Testing for Parameter Instability across Competing Modeling Frameworks∗

Francesco Calvori¹, Drew Creal², Siem Jan Koopman³, Andrey Lucas⁴

(a) Department of Statistics “G. Parenti”, University of Florence
(b) Booth School of Business, University of Chicago
(c) VU University Amsterdam and Tinbergen Institute
(d) CREATES, Aarhus University

January 28, 2014

Abstract

We develop a new parameter instability test against the alternative of an observation-driven time-varying parameter. The new test generalizes the seminal ARCH-LM test for a constant variance against the alternative of autoregressive conditional heteroskedasticity to settings with nonlinear time-varying parameters and non-Gaussian distributions. Our test exploits the dynamic dependence structure of the predictive likelihood function under the null of static parameters. We discuss the performance of our test in comparison with competing tests developed for other time-varying parameter frameworks such as structural breaks and parameter-driven dynamics. The new test has higher and more stable power properties against alternatives with frequent regime switches or with parameter-driven time variation. Several competing tests perform better in more local settings, including a single structural break. We apply all tests to a heavily unbalanced panel of losses given default for U.S. corporations from 1982 to 2010 and provide evidence of significant parameter instability in the parameters of a static beta distributed model.

Key words: time-varying parameters; observation-driven and parameter-driven models; structural breaks; generalized autoregressive score model; regime switching; credit risk.

JEL classifications: C12, C52, C22.

∗We benefited from the comments of participants of the 2013 Workshop on Score Driven Models, Amsterdam. Drew Creal thanks the William Ladany Faculty Scholar Fund at the Booth School of Business for financial support. Andrey Lucas thanks the Dutch National Science Foundation (NWO), grant vici453-09-005 for financial support. Email addresses: calvori@disia.unifi.it, drew.creal@chicagobooth.edu, s.j.koopman@vu.nl, a.lucas@vu.nl.
1 Introduction

A key concern in empirical model building is model instability. Hansen (2001) provides an overview of a large number of different parameter instability tests found in the literature, including standard tests such as the Chow (1960) break test, the supremum \(F \)-tests of Andrews (1993), and the weighted \(F \)-tests by Andrews and Ploberger (1994). When testing for parameter instability, the model under the alternative hypothesis of parameter instability can take many different forms. For example, there might be one or more deterministic structural breaks in the parameters of a model as in, for example, Vogelsang and Perron (1998), Bai and Perron (2003), Perron (2006), and Qu and Perron (2007); the parameters may exhibit regular regime switches as in Hamilton (1989); or the parameters may evolve continuously over time, either in a parameter-driven (state space) framework such as Harvey (1989), Bauwens and Veredas (2004), Shephard (2005), Hafner and Manner (2012), and Durbin and Koopman (2012), or an observation-driven framework such as Engle (1982), Bollerslev (1986), Engle and Russell (1998), Davis et al. (2003), Patton (2006), Creal et al. (2013), and Harvey (2013).

The goal of this paper is twofold. First, we develop a new test for parameter instability in nonlinear and non-Gaussian models against the alternative of a generalized autoregressive score (GAS) model of Creal et al. (2013) and Harvey (2013). GAS models provide a flexible framework for the introduction of time-varying parameters in a model and include the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the autoregressive conditional duration (ACD) model of Engle and Russell (1998), and the dynamic Poisson model of Davis et al. (2003) as special cases. The GAS model is a score-driven models that is characterized by a parametric conditional observation density. Since the GAS model is observation-driven, its likelihood function is available in closed-form, such that parameter estimation and inference are straightforward. A variety of empirical studies have illustrated that the GAS framework can successfully capture time-variation in parameters; examples are given by Creal et al. (2011) for multivariate volatility and correlation models, Creal et al. (2014) for mixed measurement factor models, and Oh and Patton (2013) and De Lira Salvatierra and Patton (2013) for copula models. Moreover, the out-of-sample forecasting accuracy of GAS models is highly competitive in comparison to well-specified nonlinear non-Gaussian state space models; see Koopman et al. (2012). A parameter instability test against the alternative of GAS dynamics can thus provide a useful signal that a static model is too simplistic and needs to be augmented.

Our new Lagrange Multiplier (\(LM \)) test is highly intuitive and practical. It tests for non-zero serial dependence in the score function of \(\ell_t \) where \(\ell_t \) is the \(t \)th contribution to the loglikelihood
function $\sum_{t=1}^{T} \ell_t$ in a static model for a time series of length T. We view our test as an omnibus diagnostic tool and as a generalization of the familiar ARCH-LM test of Engle (1982) to settings beyond time-varying volatility. The asymptotic distribution of the test is standard and follows by familiar results from White (1987). Similar to most omnibus LM diagnostic tests, our test can easily be computed by means of an auxiliary regression.

The second goal of our paper is to investigate the finite sample properties of the new test relative to other familiar (and less familiar) tests from the literature. We consider linear as well as nonlinear models where computational efficiency becomes a concern. The estimation of parameters in an extensively nonlinear model is typically cumbersome and computationally demanding. Hence we favor the use of LM-based test statistics. In particular, we consider the sup-LM test of Andrews (1993), the test against random walk parameter alternatives of Nyblom (1989), and the recently proposed test against local parameter-driven time variation of Müller and Petalas (2010). All these tests are applicable to both linear and nonlinear settings. However, each of these tests has a different specification for the time-varying parameter under the alternative hypothesis.

The results of Müller and Petalas (2010) are of particular interest to our new test. Müller and Petalas prove that a test against a parameter-driven alternative is asymptotically optimal against general local alternatives where the magnitude of the time variation for the unstable parameters shrinks as the sample size increases. Their theoretical results are supported by numerical simulations; see also the results reported in Elliott and Müller (2006) for the case of linear models. We extend their results in several directions. First, we consider a wider set of alternatives for parameter variation, including deterministic regime switches, random walk time-varying parameters, and stationary parameter-driven dynamics. Second, we pay attention to non-local alternatives. The theoretical results in Müller and Petalas (2010) do not make clear predictions about the behavior of alternative testing methodologies under non-local alternatives in finite samples. In particular, the finite sample performance of the different testing procedures may crucially depend on the type of data generating process under the alternative.

Our simulation experiment provides several interesting insights. The new test against the observation-driven GAS alternative exhibits higher power for alternatives with regular regime switches or non-local parameter-driven time-varying behavior. In cases where the parameter-driven behavior is close to the null or where infrequent structural breaks occur, the test of Müller and Petalas (2010) performs best. The optimality of the Müller-Petalas test for parameter-driven time variation close to the null follows immediately from the analytical results in Müller and Petalas (2010). The good performance in case of infrequent breaks is consistent with their simulation results that compare their test with the sup-LM test of Andrews (1993). When
the size or frequency of time-variation is higher, we show that the new GAS-\textit{LM} test against the observation-driven alternatives performs better. The power performance of our test is also surprisingly robust over alternative specifications of the data generating process; this stands in contrast to most of the new test’s competitors.

The construction of the different tests provides some insights into our findings. The GAS-\textit{LM} test relies directly on the serial dependence in the loglikelihood scores from the static model. The serial correlations can typically be estimated accurately even when the data generating process of the time-varying parameter is erratic and moves quickly. Hence we find a good performance of our test in settings with many breaks or with strong mean reverting parameter dynamics. The test of Müller and Petalas (2010), by contrast, uses the unconditional volatility of the path of the time-varying parameter as its main ingredient. This path is estimated under the assumption of a highly persistent parameter process. When the true time-varying parameter moves quickly, the estimated path typically becomes almost constant, thus reducing the estimated volatility of the path and the power of the test. This phenomenon of a bad estimate of the path of the time-varying parameter also holds for the GAS model, but there it does not affect the GAS-\textit{LM} test since the latter is not based on the volatility of the estimated path of the time-varying parameter. Conversely, if the true path of the parameter evolves slowly over time, the likelihood ratio nature of the Müller and Petalas (2010) test leads to a better performance compared to the GAS-\textit{LM} test.

In our empirical illustration, we test for the instability of parameters in loss given default (LGD) models that are used for credit risk analyses. Loss given default is the fraction of the outstanding amount of a loan or bond that is lost in case the company defaults. It is a key ingredient of current models for financial risk management and regulation. Many financial industry credit risk models for LGDs use static parameters. A prime example is the use of a static beta distribution for modeling LGD fractions. The use of static parameters in this application may be inappropriate since financial conditions vary over time and affect the LGDs accordingly. For example, losses may be higher on average in situations where default risk is also higher. This exacerbates total expected losses, which are defined as the probability of default times the LGD. If the parameters of a model for LGDs are actually time-varying, the regulator may require higher capital requirements for financial institutions to mitigate financial stability concerns.

We analyse a panel data set of LGDs for corporate bond data obtained from Moody’s to test for the presence of time-varying parameters. The data set is non-standard and therefore provides an interesting example of the flexibility of our testing approach. The number of LGD observations for each quarter varies over time because LGD can only be observed when a default
occurs, and the number of defaults evidently varies over time. Assuming that the LGDs are
drawn from a beta distribution with possibly time-varying parameters, all tests strongly confirm
that the distributional properties of LGDs vary over time. In particular, we find that LGDs
have been on average very low compared to the static model during the period leading up to
the 2008 financial crisis. It suggests that the abundance of liquidity during this period has not
only prevented firms from defaulting, but has also mitigated the losses for those cases in which
a default was unavoidable.

The remainder of this paper is organized as follows. In Section 2 we describe our new test
statistic as well as the main alternative tests from the literature. In Section 3 we describe
our Monte Carlo experiments on the finite sample properties of the tests and provide insight
into the differences in performance based on the analytical construction of the different test
statistics. In Section 4, we apply the different tests to our empirical panel of corporate bond
loss fractions. Section 5 concludes. The online Appendix presents many additional simulation
results.

2 Testing frameworks for time-varying parameters

We consider a dependent variable \(y_t \in \mathbb{R}^m \) for \(t = 1, \ldots, T \), where \(T \) denotes the sample size, a
vector of time-varying parameters \(f_t \in F \subset \mathbb{R}^k \), and a vector of static parameters \(\delta \in D \subset \mathbb{R}^n \),
where \(F \) and \(D \) denote the parameter space of the time-varying and static parameter vectors,
respectively.

2.1 Observation-driven time-variation

In an observation-driven framework, the time-varying parameter \(f_t \) is driven by a deterministic
function of lagged dependent variables and contemporaneous or lagged exogenous variables.
The observation-driven modeling framework has the advantage that the likelihood is available
in closed-form and can easily be evaluated. It leads to estimation and inference procedures
that can be easily implemented. The main challenge however is to determine the function of
the observations that drives the parameter \(f_t \) through time. A general approach encompassing
many popular nonlinear and non-Gaussian dynamic models is the generalized autoregressive
score (GAS) model of Creal et al. (2013); see also Harvey (2013). In the GAS\((p, q)\) model, the
observations \(y_t \) have the dynamic specification

\[
y_t \sim p(y_t | f_t; \delta)
\]

\[
f_{t+1} = (I - B_1 - \ldots - B_p)\omega + \sum_{i=1}^{q} A_i s_{t-i+1} + \sum_{j=1}^{p} B_j f_{t-j+1},
\]
where the elements of the vector ω and of the matrices A_i and B_j are static parameters for $i = 1, \ldots, p$ and $j = 1, \ldots, q$, with

$$s_t := S_t \cdot \nabla_{f,t} := S_t \cdot \frac{\partial \ln p(y_t|f_t; \delta)}{\partial f_t},$$

where $\nabla_{f,t}$ is the score of the conditional observation density. The $k \times k$ matrix $S_t = S(f_t; \delta)$ is the scaling matrix for the score. For example, we can consider a power of the Fisher information matrix of the conditional observation density to account for the curvature of the score; see Creal et al. (2013) for more details.

The defining feature of the GAS model is its use of the score of the conditional observation density to drive the parameter f_t through time. At each time period, the dynamics of the time-varying parameter can be interpreted as a steepest-ascent or Gauss-Newton step, where the local fit of the model is improved by using the information in the most recent observation and its distribution. The GAS framework encompasses as special cases the GARCH model of Engle (1982) and Bollerslev (1986), the ACD and ACI models of Engle and Russell (1998) and Russell (2001), the MEM model of Engle and Gallo (2006) and Cipollini et al. (2012), the models for Poisson counts of Davis et al. (2003), and the Beta-\(t\)-GARCH model of Harvey (2013), among many others.

To introduce the GAS-LM test, we draw the analogue with the ARCH-LM test of Engle (1982) or the GARCH-LM test of Lee (1991). The ARCH(1)-LM test of Engle for the model $y_t = x_t' \beta + \sigma_t \varepsilon_t$ where ε_t has mean zero and variance one, tests the null of a constant variance against the alternative

$$\sigma_{t+1}^2 = (1 - A)\omega + A\varepsilon_t^2 = (1 - A)\omega + A(\varepsilon_t^2 - \sigma_t^2) + A\sigma_t^2,$$

with parameter $|A| < 1$, for $t = 1, \ldots, T$. Under the alternative hypothesis, the variance σ_{t+1}^2 varies around the static level ω as driven by the scaled score $\varepsilon_t^2 - \sigma_t^2$ of a Gaussian density with respect to the parameter σ_t^2. The null hypothesis is $H_0 : A = 0$.

The LM test against a GAS alternative takes the same perspective as the ARCH-LM test (4), but generalizes the observation density and allows the time-varying parameter f_t to characterize a different distributional property than the variance. Formally, we test the null hypothesis of no parameter variation against the GAS alternative

$$f_{t+1} = (I - A_1 - \ldots - A_q)\omega + \sum_{i=1}^q A_is_{t-i+1} + \sum_{i=1}^q A_if_{t-i+1},$$

where the dynamics of f_t are driven by the score s_t from (3) of the conditional observation density. Similar to (4), under the alternative the time-varying parameter f_t varies around its
static level ω. We can use the same arguments as in Lee (1991) to allow for different coefficients B_i (rather than A_i only) for the lags of f_{t-i+1} under the alternative, for $i = 1, \ldots, q$.

To define the LM test statistic, let $\ell_t(\delta, \omega, a) = \ln p(y_t|f_t; \delta)$ be the likelihood at time t, where we suppressed the dependence of f_t on the static parameters δ, ω, and $a = \text{vec}(A_1, \ldots, A_q)$. Define $s_{p,t} = \text{vec}(s_t, \ldots, s_{t-p+1})$ and let $G'_t = (\nabla'_\delta t, \nabla'_\omega t, \nabla'_\omega t \otimes s'_{p,t-1})$ where \otimes is the Kronecker product and with $\nabla'_\delta t$ and $\nabla'_\omega t$ denoting the derivatives of ℓ_t with respect to δ and ω, respectively. Following White (1987), the LM test for $H_0 : a = 0$ versus the alternative $H_1 : a \neq 0$, is given by

$$LM = G' H^{-1} G, \quad G = \sum_{t=1}^T G_t, \quad H = \sum_{t=1}^T G_t G'_t,$$

where derivatives are evaluated at the maximum likelihood estimates under the null hypothesis. The covariance matrix H can be replaced by a robust long-run covariance matrix, that is

$$\tilde{H} = \sum_{t=1}^T \sum_{\tau=1}^t w_{T,t-\tau} (G_t G'_\tau + G'_t G_\tau),$$

for some kernel weights $w_{T,t-\tau}$; see Andrews (1991).

Under the null and under standard regularity conditions, the GAS-LM test converges to a χ^2 distributed random variable with $\text{dim}(a)$ degrees of freedom; see White (1987). The asymptotic statistical theory of the GAS-LM test is therefore entirely standard, in contrast to that of some alternative parameter instability tests.

Following Davidson and MacKinnon (1990), the LM test statistic can be written as the explained sum of squares of the auxiliary ordinary least squares regression

$$1 = G'_t \beta_{LM} + \text{residual}$$

$$= \nabla'_\delta t \beta_{LM}^\delta + \nabla'_\omega t \beta_{LM}^\omega + (\nabla'_\omega t \otimes s_{p,t-1})' \beta_{LM}^a + \text{residual},$$

where $\beta_{LM} = (\beta_{LM}^\delta, \beta_{LM}^\omega, \beta_{LM}^a)$ is a vector of auxiliary regression parameters and all derivatives are evaluated under the null. The regression interpretation of the GAS test makes it easy to compute in standard packages. The first derivatives of the conditional observation density at each time t can be obtained either analytically or numerically.

The GAS-LM test has an intuitive interpretation. The key term on the right-hand side of the auxiliary regression (7) is $\nabla'_\omega t \otimes s_{p,t-1}$. The elements of this vector are $\text{vec}(S_{t-i} \nabla'_\omega t \nabla'_\omega t)$, for $i = 1, \ldots, q$, because, under the null, the score of the conditional density with respect to f_t is equal to the score with respect to ω. Hence, the LM test against the GAS alternative verifies whether there is any serial dependence in the scores $\nabla'_f t$ of the static model. If serial dependence exists, the actual autocorrelations in the likelihood scores can be exploited to improve the fit of
the model by using them to drive the time-varying parameter f_t through time. This is exactly what the dynamics of the GAS model in (2) achieves.

Even though the above LM test has been derived with the GAS alternative in mind, we expect this test to have power against other forms of parameter instability. Consequently, it can be regarded as an omnibus test for model misspecification. The same holds for the tests against structural breaks and against parameter-driven time variation, which we discuss next.

2.2 Parameter-driven time-variation

For parameter-driven models, the time-varying parameter f_t is a stochastic process that is subject to its own source of error. Important examples of this class of models are unobserved components time series models as in Harvey (1989), stochastic volatility models as reviewed in Shephard (2005), stochastic conditional duration models as in Bauwens and Veredas (2004), and stochastic copula models as in Hafner and Manner (2012) and Creal and Tsay (2014). The randomness in both f_t and y_t lead to challenging problems in parameter estimation and testing. The likelihood function is not available in closed form except in cases such as linear Gaussian state space models and discrete-state hidden Markov models; see Durbin and Koopman (2012) and Hamilton (1989), respectively. In all other cases likelihood-based inference requires approximation and/or simulation methods; see, for example, Creal (2012) and Durbin and Koopman (2012) for discussions on such methods.

Müller and Petalas (2010), denoted as MP10 hereafter, provide an elegant and general framework for testing parameter instability. Their approach encompasses nonlinear and non-Gaussian models with moderately time-varying parameters. If the time variation vanishes asymptotically at the appropriate rate, MP10 show that we can address the inference problem of parameter instability by considering a linear Gaussian state space model where the observations are replaced by the likelihood scores of the static model. Moreover, they prove that such an approach is not only asymptotically optimal against the alternative of (local) parameter-driven time-varying parameters, but also against a much wider range of alternative (local) parameter dynamics. As such, the test stands in a long tradition of point optimal tests against local alternatives, such as random walk parameters; see, for example, Nyblom and Mäkeläinen (1983), Franzini and Harvey (1983), King and Hillier (1985), Nyblom (1989), and Elliott and Müller (2006).

The key intuition of the MP10 test comes from a (pseudo-)linear Gaussian state space model

\[H V^{-1} \nabla_{\omega,t} = S^{-1}(f_t - \bar{f}) + \nu_t, \quad \nu_t \sim N(0, S^{-1}) \]

\[(f_{t+1} - \bar{f}) = (1 - c T^{-1})(f_t - \bar{f}) + \tilde{\nu}_t, \quad \tilde{\nu}_t \sim N(0, c^2 T^{-2} S^{-1}) \]

(8)
where

\[H = T^{-1} \sum_{t=1}^{T} \frac{\partial^2 \ln p(y_t|\bar{f}; \delta)}{\partial f_t^2}, \quad V = T^{-1} \sum_{t=1}^{T} \nabla_{\omega,t} \nabla'_{\omega,t}, \quad S = H^{-1} V H^{-1}. \]

The loglikelihood score \(\nabla_{\omega,t} \) is the same as for the observation driven model and the state variable \(f_t \) follows a nearly-integrated process with fixed tuning parameter \(c \). The parameter \(\bar{f} \) is a fixed benchmark level for \(f_t \), for \(t = 1, \ldots, T \). It follows that \(f_t \) is a persistent process with local time variation. As the sample size grows, time variation in \(f_t \) vanishes as the autoregressive parameter converges to unity and the variance of the transition equation in (8) converges to zero.

The variable \(HV^{-1} \nabla_{\omega,t} \) can be viewed as a pseudo-observation. Its linear Gaussian state space model (8) is the result of applying Laplace transformations to nonlinear and non-Gaussian models. A similar technique is used for the likelihood-based approaches of Shephard and Pitt (1997) and Durbin and Koopman (1997, 2000) where they adopt the approximating model to implement importance sampling or MCMC methods. Such simulation-based methods for the estimation of parameters in nonlinear non-Gaussian state space models are used extensively in econometrics. MP10 point out that the key difference between the approximating model used Shephard and Pitt (1997) and Durbin and Koopman (1997, 2000) and their approximating model is the use of the global Hessian \(H \) rather than the local Hessian of the conditional observation density at time \(t \).

Müller and Petalas (2010) construct a point optimal (likelihood ratio) test of the null \(c = 0 \) versus the alternative \(c = 10 \). Though the theory in MP10 is highly advanced, the proposed test statistic is surprisingly straightforward to compute using simple regression techniques. An algorithm is provided in their paper. The point optimality of the test allows a likelihood ratio test interpretation. As a result, the test has a power advantage compared to an LM test. This stems from the fact that we actually obtain an approximate fit of the model under the (local) parameter-driven alternative \(c = 10 \) based on the regressions used to compute the test statistic. Consequently, the test captures part of the gain of the likelihood ratio compared to the Lagrange multiplier test, just as if parameters of a model would have been estimated under both the null and the alternative rather than under the null only.

Based on similar regressions as those used to obtain the test statistic, MP10 also propose an estimator for the path of the time-varying parameter \(f_t \). Their estimator is a weighted average risk based combination of the estimated paths for different values of \(c \), namely \(c = 0, 5, 10, \ldots, 50 \). We consider this estimator in our empirical application.

The crucial ingredient of the MP10 test is the sum of \((f_t - \bar{f}) \cdot \nabla_{\omega,t} \). The test uses the variability of the estimated path \(f_t \) around its static counterpart \(\bar{f} \) for \(c = 10 \). The differences
\((f_t - \bar{f})\) are weighted by the likelihood score with respect to the, possibly, time-varying parameter. If the estimated path \(f_t\) is relatively constant, or if the likelihood is not very sensitive with respect to \(f_t\), the resulting test statistic is small. The smoothed estimate of the path for the test is obtained under \(c = 10\), which implies a high degree of persistence for sufficiently large \(T\). This can become problematic if there is rapid time variation in \(f_t\) under the alternative, such as in the case of regular regime switches or strongly mean reverting parameter changes. In these cases, the estimated path of \(f_t\) can become close to a constant, resulting in a low value of the test statistic and a low power of the corresponding testing procedure.

Compared to the GAS-LM test of Section 2.1, the MP10 test has three main differences. First, due to the choice of \(c = 10\) and the structure of the auxiliary regressions, the MP10 test statistic weighs both present and future autocovariances of the score. By contrast, the GAS-LM test only uses past autocovariances. Second, the GAS-LM test allows the user to include an explicit number of autocovariances through the choice of the parameter \(q\). The MP10 test, by contrast, takes all autocovariances into account, but implicitly defines their weight through the choice of the tuning parameter \(c = 10\). Third, the distributions of the GAS and MP10 tests under the null differ profoundly. The GAS-LM test follows the standard \(\chi^2\) asymptotics of White (1987) while the MP10 test follows the asymptotic distribution as derived in Elliott and Müller (2006).

2.3 Structural breaks

Andrews (1993) proposes a general parameter instability test for nonlinear parametric models against alternatives with a one-time break in (a subset of) the parameters. Generalizations to multiple breaks are possible, but typically computer intensive unless the structure of the model is sufficiently simple; see Bai and Perron (2003). The tests against a structural change alternative are based on partial-sample GMM estimators and can be of the supremum Wald, Lagrange multiplier \((LM)\), and likelihood ratio types. Modifications of these tests that use weighted averages rather than the supremum of the tests over all possible break points are proposed by Ploberger et al. (1989) and Andrews and Ploberger (1994). Here we focus on the \(LM\) based version of the test. This precludes the need to estimate a possibly nonlinear model over many different subsamples. It can lead to a time-consuming process with many computations, in particular during the exploratory modeling phase.

Let \(\pi \subset (0, 1)\) and \(\lfloor \pi T \rfloor + 1\) denote the breakpoint of the parameter \(f_t\), where \(\lfloor x \rfloor\) denotes the integer part of \(x \in \mathbb{R}\). The null and alternative hypothesis for the Andrews’ sup-\(LM\) test
are given by

\[H_0 : f_t = \tilde{f}_0 \quad \forall t \geq 1 \text{ and some } \tilde{f}_0 \in F \subset \mathbb{R}^k, \quad (9) \]

\[H_1 : \bigcup_{\pi \in \Pi} H_{1,T}(\pi) \text{ for some } \Pi \subset (0, 1), \quad (10) \]

\[H_{1,T}(\pi) : f_t = \begin{cases}
\tilde{f}_1(\pi), & \text{for } t = 1, \ldots, \lfloor \pi T \rfloor, \\
\tilde{f}_2(\pi), & \text{for } t = \lfloor \pi T \rfloor + 1, \ldots, T,
\end{cases} \quad (11) \]

for constants \(\tilde{f}_1(\pi), \tilde{f}_2(\pi) \in F \). The test is designed for a single break at an unknown date. However, the test also has good power properties against a range of more general alternatives; see, for example, the survey of Hansen (2001). The distribution of the Andrews’ sup-LM test is the supremum of the square of a tied down Bessel process as derived in Theorem 3 of Andrews (1993), where one can also find the critical values of the test.

In contrast to the tests described in Sections 2.1 and 2.2, the Andrews’ sup-LM test does not build on the autocorrelations of the score of the likelihood, but rather on the average level of the score before and after the break. In particular, the crucial ingredients of the test are scaled versions of \(\sum_{t=1}^{\lfloor \pi T \rfloor} \nabla_{\omega,t} \) and \(\sum_{t=\lfloor \pi T \rfloor + 1}^{T} \nabla_{\omega,t} \). This clearly follows from the alternative, which is a structural break at an unknown point in time. When regular switches between alternative values of the parameter occur, the Andrews’ test may have difficulty in identifying such a pattern. The sample means of moment conditions before and after any particular tentative breakpoint may fail to be sufficiently different in small sample sizes. We expect to observe this problem when the the true time-varying parameters are subject to regular regime switches or to strongly mean reverting dynamics.

2.4 Martingale type time–variation

Our final benchmark is the parameter instability test of Nyblom (1989). This “all-purpose” test is based on the assumption that under the alternative the time-varying parameter follows a martingale process. Nyblom (1989) argues that his test encompasses the case of one or more structural breaks. The Nyblom test is therefore related to both LM tests of Sections 2.2 and 2.3.

The key element in the Nyblom test is the partial sum of the likelihood scores. From this perspective, the test is close to the partial sums in the Andrews’ test. However, the Nyblom test does not take a supremum, but rather considers the average of the squares of partial sums. We therefore expect that the Nyblom test has an inferior performance compared to the other three tests in most settings.
3 Monte Carlo study

3.1 Design of study

We consider a range of different data generating processes (DGPs). For each DGP, we generate a time series of length $T = 2,000$ observations and compute the GAS-LM(1), the GAS-LM(5), the sup-LM test of Andrews (1993), the test of Müller and Petalas (2010), and the test of Nyblom (1989). All test results are recorded, and this process is repeated $N = 10,000$ times to compute the size and power properties of the tests. We carry out these Monte Carlo experiments for the parameter instability tests against a wide range of alternative modeling frameworks.

We differentiate the DGPs considered in this study along two dimensions. First, we consider DGPs with different types of dynamics for the time-varying parameter. In particular, we have regime switching models, models with random structural breaks, and specific state space models. Second, we consider different degrees of time-variations in the model. In particular we have a set of parameter DGPs that either affect the mean, the variance, the dependence structure and higher order moments of the observation density.

3.2 Data generation processes for parameters

We consider the following DGPs for the time-varying parameters.

Regime switches: Let $n_b \in \mathbb{N}$ denote the fixed number of switches, then the evolution of f_t is given by

$$f_t = \begin{cases} \Delta & \text{for } \left\lfloor \frac{jT}{n_b+1} \right\rfloor + 1 \leq t \leq \left\lfloor \frac{(j+1)T}{n_b+1} \right\rfloor \text{ for every } j = 1, 3, \ldots, (2 \cdot \lfloor 0.5n_b - 0.5 \rfloor + 1), \\ 0 & \text{otherwise} \end{cases},$$

with Δ denoting the difference (in absolute value) between the two regimes. For example, for $n_b = 4$, we have $f_t = \Delta$ for $[0.2T] + 1, \ldots, [0.4T]$, and for $[0.6T] + 1, \ldots, [0.8T]$, and zero elsewhere. This creates regular and equally sized patches where the parameter alternately takes the value 0 and Δ. Alternatively, we could make the regime switches stochastic rather than deterministic, but we do not expect major differences with the current deterministic set-up in terms of level and power properties of the different tests.

Random structural breaks: For random structural breaks, we follow the set-up of Elliott and Müller (2006). In particular, we generate n_b uniform random numbers in the interval $(0,1)$, π_1, \ldots, π_{n_b}. The parameter then is a random walk with (infrequent) Gaussian increments at the points $\lfloor \pi_j T \rfloor + 1$ for $j = 1, \ldots, n_b$,

$$f_t = \sum_{j=1}^{n_b} 1_{\{t > \lfloor \pi_j T \rfloor\}} v_j,$$
where 1_A is the indicator function for the event A, and v_j is a Gaussian random variable with zero mean and standard deviation Δ.

State space models: For a DGP with parameter-driven dynamics, we assume that f_t follows an autoregressive process of order one

$$f_{t+1} = \phi f_t + \sigma \eta_t,$$

where η_t is normally distributed with zero mean and unit variance.

3.3 Data generation processes for observations

For each of the three different dynamic frameworks for f_t in Section 3.2, we consider the following observation models.

Time-varying mean: $y_t = f_t + \sigma \varepsilon_t$, with disturbance $\varepsilon_t \in \mathbb{R}$ and standard deviation $\sigma \in \mathbb{R}^+$;

Time-varying log-variance: $y_t = \exp(f_t/2)\varepsilon_t$, with disturbance $\varepsilon_t \in \mathbb{R}$;

Time-varying dependence:

$$y_t = \left(\begin{array}{cc} 1 & \tanh(f_t) \\
\tanh(f_t) & 1 \end{array} \right)^{1/2} \varepsilon_t,$$

with vector disturbance $\varepsilon_t \in \mathbb{R}^2$ and with the independent elements coming from either the standardized normal density or the standardized Student’s $t(5)$ density;

Time-varying beta distribution: $y_t \sim \text{Beta}(\alpha_t, \beta_t)$, with both coefficients α_t and β_t time-varying.

We also use the beta model in the empirical application of Section 4 where it is more thoroughly discussed. In the empirical application, both coefficients evolve independently over time by having a two-dimensional f_t. In our current simulation setting, both time-varying parameters in the beta model depend on the time-varying common scalar f_t. We consider two settings for the beta distribution in the Monte Carlo study. In the first version of the model, we have

$$\alpha_t = \tilde{f} \times \frac{\exp(f_t)}{1 + \exp(f_t)}, \quad \beta_t = \frac{\tilde{f}}{1 + \exp(f_t)}, \quad \tilde{f} > 0,$$

such that the mean $\mu_t = \exp(f_t)/(1 + \exp(f_t))$ and variance $\mu_t(1 - \mu_t)/(1 + \tilde{f})$ of the beta distribution are varying over time. The mean lies in the $(0,1)$ range by construction, irrespective of the value of f_t. The variance automatically tends to zero if the mean tends to either 0 or
1, which is natural for the beta distribution. The constant \(\bar{f} > 0 \) determines the additional extent of concentration of the distribution. In the second version of the model, we have
\[
\alpha_t = \bar{f} \times \exp(f_t), \quad \beta_t = (1 - \bar{f}) \times \exp(f_t), \quad 0 < \bar{f} < 1,
\]
such that the mean \(\mu_t = \bar{f} \) is constant and only the variance \(\bar{f}(1 - \bar{f})/(1 + \exp(f_t)) \) varies over time.

In total we have defined 24 simulation experiments: 3 time-varying parameter specifications that are combined with 8 model specifications (mean, log-variance and dependence, for the normal and Student’s t densities, and two beta models). For each of these 24 experiments, we implement all tests at the 5% significance level. Andrews’ sup-LM test is implemented over a grid of breakpoints \(\Pi \) in (10). We use the test based on the boundary breakpoint values of 15% and 85% of the sample size. Given the sample size, we can evaluate all breakpoints inbetween, even for the nonlinear models.

3.4 Results

The results for normally distributed observations with a time-varying mean of deterministic regime switches are presented in Figure 1. For the case of a single regime switch, the top left panel shows that the power of the Nyblom, Andrews, and MP10 is best. This is to be expected, as for example the Andrews test is optimal in this case. The power behavior of these three tests is roughly the same. The GAS tests are less powerful and need roughly between 2.5 and 3 times more distant alternatives than the Andrews test to obtain maximum power.

If the mean is subject to an increasing number of regime switches, the Nyblom test quickly loses power. The Andrews sup-LM test also loses power, but more slowly. For 6 regime switches and with 2,000 observations, the Nyblom test has similar power to the GAS(0,1) test and the Andrews test has similar power to the GAS(0,5) test. The power of the MP10 test also decreases, but it is still the best for 6 regime switches. When the number of regime switches increases further, the performance of the MP10 test also breaks down. The power performance of the GAS tests, on the other hand, remains remarkably robust across the number of regime switches. Although this finding may seem surprising, it is entirely intuitive. The GAS test is based on the autocorrelation of the likelihood score with respect to the time-varying parameter with the scores being computed under the null hypothesis. From the inspection of Figure 2, we learn that the parameter estimate under the null provides some average level of the true parameter path (the pulse function). As a result, the scores under the null roughly follow the pattern of the (demeaned) pulse function. This exhibits strong autocorrelation. If the number of regime switches increases, the autocorrelation remains strong. The number of points where
the correlation pattern is broken, is equal to the number of switches. As the latter is typically small compared to the sample size, the power performance of the GAS test remains stable if we increase the number of switches.

The behavior is very different for the MP10 test. For this test, the estimated difference \((f_t - \bar{f})\) under the alternative \(c = 10\) plays a key role; see Section 2.2. Figure 2 also holds the MP10 estimate of \(f_t\). An increase in the number of regime switches makes it harder for the smoothed estimate \(\hat{f}_t\) to capture the true dynamics of the simulated parameter. When the number of regime switches increases, the estimated difference \(f_t - \bar{f}\) becomes negligible. As a result, the power of the MP10 tests starts to decrease.

The results for the case with random breaks are given in Figure 3. For one break, the tests do not appear to reach a maximum power of one because the generated break dates are sometimes close to the starting or end point of the sample. The tests have little power against these alternatives. If the number of regime switches increases, maximum power is reached quickly. This may be due to the substantial probability that two consecutive breaks have the same
Figure 2: Evolution of the parameter path estimated using the Müller-Petalas procedure with $c = 10$ (dashed line) and the true (simulated) parameter path (solid line). The different panels contain the results for an increasing number of regime switches.

direction, which increases the overall signal that the parameters are not constant over time. In all cases, the Andrews, MP10, and Nyblom tests appear to have superior power compared to the GAS tests.

Figure 4 presents the results for parameter-driven time-varying parameters as modeled by $f_{t+1} = \phi f_t + \sigma^2 \eta_t$, where $\eta_t \sim N(0, 1)$. The left hand panel of Figure 4 contains the results for time-varying σ^2 on the horizontal axis, with fixed $\phi = 0.9$. The right hand panel contains the results for time-varying ϕ and fixed $\sigma^2 = 0.15$.

In both settings, the GAS tests display the best overall power performance. For the case of fixed $\phi = 0.9$ (left panel), the true simulated parameter path exhibits strong mean reversion. These results are similar to the regular regime switches in Figure 1. We have already indicated why the MP10 test has worse power performance compared to the GAS tests in this setting. The same phenomenon applies to the left panel in Figure 4 where for local alternatives, that is σ^2 being close to zero, the MP10 test has a better power performance than the GAS test. The
Figure 3: Empirical power functions of the $LM_{GAS(0, 1)}$ (—), the $LM_{GAS(0, 5)}$ (···), the Andrews test (●—), the Müller-Petalas test (- - -) and the Nyblom test (∗—) for the Gaussian time-varying mean model with random breaks.

Figure 4: Empirical power functions of the $LM_{GAS(0, 1)}$ (—), the $LM_{GAS(0, 5)}$ (···), the Andrews test (●—), the Müller-Petalas test (- - -) and the Nyblom test (∗—) for the Gaussian time-varying mean model with parameter-driven time variation $f_{t+1} = \phi f_t + \sigma \eta_t$, $\eta_t \sim N(0,1)$, and $(\sigma^2_\eta = 0.00 \ldots 0.03, \phi = 0.9)$ and $(\sigma^2_\eta = 0.15, \phi = 0.00 \ldots 1.00)$ in the left-hand and right-hand panel, respectively.
results are even clearer for the time-varying beta distribution shown later. These findings in Figure 1 confirm the analytical results of Müller and Petalas (2010) who prove that their test is optimal against local alternatives. For more distant alternatives, however, we find that the power of the GAS test is superior.

The right panel of Figure 4 provides further evidence that the GAS tests have the best overall performance. For large values of ϕ (on the horizontal axis), the time variation becomes a martingale process. The Nyblom, Andrews, and MP10 tests display adequate power behavior. For lower values of ϕ, however, the parameter path is strongly mean reverting and only the GAS test has power. The power comes from the fact that even for strong mean reversion, the score under the null still displays significant autocorrelation. There is, however, no substantial change in the level of the score under the null (the Andrews and Nyblom tests) for small values of ϕ, nor is there a strong time variation in $(\hat{f}_t - \hat{f})$ in this case; compare Figure 2.

We refer the interested reader to the online Appendix containing all additional results. The results are highly robust and in line with the findings presented above. For example, the same conclusions can be made if we replace the Gaussian distribution by a Student’s t distribution. The results for nonlinear models, such as models for time-varying variances and correlations, lead to similar conclusions. In particular, the results for the time-varying beta density also confirm our findings above. We highlight, however, one main finding. In Figure 5, we present the results for the first beta model with a time-varying mean and variance. The time-varying parameter f_t follows an autoregressive process of order 1. The variance σ^2_η of the error term is chosen to remain close to the null hypothesis of no time variation. As a result, the maximum power over the range of alternatives considered remains quite low and we effectively focus on the local power behavior of all tests. The left hand panel in Figure 5 shows that the power of the MP10 test is superior for alternatives close to the null. This finding is also consistent with the analytical results of Müller and Petalas (2010). When the alternative is more distant from the null, however, the GAS tests have a better performance than the MP10 test.

4 Empirical application

We consider quarterly observations of loss given defaults (LGDs) on corporate bonds. The data are obtained from Moody’s and cover the first quarter of 1982 to the first quarter of 2010. The fraction of losses is measured as the percentage price drop in the value of the corporate bond from the-day-before to 20-days-after the announcement of default. The percentage price drop is also known as market implied LGD and can become negative, for example, after a timely restructuring of a firm or after a merger announcement. We censor negative observed LGDs to
1 basis point, 0.01%. The censoring affects only 14 out of 1125 observations, that is 1.25% of our data set.

Our aim is to test whether there is significant time variation in the distributional characteristics of LGDs. The study into possible time-varying behavior of LGDs is important for credit risk modeling and financial stability research: credit portfolio losses could be severely underestimated if default risk and LGD risk exacerbate one another; see, for example, Creal et al. (2014).

The data displays several non-standard features. First, LGDs are measured as percentage losses so that they are bounded to the interval $[0, 1]$. We therefore assume that the LGDs are drawn from a beta distribution. Second, the number of observed LGDs varies per quarter. Hence the dimension of the observation vector is typically different for each quarter. Such features have to be accounted for in the testing methodology. Combining the observation period with the varying number of LGDs per quarter, we have 1125 LGD-quarter observations, with the number of LGDs per quarter varying from 1 in 1982 to a maximum of 58 in 2009.

Let $y_{i,t}$ denote the ith observation at time t with $i = 1, \ldots, K_t$, where K_t represents the number of LGD observations at time t. We take K_t as given and model $y_{i,t}$ at time t as independent draws from a beta distribution with time-varying parameters $\alpha_t = \exp(f_{1,t})$ and $\beta_t = \exp(f_{2,t})$ where $f_t = (f_{1,t}, f_{2,t})'$. Define $y_t = (y_{1,t}, \ldots, y_{K_t,t})'$. Then the log conditional observation density of y_t is given by

$$
\ln p(y_t|f_t) = \sum_{i=1}^{K_t} \ln \Gamma(\alpha_t + \beta_t) - \ln \Gamma(\alpha_t) - \ln \Gamma(\beta_t) + (\alpha_t - 1) \ln y_{i,t} + (\beta_t - 1) \ln(1 - y_{i,t}),
$$

where Γ denotes the gamma function. The conditional score and information matrix for (15)
Table 1: Test statistics and critical values for the corporate LGD data, 1982Q1–2010Q1

<table>
<thead>
<tr>
<th>Stat</th>
<th>10%</th>
<th>5%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM GAS(0,1)</td>
<td>16.20</td>
<td>4.60</td>
<td>5.99</td>
</tr>
<tr>
<td>LM GAS(0,5)</td>
<td>22.84</td>
<td>15.99</td>
<td>18.31</td>
</tr>
<tr>
<td>MP10</td>
<td>-27.34</td>
<td>-12.80</td>
<td>-14.32</td>
</tr>
<tr>
<td>MP10*</td>
<td>-40.78</td>
<td>-12.80</td>
<td>-14.32</td>
</tr>
<tr>
<td>Andrews</td>
<td>18.56</td>
<td>10.01</td>
<td>11.79</td>
</tr>
<tr>
<td>Nyblom</td>
<td>1.63</td>
<td>0.61</td>
<td>0.75</td>
</tr>
</tbody>
</table>

are given by

\[\nabla_{f_t} = \sum_{i=1}^{K_t} \left(\begin{array}{l} (\Psi(\alpha_t + \beta_t) - \Psi(\alpha_t) + \ln y_{i,t}) \times \alpha_t \\ (\Psi(\alpha_t + \beta_t) - \Psi(\beta_t) + \ln (1 - y_{i,t})) \times \beta_t \end{array} \right), \]

and

\[\mathcal{I}_t = K_t \times \left(\begin{array}{cc} \alpha_t^2 (\Psi'({\alpha_t}) + \Psi'({\alpha_t} + {\beta_t})) & -\alpha_t \beta_t \Psi'({\alpha_t} + {\beta_t}) \\ -\alpha_t \beta_t \Psi'({\alpha_t} + {\beta_t}) & \beta_t^2 (\Psi'({\beta_t}) + \Psi'({\alpha_t} + {\beta_t})) \end{array} \right), \]

where \(\Psi \) denotes the digamma function that is defined as \(\Psi(x) = d \ln \Gamma(x)/dx \). We set the GAS scaling matrix to the inverse information matrix, \(S_t = \mathcal{I}_t^{-1} \), to account for the curvature of the score; see Creal et al. (2013). Using these definitions, we are able to compute the considered test statistics. The results are presented in Table 1.

All test statistics clearly reject the null hypothesis of constant parameters. We have slightly modified the Muller-Petalas test (denoted as MP10*) to account for the fact that the number of observations \(K_t \) varies over time. In the original MP10 paper, the Hessian is estimated unconditionally over the full sample since the number of observations for each period is constant. In our setting of a varying number of observations \(K_t \), we treat \(K_t \) as given but multiply the Hessian in the algorithm of MP10 at time \(t \) by \(K_t/K \), where \(K \) is the average of \(K_t \) in the full sample. This modification follows from a similar derivation that is used for the information matrix in (17). It corrects the steps in the MP10 algorithm for periods when there are either many or few LGD observations in the cross section.

Next we confirm the test results from Table 1 by estimating the path of the time-varying parameter \(f_t \) in two alternative ways. First, we estimate \(f_t \) based on the GAS(1,1) model as given by

\[f_{t+1} = \omega + As_t + Bf_t, \quad s_t = S_t \nabla_t, \quad A = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & 0 \\ 0 & b_{22} \end{pmatrix}. \]

The model with full rather than diagonal matrices for \(A \) and \(B \) produces similar results and is
Table 2: GAS(1, 1) coefficients estimation results

<table>
<thead>
<tr>
<th>Coeff.</th>
<th>Estimate</th>
<th>Std Err</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>0.0559 (0.0088)</td>
<td>6.3449</td>
<td></td>
</tr>
<tr>
<td>ω_2</td>
<td>-0.0023 (0.0073)</td>
<td>-0.3075</td>
<td></td>
</tr>
<tr>
<td>a_{11}</td>
<td>0.1943 (0.0220)</td>
<td>8.8156</td>
<td></td>
</tr>
<tr>
<td>a_{22}</td>
<td>0.1836 (0.0361)</td>
<td>5.0770</td>
<td></td>
</tr>
<tr>
<td>b_{11}</td>
<td>0.8571 (0.0233)</td>
<td>36.8217</td>
<td></td>
</tr>
<tr>
<td>b_{22}</td>
<td>0.9235 (0.0355)</td>
<td>26.0252</td>
<td></td>
</tr>
</tbody>
</table>

therefore omitted. The parameter estimates are presented in Table 2. All parameter estimates are strongly significant, except ω_2. We find that there is strong persistence in both α_t and β_t, as both b_{11} and b_{22} are relatively high. Interestingly, the persistence in α_t is not as strong as that in β_t, that is $b_{11} < b_{22}$. Since α_t and β_t characterize the mean of the beta distribution when it is close to 0 and 1, respectively, the higher persistence of β_t indicates that the higher LGDs are more persistent than low LGDs. Such differences do not appear between a_{11} and a_{22}.

Our second estimate of f_t is obtained as a by-product of the MP10 algorithm. It is based on the Weighted Average Risk estimate of the path f_t for several local alternatives as explained in Section 2.2. We use the same method as for MP10* to correct for the time-varying number of observations K_t when estimating the path. The results are presented in Figure 6.

The LGD observations range from close to zero to almost one for given cross sections. In Figure 6 we also plotted the mean of the beta distribution $\alpha_t/ (\alpha_t + \beta_t)$. The MP10* and GAS estimates of the mean capture the salient features of the data. There are clear peaks in average credit losses around the 1991 recession, the 2000-2001 burst of the dotcom bubble, and the most recent financial crisis. The peaks clearly defy the assumption of constant parameters. The MP estimate appears to lead the GAS estimate. We point out that the GAS estimate is a filter (produces a one-sided estimate) and the MP estimate is a smoother (produces a two-sided estimate). In the latter case, future observations are also taken into account. We also observe that the two estimates differ substantially in the period before the 2008 financial crisis. The GAS estimate reveals a more moderate trough than the MP estimate.

We further conclude that the MP estimate is rather successful in extracting the mean signal throughout the sample while it is designed for local time variation only. The smoothed path of f_t in Figure 6 for MP10* is constructed by a weighted average of 10 different paths, corresponding to the autoregressive coefficients $b_{11} = b_{22} = 1 - c/T$ for $c = 0, 5, 10, \ldots, 50$, with $T = 113$. The largest weights are assigned to the paths corresponding to $c = 30, \ldots, 50$ while
This figure contains the market implied LGDs of corporate bonds over the period 1982Q1–2010Q1 as observed by Moody’s, left panel. The left panel also contains the mean of the fitted beta distribution, $\alpha_t/(\alpha_t + \beta_t)$, for the GAS model from Table 2 and the MP10* smoothed parameter path of Müller and Petalas (2010). The right hand curve provides the estimates of the variance, $\alpha_t/((\alpha_t + \beta_t)^2(1 + \alpha_t + \beta_t))$, for both methods, as well as a 1 year rolling window estimate of the variance (Var).

The mode weight is at $c = 40$; it corresponds to an autoregressive decay of $1 - 40/113 \approx 0.65$. This autoregressive coefficient is lower than those of the GAS model, b_{11} and b_{22}, in Table 2. Moreover, the autoregressive coefficient in the MP10 method is the same for α_t and β_t, in contrast to the GAS model. A smaller persistence parameter in MP10* is counterbalanced by a higher innovation variance in order to match the unconditional variance. The two effects lead to an MP10* estimate that is more sensitive the small LGD values in the period leading up to the 2008 credit crisis. We emphasize that the MP10* test is not influenced by the less persistent paths. The MP10* test is based on the local alternative $c = 10$ that corresponds to a persistence parameter of $1 - 10/113 \approx 0.91$. This value is closer the estimated persistence parameters b_{11} and b_{22} in the GAS model.

The right hand panel of Figure 6 presents the estimates of the variance of our beta model as given by $\alpha_t/((\alpha_t + \beta_t)^2(1 + \alpha_t + \beta_t))$. The time-varying variance is slightly trending upwards. The variation in more recent LGD percentages is somewhat larger than in the early 1980s. We observe two peaks in the variance. These are linked to periods when LGD observations are sparse and the corresponding relative dispersions are high. The variance estimates in the MP10* and GAS frameworks are roughly similar. The main differences are in the periods around 1997 and around 2004–2006. In the latter period we find that the lower mean for MP10* in the left panel of Figure 6 is partly compensated by the higher variance. The MP10* test is not affected because it is based on the autoregressive coefficient of approximately 0.91 for MP10*, rather
than 0.65 (implied by the mode $c = 40$) for the smoothed estimates reported in Figure 6.

5 Conclusions

We have proposed a new omnibus misspecification test for parameter instability in general nonlinear non-Gaussian time series models. By adopting the generalized autoregressive score, or GAS, model of Creal et al. (2013) as our specification of time-varying parameters, we have proposed a Lagrange Multiplier test for the null of constant parameters against the time-varying alternative. We have carried out an extensive Monte Carlo study to investigate the finite sample properties of the new test and have compared it with a number of other competing general purpose tests. Each of these tests are based on different time-varying parameter frameworks: the structural breaks of Andrews (1993), the local parameter-driven variations of Müller and Petalas (2010), and the martingale processes of Nyblom (1989).

We have concluded that the new test has robust power performance. For different time-varying parameter processes, the power of the GAS test remains relatively constant, whereas the power of competing tests varies considerably. None of the tests is uniformly superior in all situations considered. The GAS test performs well if parameters vary considerably over time, particularly when this variation is strongly mean reverting and frequent. For incidental changes or a small magnitude of the time variation, the test of Müller and Petalas (2010) typically performs best, which is consistent with the theory developed in their paper.

We have applied our tests to an empirical panel data set consisting of loss given default percentages of corporate bonds. We have shown how the tests can be used in a practical setting and how the tests can be adapted in cases with a time-varying number of observations. Interestingly, we have found that the smoothing approach of Müller and Petalas (2010) can also be useful in cases of non-local time variation in the parameters. The estimated paths from their algorithm produce similar results as the estimated path from the GAS model in our empirical application. It illustrates that the two testing paradigms can provide complementary as well as mutually reinforcing evidence in empirical studies.

References

Online Appendix: additional simulation results

Gaussian time–varying variance

Figure 7: Empirical power functions of the $LM_{GAS(0,1)}$ (---), the $LM_{GAS(0,5)}$ (····), the Andrews test (●●●), the Müller-Petalas test (- - -) and the Nyblom test (∗∗) for regime–switching.
Figure 8: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (•–), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.

Figure 9: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (•–), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
Gaussian time–varying correlation

Figure 10: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (●), the Müller-Petalas test (- - -) and the Nyblom test (∗) for regime–switching.
Figure 11: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (●), the Müller-Petalas test (- - -) and the Nyblom test (∗∗) for random breaks.

Figure 12: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (●), the Müller-Petalas test (- - -) and the Nyblom test (∗∗) for state space.
Figure 13: Empirical power functions of the $LM_{GAS(0,1)}$ (——), the $LM_{GAS(0,5)}$ (···), the Andrews test (●), the Müller-Petalas test (- - -) and the Nyblom test (*) for regime-switching.
Figure 14: Empirical power functions of the $\text{LM}_{GAS}(0,1)$ (—), the $\text{LM}_{GAS}(0,5)$ (···), the Andrews test (●), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.

Figure 15: Empirical power functions of the $\text{LM}_{GAS(0,1)}$ (—), the $\text{LM}_{GAS(0,5)}$ (···), the Andrews test (●), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
Figure 16: Empirical power functions of the $LM_{GAS(0,1)}$ (--), the $LM_{GAS(0,5)}$ (···), the Andrews test (●–), the Müller-Petalas test (−−−) and the Nyblom test (∗–) for regime-switching.
Figure 17: Empirical power functions of the $LM_{GAS_{(0,1)}}$ (—), the $LM_{GAS_{(0,5)}}$ (···), the Andrews test (•—), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.

Figure 18: Empirical power functions of the $LM_{GAS_{(0,1)}}$ (—), the $LM_{GAS_{(0,5)}}$ (···), the Andrews test (•—), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.
Figure 19: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (–), the Müller-Petalas test (- - -) and the Nyblom test (∗) for regime-switching.
Figure 20: Empirical power functions of the $LM_{GAS}(0, 1)$ (—), the $LM_{GAS}(0, 5)$ (···), the Andrews test (•–), the Müller-Petalas test (- - -) and the Nyblom test (*) for random breaks.

Figure 21: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (•–), the Müller-Petalas test (- - -) and the Nyblom test (*) for state space.
Beta first setting

Figure 22: Empirical power functions of the $LM_{GAS(0,1)}$ (---), the $LM_{GAS(0,5)}$ (···), the Andrews test (● –), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for regime–switching.
Figure 23: Empirical power functions of the $LM_{GAS(0,1)}$ (---), the $LM_{GAS(0,5)}$ (···), the Andrews test (●●), the Müller-Petalas test (---) and the Nyblom test (∗∗) for random breaks.

Figure 24: Empirical power functions of the $LM_{GAS(0,1)}$ (---), the $LM_{GAS(0,5)}$ (···), the Andrews test (●●), the Müller-Petalas test (---) and the Nyblom test (∗∗) for state space.
Figure 25: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (●), the Müller-Petalas test (- - -) and the Nyblom test (∗) for regime-switching.
Figure 26: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (●–), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for random breaks.

Figure 27: Empirical power functions of the $LM_{GAS(0,1)}$ (—), the $LM_{GAS(0,5)}$ (···), the Andrews test (●–), the Müller-Petalas test (- - -) and the Nyblom test (∗–) for state space.