
Chapter 5 Random sampling and randomized rounding of linear programs

Chapter 5:
Random sampling and randomized rounding of LP’s

Definition 1. A randomized α-approximation algorithm for an optimization
problem is a polynomial-time algorithm that for all instances of the problem
produces a solution for which the expected value is within a factor α of the
optimal value.

To show that a randomized algorithm Alg is an α-approximation algorithm
we need to show three things:

[1] The algorithm runs in polynomial time.

[2] The algorithm always produces a feasible solution.

[3] The expected value is within a factor α of the value of an optimal solution.

In Section 1.7 we have seen a randomized algorithm for set cover that did not
satisfy [2]. There, it was shown that the algorithm produces a feasible solution
with high probability. Another example are Las Vegas algorithms which always
find a feasible solution but the running time is only polynomial in expectation.
In this chapter we only use the definition above.

Section 5.1: Max Sat and Max Cut

Max Sat

An example of an instance of the Maximum Satisfiability problem:

x1 ∨ x2, ¬x1, x2 ∨ ¬x2 ∨ x3, ¬x2 ∨ x4, ¬x2 ∨ ¬x4.

Some notation:

- There are n = 4 boolen variables xi ∈ {true , false }.

- The first clause is x1 ∨ x2 and the number of clauses is m = 5.

- The third clause has 3 literals but only 2 variables.

- xi is called a positive literal and ¬xi is negative literal.

- xi = true ⇔ ¬xi = false .

- A clause is true or ‘satisfied’ if at least one of the literals is true.

The goal in the maximum satisfiability problem is to find a true /false -
assignment of the variables such that the number of satisfied clauses is max-
imized. (In a decision variant of the problem, called satisfiability (SAT), the
question is wether there is an assignment that satisfies all clauses. That prob-
lem was the first problem to be shown NP-complete, Cook 1971, Levin 1973).

Algorithm Set all variables independently to true with probability 1/2.

1

Chapter 5 Random sampling and randomized rounding of linear programs

Theorem 1. The algorithm is a 1/2-approximation for the Max Sat problem.

Proof. Let lj be the number of literals in clause Cj . Then,

Pr(Cj is satisfied) = 1− (1/2)lj ≥ 1/2. (1)

Let W be the total number of satisfied clauses. Then,

E[W] =

m∑
j=1

Pr(Cj is satisfied) >
1

2
m >

1

2
Opt.

In the weighted version of the problem, each clause j is given a weight wj and
the goal is to maximize the total weight of the satisfied clauses. If all weights
are 1 then we have exactly the unweighted version. The algorithm and proof
work exactly the same:

E[W] =

m∑
j=1

wjPr(Cj is satisfied) >
1

2

m∑
j=1

wj >
1

2
Opt.

Remark If each clause contains at least k literals then from the proof above
we see that the approximation guarantee is at least 1− (1/2)k.

Max Cut

The Max Cut problem is the maximization version of the Min Cut problem. It
is known that the minimum cut in a graph can be found in polynomial time
by solving a maximum flow problem (min-cut max-flow theorem). Finding the
maximum cut in a graph is an NP-hard problem.

Algorithm Assign each vertex independently and uniformly at random to one
of the two sides.

Theorem 2. The algorithm is a 1/2-approximation for the MAX CUT problem.

Proof. The probability that an edge (i, j) ends up in the cut is exactly 1/2. Let
Z be the total number of edges in the cut found by the algorithm. Then

E[Z] =
∑

(i,j)∈E

Pr((i, j) in the cut) =
1

2
|E| > 1

2
Opt.

2

Chapter 5 Random sampling and randomized rounding of linear programs

Figure 1: Finding a maximum cut is in general much harder than finding a
minimum cut. The graph G = (V,E) has 15 edges. It is fairly easy to see that
the minimum cut has value 2. The maximum cut, has value 11. The red vertices
and blue vertices indicate the two sides, U and W , of the cut. You can think of
the problem as coloring the vertices with two colors so as to minimize/maximize
the number of edges with different colored endpoints.

In the weighted version of the problem each edge (i, j) has a given weight
wij and the goal is to maximize the total weight of the edges in the cut. The
algorithm and proof work exactly the same:

E[Z] =
∑

(i,j)∈E

wijPr((i, j) in the cut) =
1

2

∑
(i,j)∈E

wij >
1

2
Opt.

3

Chapter 5 Random sampling and randomized rounding of linear programs

Section 5.2: Derandomization.

Sometimes, a randomized algorithm can easily be derandomized. This is the case
for the algorithms of the previous section. The idea of the derandomization is
to make our choices one by one and each time making a choice which gives
the highest expected objective value. It is best explained by an example. In
the max cut algorithm, the vertices are assigned independently at random. To
derandomize the algorithm, assign the vertices one by one in arbitrary order, for
example, in the order v1, . . . , vn. Assume we have already assigned the vertices
v1, . . . , vi and denote the assignment by Si. Denote

E[Z|Si]

as the expected size of the cut if the first i vertices are assigned as in Si and
the others are assigned uniformly at random. Similarly, let

E[Z|Si and vi+1 → U], and E[Z|Si and vi+1 →W]

denote the expected size of the cut given the assignement Si plus the assignement
of vi+1 while the other vertices are assigned uniformly at random.

From probability theory we know that in general for a stochastic variable Z
and event B it holds that E[Z] = E[Z|B]Pr(B) + E[Z|B]Pr(B). In this case

E[Z|Si] = E[Z|Si and vi+1 → U] · Pr(vi+1 → U) +

E[Z|Si and vi+1 →W] · Pr(vi+1 →W)

= E[Z|Si and vi+1 → U] · 1

2
+ E[Z|Si and vi+1 →W] · 1

2
.

The equality above implies that either

E[Z|Si and vi+1 → U] > E[Z|Si] or E[Z|Si and vi+1 →W] > E[Z|Si].

In the first case we assign vi+1 to U and assign it to W otherwise. Denote the
extended assignment by Si+1. Then we achieved that

E[Z|Si+1] > E[Z|Si].

If we do this for all vertices v1, . . . , vn then we end up with the assignment Sn
and conclude that the value of the cut found by this derandomized algorithm is

E[Z|Sn] > E[Z|Sn−1] > · · · > E[Z|S1] > E[Z] >
1

2
Opt.

4

Chapter 5 Random sampling and randomized rounding of linear programs

Section 5.3: Flipping biased coins

We have seen that setting each variable to true with probability 1/2 satisfies at
least half the number of clauses in expectation. Can we do better?

C1 = x1, C2 = ¬x1

The example shows that no algorithm can do better than m/2. But, for this ex-
ample the optimal value is 1 and any assignment is optimal. So can we do better
than 1/2 times the optimal value? Yes! In this section we give the first example.

An obvious approach is to set the variables independently to true with prob-
ability p ∈]0, 1[.

If p < 0.5 then the ratio is worse than 0.5 for the single clause instance: C = x1.
If p > 0.5 then the ratio is worse than 0.5 for the single clause instance: C = ¬x1.

This implies that flipping a biased coin won’t work if we do this independently
of the instance. We will see that it is enough to let p depend only on the unit
clauses.

Let’s consider the weighted version of MaxSat. In fact, the algorithm and
analyis are easier formulated for the weighted version. For example, we may
assume w.l.o.g. that no two clauses are the same since we can turn two equal
clauses into one by adding the two weights. Let w(xi) and w(¬xi) be the weight
of, respectively, clause xi and ¬xi. If the instance has no such clause then we
assume it has zero weight.

Algorithm 3 Choose p ≥ 1/2. Set xi to true with probability p if w(xi) ≥
w(¬xi) and set xi to true with probability 1− p otherwise.

Theorem 3. The approximation factor of the algorithm is at least min(p, 1−p2),
which is

1

2
(
√

5− 1) ≈ 0.62 for p =
1

2
(
√

5− 1).

Proof. Let Z1 be the total weight of unit clauses satisfied by the algorithm and
let Z2 be the total weight of the other clauses satisfied by the algorithm. Fix an
optimal solution and let Z∗1 and Z∗2 be the correspinding weights for the optimal
solution. First, we show that

E[Z1] ≥ pZ∗1 . (2)

Assume w(xi) ≥ w(¬xi). The contribution of these two clauses in the optimal
solution is at most w(xi) since the clauses cannot both be satisfied. On the other
hand, the expected satisfied weight by the algorithm is pw(xi)+(1−p)w(¬xi) ≥
pw(xi).

Similarly, if w(xi) ≤ w(¬xi) then the contribution of these two clauses in the
optimal solution is at most w(¬xi). On the other hand, the expected satisfied
weight by the algorithm is (1− p)w(xi) + pw(¬xi) ≥ pw(¬xi).

5

Chapter 5 Random sampling and randomized rounding of linear programs

Next, we show that
E[Z2] ≥ (1− p2)Z∗2 . (3)

Since p ≥ 1/2, any literal is false with probability at most p. If Cj has lj literals
then

Pr(Cj is satisfied) ≥ 1− plj ≥ 1− p2 for lj ≥ 2.

Hence,

E[Z2] ≥ (1− p2)
∑
j:lj≥2

wj ≥ (1− p2)Z∗2 .

From (2) and (3) we see that the expected value of the solution is

E[Z1]+E[Z2] ≥ pZ∗1 +(1−p2)Z∗2 ≥ min(p, 1−p2)(Z∗1 +Z∗2) = min(p, 1−p2)Opt.

6

Chapter 5 Random sampling and randomized rounding of linear programs

Section 5.4: Randomized Rounding

For each clause Cj let Pj be the indices of the variables xi that occur positively
in the clause, and let Nj be the indices of the variables xi that are negated in
the clause. The following mixed ILP is an exact formulation of the Max Sat
problem.

(ILP) max Z =
m∑
j=1

wjzj

s.t.
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) > zj for all j = 1 . . .m,

yi ∈ {0, 1} for all i = 1 . . . n,

zj ∈ {0, 1} for all j = 1 . . .m.

For the relaxation, replace the last two constraints by 0 ≤ yi ≤ 1 and 0 ≤ zj ≤ 1.
(Note that only changing last constraint by 0 ≤ zj ≤ 1 will still give an integral
optimal solution.)

Algorithm :
Step 1. Solve the LP-relaxation → y∗, z∗, Z∗LP .
Step 2. Set each variable xi to true with probability y∗i .

Theorem 4. The algorithm gives a (1− 1
e)-approximation, (1− 1

e ≈ 0.63).

Proof. Consider an arbitrary clause Cj and let lj be the number of literals in it.

Pr(Cj not sat.) =
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i

≤(1)

 1

lj

∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

lj

=(2)

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

lj

≤(3)

[
1− 1

lj
z∗j

]lj

(1) since the arithmetic mean is at least the geometric mean (Fact 5.8 in book)
(2) rearranging and using that |Pj |+ |Nj | = lj
(3) follows from the LP-inequality.

From the inequality above:

Pr(Cj is sat.) > 1−
[
1− 1

lj
z∗j

]lj
7

Chapter 5 Random sampling and randomized rounding of linear programs

If we can derive a bound of the form Pr(Cj is sat.) > αz∗j for some constant α
then by adding weights and taking the sum over all j we get an α-approximation.
Observe that the function f(z) = 1− (1− 1

lj
z)lj is concave on [0, 1]. Thus,

f(z) > f(0) + (f(1)− f(0)) z =

(
1−

[
1− 1

lj

]lj)
z.

⇒ Pr(Cj is sat.) ≥

(
1−

[
1− 1

lj

]lj)
z∗j . (4)

Now use that the right side above is more than
(
1− 1

e

)
z∗j fo any integer lj ≥ 1.

E[W] =

m∑
j=1

wjPr(Cj is sat.) >

m∑
j=1

wj

(
1− 1

e

)
z∗j =

(
1− 1

e

)
Z∗LP >

(
1− 1

e

)
Opt.

8

Chapter 5 Random sampling and randomized rounding of linear programs

Section 5.5: Choosing the better of two solutions

Here, we see that if we apply for any instance both the algorithms of Section
5.4 and 5.1 and take the best of the two solutions, then the approximation ratio
is better than what we have seen so far. Let W1 and W2 be the weight of the
solution for the algorithm of, respectively, Section 5.4 and 5.1.

Theorem 5. E[max(W1,W2)] > 3
4Opt.

Proof. From the Equations (1) of 5.1 and (4) of 5.4 it follows that

E[max(W1,W2)] >
1

2
E[W1] +

1

2
E[W2]

>
1

2

m∑
j=1

(1− 2−lj)wj +
1

2

m∑
j=1

(
1−

(
1− 1

lj

)lj)
wjz

∗
j .

>
1

2

m∑
j=1

(
(1− 2−lj) + 1−

(
1− 1

lj

)lj)
wjz

∗
j .

The last inequality above follows from z∗j 6 1. Note that

(1− 2−lj) + 1−
(

1− 1

lj

)lj  = 3/2 for lj = 1 or lj = 2,

> 7
8 + 1− 1/e > 3/2 for lj > 3.

Thus,

E[max(W1,W2)] >
1

2

m∑
j=1

3

2
wjz

∗
j =

3

4

m∑
j=1

wjz
∗
j =

3

4
Z∗LP >

3

4
Opt.

9

Chapter 5 Random sampling and randomized rounding of linear programs

Section 5.6: Non-linear randomized rounding

Section 5.5 showed a 3/4-approximation algorithm by taking the best of two
solution. Here it is shown that the same ratio can be obtained if we round
the LP of section 5.4 in a more sophisticated way. Instead of setting xi to true
with probability y∗i , we set it to true with probability f(y∗i) for some appropriate
function f . It turns out that this works for any function f between the following
bounds.

1− 4−y 6 f(y) 6 4y−1. (5)

Algorithm :
Step 1. Solve the LP-relaxation of Section 5.4 → y∗, z∗, Z∗LP .
Step 2. Set each variable xi to true with probability f(y∗i) for some function
f(y) satisfying (5).

Theorem 6. The algorithm above is a 3/4-approximation for (weighted) Max
Sat.

Proof.

Pr(Cj is not sat.) =
∏
i∈Pj

(1− f(y∗i))
∏
i∈Nj

f(y∗i)

6
∏
i∈Pj

4−y
∗
i

∏
i∈Nj

4y
∗
i−1

= 4
−(

∑
i∈Pj

y∗i +
∑

i∈Nj

1−y∗i)

6 4−z
∗
j

From the above:
Pr(Cj is sat.) > 1− 4−z

∗
j .

Just as in Section 5.4, we replace the inequality above by a (weaker) inequality
from which the approximation ratio follows immediately. Note that g(z) =
1− 4−z is a concave function on [0, 1]. Thus,

g(z) > g(0) + (g(1)− g(0))z = 1− 1

4
z ≥ 3

4
z, for 0 6 z 6 1.

⇒ E[W] =

m∑
j=1

wjPr(Cj is sat.) >
m∑
j=1

wj
3

4
z∗j =

3

4
Z∗LP >

3

4
Opt.

10

Chapter 5 Random sampling and randomized rounding of linear programs

Section 5.7: Prize-collecting Steiner tree

Section 4.4, gave a 3-approximation algorithm by LP-rounding. A vertex i was
added to the tree if y∗i > α where α = 2/3. Now we take α ∈ [γ, 1] uniformly at
random. The value γ is chosen appropriately later.

Algorithm :
Step 1: Solve the LP-relaxation of Section 4.4 → x∗, y∗, Z∗LP .
Step 2: Take α ∈ [γ, 1] uniformly at random.
Let U = {i | y∗i > α}. Construct a Steiner tree T on U .

Lemma 1. The expected connection cost for the Steiner tree T is

E[
∑
e∈T

ce] 6
2

1− γ
ln

1

γ

∑
e∈E

cex
∗
e.

Proof. By Lemma 4.6 from the book, the expected connection cost is at most

E

[
2

α

∑
e∈E

cex
∗
e

]
= E

[
2

α

]∑
e∈E

cex
∗
e.

Now use that E
[
2
α

]
= 1

1−γ

α=1∫
α=γ

2
xαdα = 2

1−γ ln 1
γ .

Lemma 2. The expected total penalty cost is at most

1

1− γ
∑
i∈V

1− y∗i

Proof. Let U = {i ∈ V : y∗i > α}. Note that Pr(i /∈ U) =


1 if y∗i 6 γ,

1−y∗i
1−γ if y∗i > γ.

In both cases, the probability is at most (1− y∗i)/(1−γ). The expected penalty
cost is at most∑

i∈V
πiPr(i /∈ U) 6

∑
i∈V

πi
1− y∗i
1− γ

=
1

1− γ
∑
i∈V

πi(1− y∗i).

Form the two lemmas we conclude that the total expected cost of the solution
is at most

max

{
2

1− γ
ln

1

γ
,

1

1− γ

}
Z∗LP .

The maximum above is 1/(1− e−1/2) ≈ 2.54 for γ = e−1/2.

11

Chapter 5 Random sampling and randomized rounding of linear programs

Derandomization The algorithm makes only one random decision: it chooses
α at random. So the method of computing conditional expectations of Section
5.3 is not very helpful here. It only tells us to pick an α which gives the best
objective value, but there are infinitely many α’s to try. An obvious approach
is to show that trying a polynomial number of value’s for α is enough. In our
case, we only need n + 1 = |V | + 1 different values of α. To see this, label the
vertices such that y∗1 6 · · · 6 y∗n. Then, the solution of the algorithm is the
same for all values α ∈]y∗i , y

∗
i+1[. In other words, when we let α vary from γ till

1 then the outcome of the rounding changes only when α becomes y∗i for some
i. It is enough to try for α all values y∗1 , . . . , y

∗
n, 1 and take the best solution.

Algorithm :
Step 1: Solve the LP-relaxation of Section 4.4 → x∗, y∗, Z∗LP .

Step 2: For all α ∈ {y∗1 , . . . , y∗n, 1} do the following:
Let U = {i | y∗i > α}. Construct a Steiner tree T on U .

Step 3: Return the best solution found.

12

Chapter 5 Random sampling and randomized rounding of linear programs

Section 5.8: Uncapacitated facility location.

In Section 4.4 we have seen a 4-approximation algorithm for the uncapacitated
facility location problem. The algorithm was to solve an LP-relaxation and
then assigning clients one by to the cheapest neighboring facility in the support
graph. The main difference here is that in stead of taking the cheapest facility,
we take a facility at random using the values xij from the LP as probability
distribution. First, let us repeat (just for completeness) part of Section 4.4:

(ILP) min Z =
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij

s.t.
∑
i∈F

xij = 1 for all j ∈ D,

xij 6 yi for all i ∈ F, j ∈ D,

xij ∈ {0, 1} for all i ∈ F, j ∈ D,

yi ∈ {0, 1} for all i ∈ F.

In the LP-relaxation, replace the binary constraint by xij > 0 and yi > 0. The
dual of the LP-relaxation is:

(D) max Z =
∑
j∈D

vj

s.t.
∑
j∈D

wij 6 fi for all i ∈ F,

vj − wij 6 cij for all i ∈ F, j ∈ D,

wij > 0 for all i ∈ F, j ∈ D,

(vi is free).

Let x∗, y∗ be optimal primal solution and let v∗, w∗ be optimal dual solution.
By complementary slackness, we have the following lemma.

Lemma 3. If x∗ij > 0, then cij = v∗j − w∗ij 6 v∗j .

• Support graph of x∗: There is an edge if x∗ij > 0.

• N(j) is the set of neighbors of client j ∈ D in the support graph.

• N2(j) is the set of all neighbors of neighbors of client j ∈ D.

The deterministic algorithm:
For k = 1, 2, . . . until all clients are connected do:
Step 1: Among the unconnected clients, choose client jk with smallest value v∗jk .
Step 2: Choose facility ik ∈ N(jk) with smallest value fik .
Step 3: Connect all still unconnected clients in N2(jk) to facility ik.

13

Chapter 5 Random sampling and randomized rounding of linear programs

In the randomized version, Step 2 is changed by taking ik at random. Conse-
quently, we see that the analysis work out nicely if we also make a small change
in Step 1. Define the fractional connection cost of client j as C∗j =

∑
i∈F

cijx
∗
ij .

The randomized algorithm:
For k = 1, 2, . . . until all clients are assigned do:
Step 1: Among the unconnected clients choose client jk with smallest v∗jk +C∗jk .
Step 2: Choose facility ik ∈ N(jk) at random, where Pr(i = ik) = x∗ij .

Step 3: Connect all still unconnected clients in N2(jk) to facility ik.

Theorem 7. Algorithm above is a randomized 3-approximation algorithm.

Proof. The expected opening cost for facility opened in iteration k is∑
i∈N(jk)

fix
∗
ijk

6
∑

i∈N(jk)

fiy
∗
i .

The inequality follows from the LP-constraint. Step 3 of the algorithm ensures
thatN(jk)∩N(jk′) = ∅ for any pair jk, jk′ . Thus, the total expected opening cost
is ∑

k

∑
i∈N(jk)

fiy
∗
i 6

∑
i∈F

fiy
∗
i .

For the expected connection cost, consider an arbitrary iteration k. Given

Figure 2: Sketch of iteration k. Only the clients that get connected in this
iteration are shown. Client l is an arbitrary client in N2(jk).

jk, the neighborhoods N(jk) and N2(jk) are fixed. For any client l that gets
connected in that iteration (i.e., l ∈ N2(jk)) there is some h ∈ N(jk) such that
h is a neighbor of l. The distances chjk+chl are not random variables. However,
the distance cikjk is a random variable since the facility ik is chosen at random.

E[cikjk] =
∑

i∈N(jk)

x∗ijkcijk =
∑
i∈F

x∗ijkcijk = C∗jk .

The algorithm assigns client l to facility ik. The expected connection cost for

14

Chapter 5 Random sampling and randomized rounding of linear programs

client l is

E[cikl] ≤(1) E[cikjk + chjk + chl]

=(2) E[cikjk] + chjk + chl

= C∗jk + chjk + chl

≤(3) C∗jk + v∗jk + v∗l

≤(4) C∗l + v∗l + v∗l

(1): Follows from the triangle inequality.
(2): Only the first is a random variable (given jk).
(3): From the complementary slackness lemma.
(4): From Step 1. Note that jk and l were both unassigned before jk was chosen.

The expected value of the solution is the sum of expected opening cost and
expected connection cost, which is bounded by∑

i∈F
fiy
∗
i +

∑
l∈D

C∗l + 2
∑
l∈D

v∗l

=

(∑
i∈F

fiy
∗
i +

∑
l∈D

∑
i∈F

x∗ilcil

)
+ 2

∑
l∈D

v∗l

= Z∗LP + 2Z∗D 6 3Z∗LP 6 3Opt.

15

