” we mean here the path with the smallest number of arcs
on it. This would clearly have solved our bad example in just 2 iterations.
Let us show that it is not only better for this example.

Given flow f and corresponding residual graph R. Calling s a level-0 node,
we call all nodes reachable in one step from s level-1 nodes, etc. In this
way in O(|AR|) = O(|A|) steps we find out that node t is a level-k node,
meaning that the shortest path from s to t contains k arcs in R. We keep
all vertices and arcs that are on any length-k path from s to t in R and
call the resulting restricted graph Rr. Each arc in Rr goes from a level-i
node to a level-i+ 1 node, for some i.

Take one such an (s, t)-path in Rr. Then after augmentation one of the
arcs will have disappeared from Rr, either by saturation or by emptying.
It could happen that the reverse arc comes in its place, but this goes from
a higher-level node to a lower-level node, and hence is not part of the new

6

Rr. Thus after at most |ARr | augmentations Rr will be empty, implying
that given the flow found at that point there are no (s, t)-paths in the
residual network of length at most k.

This implies that in the most straightforward implementation, in which
we rebuild Rr only once, but do a path search every iteration, we require
O(|ARr ||VRr |) = O(|A||V |) operations for augmenting along all (s, t)-paths
of length k.

Clearly, we will need to consider at most |V | different lengths of augment-
ing paths. Thus, overall the algorithm takes O(|A||V |2) time. This can be
slightly improved to O(|V |3) time as in [PS] Section 9.4. They augment
over several paths in one round, in any such round saturating all incoming
arcs or all outgoing arcs of some node, thereby cutting out the node from
Rr (read the details yourself).

I advise you to make Exercise 9 of Chapter 9 as an alternative proof of the
O(|A||V |2) running time.

1.4 Variations

Suppose that i.o. 1 source and 1 sink, we have 2 sources s1 and s2 and 2
sinks t1 and t2.

Exercise 2.1. Propose a way to solve this variation of the max-flow prob-
lem.

Suppose now that the 2 sources and sinks are pairwise related in the sense
that the flow going out from source s1 is to be directed only to sink t1,
and the flow going out of source s2 is to be directed only to sink t2.

Exercise 2.2. How would you solve this variation of the max-flow prob-
lem?

1.5 Material and Exercises

[PS] Chapter 9: Sections 9.1-9.4 for flows;

Exercises:
From Chapter 9: Exercises 4, 9, 11

7

