CHAPTER 4

Deterministic rounding of linear programs
Uncapacitated Facility Location (UFL)

\[f_i : \text{Cost for opening facility } i \]
\[c_{ij} : \text{Cost for connecting } j \text{ to } i \]

\[F : \text{facilities} \]
\[D : \text{clients} \]
Uncapacitated Facility Location (UFL)

- f_i: Cost for opening facility i
- c_{ij}: Cost for connecting j to i

F: facilities
D: clients
Uncapacitated Facility Location (UFL)

Opening cost + Connection cost
Uncapacitated Facility Location (UFL)

Opening cost + Connection cost
Uncapacitated Facility Location

(ILP) \quad \min \quad Z = \sum_{i \in F} f_i y_i + \sum_{i \in F, j \in D} c_{ij} x_{ij}

s.t. \quad \sum_{i \in F} x_{ij} = 1 \quad \text{for all } j \in D,

x_{ij} \leq y_i \quad \text{for all } i \in F, j \in D,

x_{ij} \in \{0, 1\} \quad \text{for all } i \in F, j \in D,

y_i \in \{0, 1\} \quad \text{for all } i \in F.
Uncapacitated Facility Location

\[(D) \quad \text{max} \quad Z = \sum_{j \in D} v_j \]

\[\text{s.t.} \quad \sum_{j \in D} w_{ij} \leq f_i \quad \text{for all} \quad i \in F,\]

\[v_j - w_{ij} \leq c_{ij} \quad \text{for all} \quad i \in F, j \in D,\]

\[w_{ij} \geq 0 \quad \text{for all} \quad i \in F, j \in D,\]

\[(v_i \text{ is free}).\]
Uncapacitated Facility Location

Solve primal and dual \((x^*, y^*) \) and \((v^*, w^*) \).

Make *support graph* for \(x^* \): Edge \((i, j) \) if \(x^*_{ij} > 0 \)
Uncapacitated Facility Location

Solve primal and dual $\Rightarrow (x^*, y^*)$ and (v^*, w^*).

Make *support graph* for x^*: Edge (i, j) if $x_{ij}^* > 0$

Lemma: If (i, j) in support graph then $v_j^* = c_{ij} + w_{ij}^* \geq c_{ij}$

Proof Follows from complementary slackness and $w_{ij}^* \geq 0$.

\Rightarrow Connect each client to an adjacent facility \Rightarrow connection cost $\leq \sum_j v_j^*$
Uncapacitated Facility Location

Algorithm For $k = 1, 2, \ldots$ until all clients are connected do:
Step 1: Among the unconnected clients, choose client j_k with smallest value $v_{j_k}^*$.
Step 2: Choose facility $i_k \in N(j_k)$ with smallest value f_{i_k}.
Step 3: Connect all clients in $N^2(j_k)$ to facility i_k.
Uncapacitated Facility Location

Algorithm For $k = 1, 2, \ldots$ until all clients are connected do:

Step 1: Among the unconnected clients, choose client j_k with smallest value $v^*_{j_k}$.

Step 2: Choose facility $i_k \in N(j_k)$ with smallest value f_{i_k}.

Step 3: Connect all clients in $N^2(j_k)$ to facility i_k.
Uncapacitated Facility Location

Algorithm For $k = 1, 2, \ldots$ until all clients are connected do:

Step 1: Among the unconnected clients, choose client j_k with smallest value $v_{j_k}^*$.
Step 2: Choose facility $i_k \in N(j_k)$ with smallest value f_{i_k}.
Step 3: Connect all clients in $N^2(j_k)$ to facility i_k.

Uncapacitated Facility Location

\[f(i_2) \leq \text{fractional opening cost} \]

connection cost \(\leq 3 \sum_{j} v_j^* \)

Total cost \(\leq \sum_{i \in F} f_i y_i^* + 3 \sum_{j \in D} v_j^* \leq Z_{LP}^* + 3Z_D^* \leq 4\text{OPT.} \)
CHAPTER 5

Randomized sampling and randomized rounding of linear programs
Introduction

Definition
An algorithm ALG for a minimization problem is a randomized α-approximation algorithm if it

1. runs in polynomial time,
2. always finds a feasible solution, and
3. the expected value of the solution is at most α times the optimal value.

- Randomized algorithms are often easier to analyse than deterministic algorithms
- Sometimes, derandomization is possible.
5.1 Max SAT and Max Cut

Max SAT example

\[x_1 \lor x_2, \quad \neg x_1, \quad x_2 \lor \neg x_2 \lor x_3, \quad \neg x_2 \lor x_4, \quad \neg x_2 \lor \neg x_4 \]

5 clauses
4 boolean variables \(x_1, x_2, x_3, x_4\)
\(x_1\) and \(\neg x_1\) are the two literals of variable \(x_1\).

\(x_i \in \{\text{TRUE, FALSE}\}\)
5.1 Max SAT and Max Cut

Max SAT example

\[x_1 \lor x_2, \quad \neg x_1, \quad x_2 \lor \neg x_2 \lor x_3, \quad \neg x_2 \lor x_4, \quad \neg x_2 \lor \neg x_4 \]

5 clauses
4 boolean variables \(x_1, x_2, x_3, x_4\)
\(x_1\) and \(\neg x_1\) are the two literals of variable \(x_1\).

\(x_i \in \{\text{TRUE}, \text{FALSE}\}\)

Satisfiability problem (SAT): Is there a true/false assignment such that all clauses are satisfied?

Maximum satisfiability problem (Max SAT): What is the maximum number of clauses that can be satisfied?
5.1 Max SAT and Max Cut

Max Cut
5.2 Derandomization

Example: Max Cut

- $E[Z]$: expected weight of the cut
- S_i: assignment of v_1,\ldots,v_i

Then, $E[Z] = \frac{1}{2} E[Z|v_1 \rightarrow U] + \frac{1}{2} E[Z|v_1 \rightarrow W]$

In general, if v_1,\ldots,v_i are already assigned, then

$E[Z|S_i] = \frac{1}{2} E[Z|S_i \text{ and } v_{i+1} \rightarrow U] + \frac{1}{2} E[Z|S_i \text{ and } v_{i+1} \rightarrow W]$

Algorithm
For $i=1\ldots n$
Assign v_i to the side (U or W) with largest expected value.
5.2 Derandomization

Theorem
Derandomized algorithm is a $\frac{1}{2}$-approximation for Max Cut

Proof

\[E[Z|S_{i-1}] = \frac{1}{2} E[Z|S_{i-1} \text{ and } v_i \rightarrow U] + \frac{1}{2} E[Z|S_{i-1} \text{ and } v_i \rightarrow W] \]

\[\rightarrow E[Z|S_i] \geq E[Z|S_{i-1}] \text{ for all } i. \]

Value of solution is \(E[Z|S_n] \)

\[E[Z|S_n] \geq E[Z|S_{n-1}] \geq \ldots \geq E[Z|S_1] \geq E[Z] \geq \text{OPT}/2 \]
5.2 Derandomization

Derandomized algorithm
For $i=1\ldots n$
Assign v_i to the side that adds the largest weight to the cut.
5.2 Derandomization

`Method of conditional expectations`

- Not always possible.

May be possible if
- algorithm makes a number of independent random decisions

Sometimes,
- computing conditional expectations is difficult / not possible.
5.2 Derandomization

Example: Max SAT

- $E[Z]$: expected number of clauses satisfied
- S_i: assignment of x_1, \ldots, x_i

Then, $E[Z] = \frac{1}{2} E[Z|x_1=true] + \frac{1}{2} E[Z|x_1=false]$

In general, if x_1, \ldots, x_i are already assigned, then

$E[Z|S_{i-1}] = \frac{1}{2} E[Z|S_{i-1} \text{ and } x_i=true] + \frac{1}{2} E[Z|S_{i-1} \text{ and } x_i=false]$

Algorithm
For $i=1 \ldots n$
Set $x_i = true$ if $E[Z|S_{i-1} \text{ and } x_i=true] \geq E[Z|S_{i-1} \text{ and } x_i=false]$ and set $x_i=false$ otherwise.
5.3 Biased coin flipping

(unweighted)

Algorithm
1. If the set of clauses contains a clause $\neg x_i$ but does not contain a clause x_i then, in every clause replace $\neg x_i$ by x_i and vice versa.
2. Set each variable independently at random to true with probability p.

Theorem
For $p=p^*=(\sqrt{5}-1)/2$, algorithm is a randomized $p^*\approx0.62$-approximation.